Daniel J Macqueen

Daniel J Macqueen
The University of Edinburgh | UoE · Roslin Institute

BSc, PhD

About

115
Publications
18,453
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
2,843
Citations
Citations since 2017
62 Research Items
2101 Citations
20172018201920202021202220230100200300400500
20172018201920202021202220230100200300400500
20172018201920202021202220230100200300400500
20172018201920202021202220230100200300400500
Introduction
Personal Chair of Integrative Fish Genomics at the University of Edinburgh. Mainly interested in genomes, evolution, physiology, and phylogenetics of fishes (particularly salmonids), and other aquatic creatures. Applying research towards improvements in aquaculture. See: https://www.macqueenresearchgroup.com/
Additional affiliations
June 2020 - present
The University of Edinburgh
Position
  • Professor (Full)
October 2018 - June 2020
The University of Edinburgh
Position
  • Group Leader
August 2018 - present
University of Aberdeen
Position
  • Professor (Full)
Description
  • Integrative Fish Genomics

Publications

Publications (115)
Article
Full-text available
Structural variants (SVs) are a major source of genetic and phenotypic variation, but remain challenging to accurately type and are hence poorly characterized in most species. We present an approach for reliable SV discovery in non-model species using whole genome sequencing and report 15,483 high-confidence SVs in 492 Atlantic salmon (Salmo salar...
Article
Full-text available
The long-term evolutionary impacts of whole genome duplication (WGD) are strongly influenced by the ensuing rediploidization process. Following autopolyploidization, rediploidization involves a transition from tetraploid to diploid meiotic pairing, allowing duplicated genes (ohnologues) to diverge genetically and functionally. Our understanding of...
Article
Full-text available
Viral disease poses a major barrier to sustainable aquaculture, with outbreaks causing large economic losses and growing concerns for fish welfare. Genomic epidemiology can support disease control by providing rapid inferences on viral evolution and disease transmission. In this study, genomic epidemiology was used to investigate salmonid alphaviru...
Article
Full-text available
The European flat oyster (Ostrea edulis L.) is a bivalve naturally distributed across Europe that was an integral part of human diets for centuries, until anthropogenic activities and disease outbreaks severely reduced wild populations. Despite a growing interest in genetic applications to support population management and aquaculture, a reference...
Article
Full-text available
The liver is a multitasking organ with essential functions for vertebrate health spanning metabolism and immunity. In contrast to mammals, our understanding of liver cellular heterogeneity and its role in regulating immunological status remains poorly defined in fishes. Addressing this knowledge gap, we generated a transcriptomic atlas of 47,432 nu...
Article
Full-text available
This volume of Evolutionary Applications sees the publication of two genomes for the European native flat oyster Ostrea edulis, a species of significant evolutionary, ecological and commercial value. Each is a highly contiguous chromosome‐level assembly from individuals of different genetic backgrounds, which have been benchmarked against one anoth...
Article
Full-text available
European flat oyster (Ostrea edulis) is an ecologically and economically important marine bivalve, that has been severely affected by the intracellular parasite Bonamia ostreae. In this study, a flat oyster SNP array (~14,000 SNPs) was used to validate previously reported outlier loci for divergent selection associated with B. ostreae exposure in t...
Preprint
The liver is a multitasking organ with essential functions for vertebrate health spanning metabolism and immunity. In contrast to mammals, our understanding of liver cellular heterogeneity and its role in regulating immunological status remains poorly defined in fishes. Addressing this knowledge gap, we generated a transcriptomic atlas of 47,432 nu...
Article
Full-text available
The European flat oyster (Ostrea edulis) is a bivalve mollusc that was once widely distributed across Europe and represented an important food resource for humans for centuries. Populations of O. edulis experienced a severe decline across their biogeographic range mainly due to overexploitation and disease outbreaks. To restore the economic and eco...
Preprint
Full-text available
The European flat oyster (Ostrea edulis L.) is a bivalve naturally distributed across Europe that was an integral part of human diets for centuries, until anthropogenic activities and disease outbreaks severely reduced wild populations. Despite a growing interest in genetic applications to support population management and aquaculture, a reference...
Preprint
The European flat oyster (Ostrea edulis) is a bivalve mollusc that was once widely distributed in Europe and represented an important food resource for humans for centuries. Populations of O. edulis experienced a severe decline across their biogeographic range mainly due to anthropogenic activities and disease outbreaks. To restore the economic and...
Article
Full-text available
Many animals of scientific importance lack species-specific reagents (e.g., monoclonal antibodies) for in-depth studies of immune proteins. Mass spectrometry (MS)-based proteomics has emerged as a useful method for monitoring changes in protein abundance and modifications in non-model species. It can be used to quantify hundreds of candidate immune...
Preprint
Full-text available
Whole genome duplication (WGD) is a dramatic evolutionary event generating many new genes and which may play a role in survival through mass extinctions. Paddlefish and sturgeon are sister lineages that both show genomic evidence for ancient WGD. Until now this has been interpreted as two independent WGD events due to a preponderance of duplicate g...
Preprint
Single cell RNA sequencing has rapidly become a standard tool for profiling transcriptomic diversity across thousands of cells (Linnarsson and Teichmann, 2016), and is now being applied to a large diversity of species and tissues. The main limitation of this technology is that it requires the isolation of live cells from fresh tissue, severely rest...
Chapter
The rich biological and genetic diversity of ray-finned fishes (Actinopterygii) coupled with an increasing availability of genomic resources and tools, makes this group of animals an attractive system for evolutionary studies of the genome. This chapter introduces recent advances and approaches relevant to such investigations, along with the curren...
Preprint
Full-text available
The long-term evolutionary impacts of whole genome duplication (WGD) are strongly influenced by the ensuing rediploidization process. Following autopolyploidization, rediploidization involves a transition from tetraploid to diploid meiotic pairing, allowing duplicated genes (ohnologues) to diverge genetically and functionally. Our understanding of...
Article
Full-text available
Background Whole genome duplication (WGD) events have played a major role in eukaryotic genome evolution, but the consequence of these extreme events in adaptive genome evolution is still not well understood. To address this knowledge gap, we used a comparative phylogenetic model and transcriptomic data from seven species to infer selection on gene...
Article
Salmon pancreas disease virus , more commonly known as salmonid alphavirus (SAV), is a single-stranded positive sense RNA virus and the causative agent of pancreas disease and sleeping disease in salmonids. In this study, a unique strain of SAV previously isolated from ballan wrasse was subjected to whole genome sequencing using nanopore sequencing...
Article
Full-text available
Vaccination plays a critical role in the protection of humans and other animals from infectious diseases. However, the same vaccine often confers different protection levels among individuals due to variation in genetics and/or immunological histories. While this represents a well-recognized issue in humans, it has received little attention in fish...
Preprint
Here we review and describe a set of research priorities to meet present and future challenges posed to farmed animal production that build on progress, successes and resources from the Functional Annotation of ANimal Genomes (FAANG) project.
Preprint
Full-text available
Whole genome duplication (WGD) events have played a major role in eukaryotic genome evolution, but the consequence of these extreme events in adaptive genome evolution is still not well understood. To address this knowledge gap we used a comparative phylogenetic model and transcriptomic data from seven species to infer selection on gene expression...
Preprint
Full-text available
Structural variants (SVs) are a major source of genetic and phenotypic variation, but remain challenging to accurately type and are hence poorly characterized in most species. We present an approach for reliable SV discovery in non-model species using whole genome sequencing and report 15,483 high-confidence SVs in 492 Atlantic salmon (Salmo salar...
Article
Full-text available
Understanding the dynamics of pathogen transfer in aquaculture systems is essential to manage and mitigate disease outbreaks. The goal of this study was to understand recent transmission dynamics of salmonid alphavirus (SAV) in Norway. SAV causes significant economic impacts on farmed salmonids in European aquaculture. SAV is classified into six su...
Article
Aquaculture is the fastest-growing farmed food sector and will soon become the primary source of fish and shellfish for human diets. In contrast to crop and livestock production, aquaculture production is derived from numerous, exceptionally diverse species that are typically in the early stages of domestication. Genetic improvement of production t...
Article
Full-text available
Aquaculture plays a crucial role in global food and economic security, though its expansion and sustainability remain under threat from infectious diseases. Salmonid alphavirus (SAV, Togaviridae), the causative agent of pancreas disease and sleeping disease, is responsible for large negative impacts in salmonid aquaculture. Few studies have charact...
Article
Supplementing the diet with functional ingredients is a key strategy to improve fish performance and health in aquaculture. The amino acids of the urea and nitric oxide (NO) cycles - arginine, ornithine and citrulline - perform crucial roles in the immune response through the generation of NO and the synthesis of polyamine used for tissue repair. W...
Article
Full-text available
Background: Transcriptomic responses to immune stimulation were investigated in coho salmon (Oncorhynchus kisutch) with distinct growth phenotypes. Wild-type fish were contrasted to strains with accelerated growth arising either from selective breeding (i.e. domestication) or genetic modification. Such distinct routes to accelerated growth may hav...
Article
Functional amino acids (FAA) regulate metabolic pathways directly linked to health, survival, growth and development. Arginine is a FAA with crucial roles in protein deposition and the immune response. In mammals, supplementation of arginine's precursor amino acid, citrulline, is known to increase circulating arginine to levels beyond direct argini...
Article
Full-text available
Background: Recently developed genome resources in Salmonid fish provides tools for studying the genomics underlying a wide range of properties including life history trait variation in the wild, economically important traits in aquaculture and the evolutionary consequences of whole genome duplications. Although genome assemblies now exist for a n...
Article
Full-text available
The circadian and seasonal actions of melatonin are mediated by high affinity G-protein coupled receptors (melatonin receptors, MTRs), classified into phylogenetically distinct subtypes based on sequence divergence and pharmacological characteristics. Three vertebrate MTR subtypes are currently described: MT1 (MTNR1A), MT2 (MTNR1B), and Mel1c (MTNR...
Article
Full-text available
5′adenosine monophosphate-activated protein kinase (AMPK) is a master regulator of energy homeostasis in eukaryotes. This study identified expansions in the AMPK-α, -β and -γ families of salmonid fishes due to a history of genome duplication events, including five novel salmonid-specific AMPK subunit gene paralogue pairs. We tested the hypothesis t...
Article
Full-text available
Interferons orchestrate host antiviral responses in jawed vertebrates. They are categorized into three classes; IFN1 and IFN3 are the primary antiviral cytokine lineages, while IFN2 responds to a broader variety of pathogens. The evolutionary relationships within and between these three classes have proven difficult to resolve. Here, we reassess in...
Article
The urea cycle is an endogenous source of arginine that also supports removal of nitrogenous waste following protein metabolism. This cycle is considered inefficient in salmonids, where only 10–15% of nitrogenous waste is excreted as urea. In rainbow trout, arginine is an essential amino acid that has attracted attention due to its many functional...
Preprint
Full-text available
The circadian and seasonal actions of melatonin are mediated by high affinity G-protein coupled receptors (melatonin receptors, MTRs), classified into phylogenetically distinct subtypes based on sequence divergence and pharmacological characteristics. Three vertebrate MTR subtypes are currently described: MT1 (MTNR1A), MT2 (MTNR1B), and Mel1c (MTNR...
Article
Full-text available
Background The cartilaginous fishes diverged from other jawed vertebrates ~ 450 million years ago (mya). Despite this key evolutionary position, the only high-quality cartilaginous fish genome available is for the elephant shark (Callorhinchus milii), a chimaera whose ancestors split from the elasmobranch lineage ~ 420 mya. Initial analysis of this...
Article
Full-text available
Atlantic salmon (Salmo salar L.) is among the most iconic and economically important fish species and was the first member of Salmonidae to have a high‐quality reference genome assembly published. Advances in genomics have become increasingly central to the genetic improvement of farmed Atlantic salmon as well as conservation of wild salmon stocks....
Article
Full-text available
Analysis of pathogen genome variation is essential for informing disease management and control measures in farmed animals. For farmed fish, the standard approach is to use PCR and Sanger sequencing to study partial regions of pathogen genomes, with second and third-generation sequencing tools yet to be widely applied. Here we demonstrate rapid and...
Article
Full-text available
Background: High-throughput proteomics was used to determine the role of the fish liver in defense responses to bacterial infection. This was done using a rainbow trout (Oncorhynchus mykiss) model following infection with Aeromonas salmonicida, the causative agent of furunculosis. The vertebrate liver has multifaceted functions in innate immunity,...
Article
In mammals, haptoglobin (Hp) is an acute-phase plasma protein that binds with high affinity to hemoglobin (Hb) released by intravascular hemolysis. The resultant Hp-Hb complexes are bound and cleared by the scavenger receptor CD163, limiting Hb-induced oxidative damage. In this study, we show that Hp is a divergent member of the complement-initiati...
Article
Full-text available
In fish used for food production and scientific research, fast growth can be achieved via selective breeding or induced instantaneously via growth hormone (GH) transgenesis (GHT). The proteomic basis for these distinct routes towards a similar higher phenotype remains uncharacterized, as are associated implications for health parameters. We address...
Article
Full-text available
Suppression of growth during infection may aid resource allocation towards effective immune function. Past work supporting this hypothesis in salmonid fish revealed an immune-responsive regulation of the insulin-like growth factor (IGF) system, an endocrine pathway downstream of growth hormone (GH). Skeletal muscle is the main target for growth and...
Article
Full-text available
The insulin-like growth factor (Igf) binding protein (Igfbp) family has a broad range of physiological functions and a fascinating evolutionary history. This review focuses on the Igfbps of teleost fishes, where genome duplication events have diversified gene repertoire, function, and physiological regulation—with six core Igfbps expanded into a fa...
Preprint
Full-text available
The suppression of growth during infection should facilitate resource allocation towards effective immune function. Work supporting this hypothesis has been recently reported in teleosts, demonstrating immune-responsive regulation of the insulin-like growth factor (IGF) system - a key endocrine growth pathway that acts downstream of growth hormone...
Article
Full-text available
We describe an emerging initiative - the ‘Functional Annotation of All Salmonid Genomes’ (FAASG), which will leverage the extensive trait diversity that has evolved since a whole genome duplication event in the salmonid ancestor, to develop an integrative understanding of the functional genomic basis of phenotypic variation. The outcomes of FAASG w...
Article
Full-text available
Background The functional divergence of duplicate genes (ohnologues) retained from whole genome duplication (WGD) is thought to promote evolutionary diversification. However, species radiation and phenotypic diversification are often temporally separated from WGD. Salmonid fish, whose ancestor underwent WGD by autotetraploidization ~95 million year...
Article
In every jawed vertebrate species studied so far, the T cell receptor (TCR) complex is composed of two different TCR chains (α/β or γ/δ) and a number of CD3 subunits responsible for transmitting signals into the T cell. In this study, we characterised all of the TCR and CD3 genes of small-spotted catshark (Scyliorhinus canicula) and analysed their...
Article
Much attention has been given to insulin-like growth factor (Igf) pathways that regulate the balance of skeletal muscle protein synthesis and breakdown in response to a range of extrinsic and intrinsic signals. However, we have a less complete understanding of how the same signals modulate muscle mass upstream of such signalling, through a family o...
Preprint
Full-text available
The functional divergence of duplicate genes (ohnologues) retained from whole genome duplication (WGD) is thought to promote evolutionary diversification. However, species radiation and phenotypic diversification is often highly temporally-detached from WGD. Salmonid fish, whose ancestor experienced WGD by autotetraploidization ~95 Ma (i.e. ‘Ss4R’)...
Article
Full-text available
The globin gene family encodes oxygen-binding hemeproteins conserved across themajor branches of multicellular life. The origins and evolutionary histories of complete globin repertoires have been established for many vertebrates, but there remain major knowledge gaps for ray-finned fish. Therefore, we used phylogenetic, comparative genomic and gen...
Preprint
Full-text available
We describe an emerging initiative - the ‘Functional Analysis of All Salmonid Genomes’ (FAASG), which will leverage the extensive trait diversity that has evolved since a whole genome duplication event in the salmonid ancestor, to develop an integrative understanding of the functional genomic basis of phenotypic variation. The outcomes of FAASG wil...
Article
Full-text available
The insulin-like growth factor (IGF) receptor (IGF-IR) is necessary for IGF signalling and has essential roles in cellular growth. In teleost fish, two distinct IGF-IR duplicates are conserved called IGF-IRa and IGF-IRb. However, while a salmonid-specific whole genome duplication (ssWGD) is known to have expanded several key genes within the IGF ax...
Article
Full-text available
High-throughput sequencing has revolutionised comparative and evolutionary genome biology. It has now become relatively commonplace to generate multiple genomes and/or transcriptomes to characterize the evolution of large taxonomic groups of interest. Nevertheless, such efforts may be unsuited to some research questions or remain beyond the scope o...