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ingiomas are often considered benign tumors curable by surgery, but most recurrent meningiomas
pond to histologic benign tumors. Because alterations in chromosome 14 among others have suggested
l aggressiveness and recurrence, determining both the molecular phenotype and the genetic profile may
istinguish tumors with aggressive metabolism. The aim of this study was to achieve higher specificity in
tection of meningioma subgroups by measuring chromosomal instabilities by fluorescence in situ hy-
tion and cytogenetics and metabolic phenotypes by high-resolution magic angle spinning spectroscopy.
died 46 meningioma biopsies with these methodologies. Of these, 34 were of WHO grade 1 and 12 were
O grade 2. Genetic analysis showed a subgroup of histologic benign meningioma with chromosomal
ilities. The metabolic phenotype of this subgroup indicated an aggressive metabolism resembling that
ed for atypical meningioma. According to the metabolic profiles, these tumors had increased energy
d, higher hypoxic conditions, increased membrane turnover and cell proliferation, and possibly in-
d resistance to apoptosis. Taken together, our results identify distinct metabolic phenotypes for other-
enign meningiomas based on cytogenetic studies and global metabolic profiles of intact tumors.
wise b

Measuring the metabolic phenotype of meningioma intact biopsies at the same time as histopathologic anal-
ysis may allow the early detection of clinically aggressive tumors. Cancer Res; 70(21); 8426–34. ©2010 AACR.
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ingiomas are often considered benign tumors curable
gery. However, ∼20% of meningiomas with histologic
ade may be clinically aggressive and recur (1). Menin-
s are neoplasms that arise from the leptomeningeal
ng of the brain and spinal cord, accounting for 15%
of all central nervous system tumors. The current

ards for diagnosis of meningiomas are clinical and
logic findings. The WHO classifies meningiomas into
histologic grades: grade 1 (benign), grade 2 (atypical),
rade 3 (anaplastic), in accordance with the clinical
osis (2). Signs of malignancy in meningioma include
d vascularity, loss of organoid structure, mitotic fig-
uclear pleomorphism, prominent nucleoli, focal necro-
tion to the adjacent brain. Atypical and
ingiomas show a high index of recurrence
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s after complete resection and are associated with low-
vival rates compared with benign meningiomas (3).
ver, in absolute numbers, most recurrent meningiomas
spond to histologic benign tumors. The potential
siveness of an individual meningioma is still difficult
luate.
genesis of meningiomas has been associated with loss
etic material on chromosome 22. Monosomy of this
osome is the most common genetic alteration in me-
ma and was one of the first cytogenetic alterations de-
d in solid tumors (4, 5). Loss of 1p and alterations in
osome 14 are present in many atypical meningioma
sses in 6q, 10, and 18q and gains on 1q, 9q, 12q, 15q,
nd 20q are also common in atypical meningioma (7).
on this information, genetic characterization of me-
mas has some value in the subclassification of menin-
s. Recent studies show that benign tumors with
ions in chromosome 14 among others may be clinical-
ressive and recur (8). However, correlations between a
c profile and a clinical phenotype, which typically takes
o develop, are affected by many different variables. On
her hand, little is known about the effect of these chro-
al instabilities on the metabolic phenotype of the tu-
The determination of the molecular phenotype
aneously to the genetic profile may help in further dis-
shing metabolically aggressive tumors. This distinction
lso aid in determining the aggressiveness of surgical

ion and the necessity of combined radiation therapy.
onal criteria for better classification of meningiomas
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prove these clinical decisions as well as patient follow-
ategy after surgery.
abolomics is defined as “the quantitative measure-
of the multiparametric metabolic response of living
s to pathophysiological stimuli or genetic modifica-
(9). High-resolution nuclear magnetic resonance
) spectroscopy of biofluids and tissues combined with
ariate analysis methodologies, such as principal com-
t analysis (PCA), represent a powerful technique for
igating the metabolome in the area of drug toxicology
isease diagnosis and prognosis (10). NMR is one of the
efficient, robust, reproducible, and cheap methods for
ing metabolic profiles in biological specimens with-
tensive sample preparation (11). High-resolution mag-
gle spinning (HR-MAS) NMR spectroscopy is a
ful technique for the investigation of metabolites
different intact tissues (12–16). The potential of

AS applications to the study of biological tissues has
idely shown in the investigation of different cellular
ions. In addition, HR-MAS NMR spectroscopy of in-
ssues (ex vivo) provides further advantages over tra-
al high-resolution liquid NMR of tissue extracts
ro). This technology can supplement histopathologic
nation and potentially improve brain tumor diagnos-
R-MAS spectra generate metabolic profiles that con-
formation on physiologic and pathologic status. This
ach can be used to define the metabolomic phenotype
issue.
aim of this study was to detect new subgroups of me-
ma and to achieve higher specificity in the classifica-
f meningioma by measuring metabolic phenotypes
igh-resolution NMR spectroscopy. We collected HR-
spectra on 34 benign and 12 atypical meningioma
samples and used multivariate analysis for detecting
olic subgroups. Histopathology after NMR, which is
ossible when using HR-MAS methodologies, provides
ential validation of our results. This analysis shows that

c instability has high effect on the metabolic profile of Tot
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rials and Methods

ts and clinical samples
ty-six human meningioma biopsies were obtained from
ients at the Department of Neurosurgery of the Clinical
sity Hospital of Valencia. This study was reviewed and
ved by the local ethics committee. During surgery,
of the resected tissue was sent for routine histologic
is, and the remainder was immediately put in cryogen-
s and snap frozen in liquid nitrogen. All snap-frozen
es were stored in a freezer at −80°C until further anal-
ll samples used for histopathologic examination were
n neutral-buffered formalin, embedded in paraffin, sec-
, and stained with H&E. Tumors were classified ac-
g to the 2007 WHO histologic classification (2).

gioma types analyzed include 34 benign meningiomas
1) and 12 atypical meningiomas (grade 2).

All
spectr

acrjournals.org
enetic analysis and fluorescence in situ
dization
ogenetic analyses were performed by short-term cul-
f the tumors. Fresh tumor samples were disaggregated
mg/mL of collagenase II. The cells were seeded in

using RPMI 1640 supplemented with 20% fetal bovine
, L-glutamine, and antibiotics. The cells were processed
2 hours of culture by a standard technique. Air-dried
were banded by trypsin-Giemsa. Karyotypic analyses
erformed according to ISCN (17).
samples of meningioma used for fluorescence in situ
ization (FISH) analysis were studied by tissue microar-
e removed four 0.6-mm cores from the corresponding
on the paraffin block in each case using the Beecher
ments Manual Tissue ArrayerI. For the investigation
omosome abnormalities by interphase FISH, the probes
q12, LSI 1p36/LSI 1q25, and LSI t(11;14) IGH/CCND1
, Inc.) were used.
ridizations were performed according to the instruc-
that accompany the probe. Counterstaining of nuclei
rried out using 4′,6-diamidino-2-phenylindole. The fluo-
t signal was detected using a photomicroscope Axioplan
Axiophot 2 (Zeiss) equipped with a set of the appropriate
For each hybridization, green and orange signals were
ed in the four regions of a total of 100 to 200 nonoverlap-
uclei. An interpretation of deletion or imbalance was
when >20% of the nuclei harbored these alterations
). Cutoffs for deletions were based on the frequencies
als for the same probes in nonneoplastic brain controls
an, ±3) and ranged from 14% to 21% for chromosome 1,
6% to 22% for chromosome 14, and from 15% to 20% for
somy 22. We considered deletion when one or less signal
omosome appeared with respect to the signal of control
0/1, 0/2, 1/2, 1/3…), and we considered normal with the
s used present a ratio 2/2.

AS spectroscopy
al sample preparation time for each sample before
detection was <5 minutes. All the material to be in con-
ith the tissue was precooled to reduce tissue degrada-
uring the sample preparation process. Frozen samples
aken from the ultrafreezer and immediately placed in a
al and in liquid N2 until insertion in a 4-mm outer di-
r ZrO2 rotor. The HR-MAS tissue sample was split from
ole frozen tumoral mass submerged in liquid nitrogen.
recooled rotor was filled with cooled D2O after tissue
e insertion. Cylindrical inserts were used in all the
limiting the rotor inner volume to 50 μL. Exceeding
as removed before rotor sealing. Tissue samples were
ted in the rotor before D2O addition and HR-MAS mea-
ents. Tissue fragments were weighted exclusively for
le preparation purposes. The mean sample weight
7 ± 11 mg. Immediately after the measurement, the
AS samples were fixed in formalin for subsequent his-
ologic examination and for tumor content assessment
expert pathologist.

spectra were recorded in a Bruker Avance DRX 600
ometer operating at a 1H frequency of 600.13 MHz.

Cancer Res; 70(21) November 1, 2010 8427
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strument was equipped with a 4-mm triple resonance
/15N HR-MAS probe with magnetic field gradients
d with the magic angle axis. For all experiments, sam-
ere spun at 5,000 Hz to keep the rotation sidebands out
acquisition window. Lock homogeneity was achieved
ensive coil shimming using the one-dimensional water
uration experiments in interactive mode as control. Al-
doublet at 1.475 ppm was used for lock homogeneity
ing, as described elsewhere (20). Nominal temperature
sample receptacle was kept at 273 K using the cooling
inlet gas pressures responsible for the sample spinning.
alue corresponded to the temperature measured from
ermocouple just below the rotor in the probe. The
of sample rotation was to slightly increase this value.
al measurement using a 100% methanol sample in a
rotor spinning at the same frequency provided a
ted internal value of 277 K. To minimize the effects
ue degradation, which would alter the metabolite com-
n of the biopsy, all ex vivo spectra were acquired at
mperature of 277 K. A total of 10 minutes was allowed
e temperature of the sample to reach steady state
spectra were acquired. A single-pulse presaturation
ment was acquired in all the samples. The number of
nts was 256 collected into 32 K data points for all the
ments. Water presaturation was used during 1 second
the recycling delay for solvent signal suppression. Spec-
idths were 8,000 Hz for 1 hour. Before Fourier transfor-
n, the free induction decay was multiplied with a
exponential line broadening. Chemical shift referenc-
s performed relative to the alanine CH3 signal at 1.475
or assignment purposes, two-dimensional (2D) homo-
r (2D-TOCSY) and heteronuclear (2D-1H, 13C-HSQC)
ments were acquired on selected samples.

data analysis
0 spectra were processed using MNova 5.3 (MestreLab
nd transferred to MATLAB (MathWorks, Inc.) using in-
scripts for data analysis. All multivariate analysis was
med using the PLS_Toolbox library. The chemical shift
including resonances between 0.50 and 4.60 ppm and
en 5.20 and 10.50 was investigated. For comparison of
metabolic profiles from different meningioma sub-

s, the spectra were binned into 0.01 ppm buckets, nor-
d to total spectral integral, and subsequently analyzed
A. The spectral binning and normalization minimized
ect of differences in tissue weight and cell content for
fferent biopsies. We cross-validated our PCA model by
ming 10 technical replicates by choosing random train-
6 samples) and validation (10 samples) data subsets.
validation is a technique for assessing how the results
atistical analysis will generalize to an independent data
e first two principal components of the average model
nd PC2) accounted for a total of 65% of the variance in
ectral data set. Lower-order principal components did
ovide clear differences between subgroups and conse-
y were not further analyzed. Spectral signal integration

k-fitting algorithms over relevant resonances provided
e levels of the corresponding metabolites. Only those

charac
ningio

r Res; 70(21) November 1, 2010
s with peak-fitting residual error lower than 10% were
n the study.

tical analysis
etermine individual metabolic differences between the
nt subgroups of meningioma, univariate Student's t
ere performed for each signal of the individual meta-
detected as major contributor in the PCA analysis. We
ated the maximum false discovery rate (FDR) of the
olites selected to account for multiple testing. FDR
stimated using the q value statistical parameter (21).
value gives the estimated FDR for every possible list
nificant signals. The q value is based on estimating
ue proportion of null hypotheses. The P value histo-
width used for calculating q values was 0.005. Because
rformed three comparisons and the q value may be dif-
, the q value was applied separately to the P values of
omparison. Unless otherwise indicated, the limit of q
for metabolites selected in each comparison was set to
DR of 5%).

lts

pathology
tologic analysis of the tissue specimens after HR-MAS
is showed various amounts of tumor tissue (Fig. 1). In
es, histologic analysis of the HR-MAS sample agreed
he histopathology original diagnosis. All samples in-
a percentage of tumor cells at least of 80%, as evalu-
y two expert pathologists exploring at 10× the whole
e (1–2 mm), confirming that samples are representa-
the tumor, independently of tumor grade.

osomal profile
yotyping was obtained in 37 cell cultures from 37
nt cases. Sample material was adequate for FISH stud-
42 cases. Information from both methodologies was
ined to distinguish complex chromosomal profiles.
-seven of 46 meningiomas presented clonal numerical
r structural abnormalities, as shown in Table 1 and
ementary Materials and Methods. All cases without
osomal aberrations belonged to the histologic grade
ingioma group. Monosomy of chromosome 22 is the
ommon genetic alteration in meningioma and was de-
in 22 of all cases. All cases without a complex karyo-
ere of histologic grade 1. Similarly, all those cases with
tions in chromosome 22 as the only chromosomal
aly were also of histologic grade 1. According to FISH
osomal analysis, only 16% (5 of 32) of benign meningi-
are −1p, whereas this percentage rises to 70% (7 of 10)
pical meningioma. All cases containing alterations in
osome 14 were of histologic grade 2. All grade 2 me-
mas showed a complex karyotype, with six of them
ng chromosomal alterations different to −1p, −22,
r −14. These findings confirm that exploration of chro-
es beyond 1, 14, and 22 is recommended for genetic

terization of meningiomas. Our results show that me-
mas with higher histologic grade (grade 2) are very

Cancer Research
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to have a complex karyotype. There is a subpopulation
ningiomas with histologic grade 1, which also exhibits
ex karyotype, despite not having alterations in chro-
e 14. Besides 1, 14, and 22, chromosomes affected ei-

n this benign meningioma subgroup or in atypical
gioma include 2, 3, 5, 7, 9, 10, 17, and 18. Differently
e previous studies, the combined use of FISH and cy-
tics allowed the detection of many different anoma-

amine; 12, choline; 13, phosphocholine; 14, taurine; 15, glycine; 16, gluco
al), 1 (E; 1p deletion as red spots), and 14 (F; 14q deletion as green spo
hromosomal profiles. Based on chromosomal profiles,
fin

The P

le m
ytogenetic a

C os ins ties

rma p er ncl

merical or structural alterations, which are present only once in the dif

acrjournals.org
is: histologic grade 1 with normal or diploid karyotype
gnA), histologic grade 1 with complex karyotype
nB), and histologic grade 2 (atypical).

olic profile
MAS spectroscopy provided well-resolved spectra of
meningioma tissue samples. NMR spectra of benignA,
B, and atypical meningioma are displayed in Fig. 1.

, phosphoethanolamine). FISH images show chromosomes 22
CA analysis (Fig. 2) showed partial group separation

ed three meningioma subgroups for subsequent between meningiomas benignA and meningiomas with
nd g
1. Sum
 ary of chromosomal instabilities detected in benign a
nd FISH analysis
q

ferent metaph
atypical meningioma accordin
F tal

4q loi

ases analyzed.
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E: Cells in gray show the chromosomal instability progression in the different subgroups of meningioma.
merical or structural alterations different to monosomy 22, 1p deletion, and monosomy 14 (see Supplementary Materials and
hods).
1. Representative NMR spectra (A–C), FISH images (D–F), and histopathology (G–I) for the benign meningioma without chromosomal instabilities
othelial meningioma, subgroup benignA; A, D, and G), benign meningioma with chromosomal instabilities (transitional meningioma, subgroup
; B, E, and H), and atypical meningioma (C, F, and I). Resonances belonging to metabolites with statistical significance have been labeled in the
(1, fatty acids; 2, leucine; 3, isoleucine; 4, lactate; 5, alanine; 6, acetate; 7, glutamate; 8, glutamine; 9, total glutathione; 10, creatine; 11,
0 8429
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lex karyotype (benignB and atypical). On the other
histologic benign and atypical meningiomas formed
artially overlapping groups. The overlapping region
ned most of the meningioma tumors showing chromo-
instabilities, indicating metabolic similarity between
meningiomas with chromosomal instabilities (be-

subgroup) and the more aggressive atypical meningi-
umors. In the next step, individual metabolites were
ied in the PCA loading plot and quantified for further
is. A total of 19 metabolites showed statistically signif-
differences between either two of the three subgroups
1). No statistically significant correlation was detected
en FISH quantitative data (see Supplementary Materi-
d Methods) and the metabolic profiles (Table 2).
major features for separation between benignA me-
ma and atypical meningioma (the two subgroups
separated in the PCA scores plot) were higher concen-
s of glycine, glutamate, total glutathione, lactate, tau-
hosphocholine, phosphoethanolamine, and uracil and
concentrations of global fatty acids, γ-aminobutyric
scorbate, acetate, creatine, alanine, leucine, isoleucine,
ine, ascorbate, lysine, glucose, choline, and ethanol-
. For most of these metabolites, with the exception
rine, glutamine, and γ-aminobutyric acid, the values
nignB meningioma were closer to atypical meningioma
o benignA meningioma (Table 1; Fig. 3). Meningioma
omplex karyotype showed increased levels of gluta-
and total glutathione and reduced levels of glutamine,
ting an increase in total glutathione production. Glu-
scorbate, acetate, and fatty acids (metabolites involved
tricarboxylic acid cycle) and fatty acid β-oxidation
ll decreased in the same groups. Conversely, lactate
gher in atypical meningioma. Increased glucose uptake
igh glycolytic activity, due to high energy requirement,
ajor hallmarks of tumor metabolism. These changes

y result in decreased intracellular glucose concentra- logic

chang
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the benign meningioma with chromosomal instabilities (subgroup
, gray circles), and the atypical meningioma (black circles).

r Res; 70(21) November 1, 2010
lso be altered by the biopsy extraction procedure. Phos-
oline and phosphoethanolamine, both phospholipid
tives, also showed increased levels in meningioma
s with complex karyotype. Increased membrane metab-
urnover is another significant metabolic pathway for
development and aggressiveness. On the other hand,

milar levels of polyunsaturated and monounsaturated
cids in all groups suggested a similar amount of ne-
fraction in the tissue. Finally, despite high variability,
metabolites increased with complex karyotype pro-
ely and in a statistically significant manner. This sug-
that nucleotide metabolism is also altered in more
sive tumors.

ssion

st meningiomas are classified as benign based on clin-
d pathologic findings. Nonetheless, the behavior of in-
al meningioma is still difficult to predict. Many
us studies report some correlation between chromo-
alterations and meningioma clinical outcome. Typical-
ese correlations are usually weak because of two
s. First, the chromosomal profile typically is limited
H analysis of a few chromosomes. Second, clinical out-
takes years to be properly assessed and still many in-
als may exhibit the clinical aggressiveness later on.
and colleagues (22) show that statistical correlation
en genetic abnormalities and clinical outcome im-
when follow-up is extended to 10 years, with a subset

ients showing recurrence 15 years after surgery. On the
hand, most of the previously reported meningioma
ups define aggressiveness based solely on WHO grade
orphologic parameters. This definition of the pheno-
of an aggressive meningioma is rather poor. The
olic changes of any cell population precede morpho-
changes. In fact, chromosomal alterations produce
es in the metabolic phenotype almost immediately.
easurement of a metabolic phenotype at the moment
histopathologic diagnosis may help in detecting better
d molecular meningioma subgroups.
ur study, chromosomal profiling by cytogenetics and
and metabolic profiling by NMR spectroscopy on be-
nd atypical meningioma reveal distinct molecular phe-
es that allowed detecting metabolic aggressiveness in
tumors. Previous studies on metabolic profiling of me-
mas report weak correlations between grade and
olic phenotype (19, 23). This may be due to the use
ue extracts, which precludes the histopathology of
mple and makes impossible to know the tumor con-
eading to much broader variability in the metabolite
To our knowledge, this is the first combined genetic
etabolic analysis of intact biopsies of benign and atyp-
eningiomas for detecting metabolic subgroups. The use
genetics allows the detection of a global chromosomal
. Similarly, NMR spectroscopy combined with multi-
e analysis provides a global metabolic profile. The com-

on of these data provides a robust and well-delimited
nd higher levels of lactate. However, these metabolites

2. Score plots of PCA to compare the metabonome of the benign
ioma without chromosomal instabilities (subgroup benignA, white
meningioma subgroups.

Cancer Research
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Glucos 1 ± 6 ± 28 ± 0.3 0.0 0.0
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omosomal aberrations in a tumor sample are typically
d by FISH. FISH is a target-oriented method that allows
observation of specific chromosomal abnormalities. It
e sensitive than standard cytogenetic methods because
not require dividing cells and can be measured direct-
e tumor tissue. However, cytogenetic methods provide
le-genome chromosomal profiling and may reveal
osomal alterations in regions different to those ex-
by target-oriented methods. The combination of both
ds provides a global chromosomal profile with high
vity in specific regions. Therefore, we found chromo-
alterations that would not have been detected by
the individual approaches alone. We chose to examine
osomes 1, 14, and 22 by FISH because aberrations of
chromosomes are the most frequently reported genetic
malities in meningioma (7). Our findings confirmed
ss of 1p and/or 14 are the most common chromosom-
rations in atypical meningioma. Coexistence of mono-
14 and 1p is a powerful adverse prognostic factor for
elapses (6). However, meningiomas are cytogenetically
geneous tumors. The detection of a subset of benign
giomas with chromosomal alterations beyond mono-

nal intensity was not sufficient for quantification in all the sample
22 may have an important effect in defining aggressive-
n meningiomas. This subset of benign meningiomas
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d in meningioma with complex karyotype. Glycine is
or component of collagen. Increased levels of glycine
t increased collagen synthesis and artery wall forma-
nd therefore sustained angiogenesis. Increased levels
cil in meningioma with chromosomal instabilities
eflect the activation of uracil glycosylase, which excises
from DNA deaminated cytosine and repairs damaged
Previous studies reported that uracil glycosylase activ-
relates with tumor recurrence (38).
ummary, the metabolic phenotype detected by HR-MAS
ningioma allows detecting metabolic aggressiveness in
ogic benign tumors. The multivariate analysis shows
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