
Daniel J Klionsky- AB, PhD
- Professor (Full) at University of Michigan
Daniel J Klionsky
- AB, PhD
- Professor (Full) at University of Michigan
About
794
Publications
227,585
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
128,263
Citations
Introduction
Current institution
Publications
Publications (794)
Macroautophagy/autophagy is a crucial cellular process for degrading and recycling damaged proteins and organelles, playing a significant role in diseases such as cancer and neurodegeneration. Evaluating autophagy flux, which tracks autophagosome formation, maturation, and degradation, is essential for understanding disease mechanisms. Current fluo...
Purpose of Review
Globally, the prevalence of atherosclerosis (AS) is rising. Currently, there is no specific drug for AS. Therefore, this review aims to discuss the protective mechanisms of colchicine against the development and progression of atherosclerosis (AS).
Recent Findings
Many studies highlighted that the anti-inflammatory drug colchicin...
Macroautophagy/autophagy is a conserved process among eukaryotes and is essential to maintain cell homeostasis; the dysregulation of autophagy has been linked with multiple human diseases, including cancer. However, not many studies have focused on the cancer-related mutations in ATG (autophagy related) proteins, which are likely to affect the prot...
The activation of STING1 can lead to the production and secretion of cytokines, initiating antitumor immunity. Here, we screened an ion channel ligand library and identified tetrandrine, a bis-benzylisoquinoline alkaloid, as an immunological adjuvant that enhances antitumor immunity by preventing the autophagic degradation of the STING1 protein. Th...
The inherent acidic nature of the stratum corneum (SC), the so-called “acid mantle”, has a multitude of effects on skin barrier integrity owing to its (patho)physiological role in skin homeostasis, antimicrobial defense, and inflammation. Several salient SC acidifying mechanisms, including the breakdown of FLG (filaggrin) protein, lipid processing,...
The nucleus is a highly specialized organelle that houses the cell's genetic material and regulates key cellular activities, including growth, metabolism, protein synthesis, and cell division. Its structure and function are tightly regulated by multiple mechanisms to ensure cellular integrity and genomic stability. Increasing evidence suggests that...
Graves disease (GD), an autoimmune disease affects the thyroid gland, results in hyperthyroidisms and goiter. The main cause of GD is not clearly defined; however, stimulating autoantibodies for thyroid stimulating hormone receptor (TSHR) known as thyroid-stimulating immunoglobulins (TSIs) are the primary proposed mechanism. The TSI activation of T...
Alzheimer's disease (AD) is the most common neurodegenerative disease associated with the development of dementia. The hallmarks of AD neuropathology are accumulations of amyloid peptide (Aβ) and neurofibrillary tangles (NFTs). Aβ is derived from the processing of APP (amyloid beta precursor protein) by BACE1 (beta‐secretase 1) and γ‐secretase thro...
Lipophagy is a selective type of autophagy where lipid droplets are targeted to the lysosome/vacuole for degradation. Even though lipophagy has been reported in various species, many questions remain unaddressed. How are the lipid droplets sequestered to the lysosome? What is the lipophagy receptor? How is this receptor regulated at a posttranslati...
Brain‐derived neurotrophic factor (BDNF) is a neurotrophin, acting as a neurotrophic signal and neuromodulator in the central nervous system (CNS). BDNF is synthesized from its precursor proBDNF within the CNS and peripheral tissues. Through activation of NTRK2/TRKB (neurotrophic receptor tyrosine kinase 2), BDNF promotes neuronal survival, synapti...
Type I topoisomerases (TOP1) are critical to remove the topological stress when DNA double strands are unwound. The TOP1 cleavage complexes (TOP1cc) are normally transient, and the stabilization of TOP1cc by its inhibitors, such as camptothecin (CPT), may lead to DNA damage and become cytotoxic. The proteasome pathway degrades trapped TOP1, which i...
Macroautophagy, commonly referred to as autophagy, is an essential cytoprotective mechanism that plays a significant role in cellular homeostasis. It has emerged as a promising target for drug development aimed at treating various cancers and infectious diseases. However, the scientific community has yet to reach a consensus on the most effective a...
A recent paper published in Cell by Woo et al. reported that autophagy-dependent ferroptosis mediated by STING1 is involved in neuronal death associated with multiple sclerosis (MS). This research broadens our understanding of the pathogenesis of MS and opens new avenues for therapeutic interventions.
Macroautophagy and mitophagy are critical processes in Alzheimer’s disease (AD), yet their links to behavioral outcomes, particularly sex-specific differences, are not fully understood. This study investigates autophagy (LC3B-II, SQSTM1) and mitophagy (BNIP3L, BNIP3, BCL2L13) markers in the cortex and hippocampus of male and female 3xTg-AD mice, us...
The 5-year survival rate for hepatocellular carcinoma (HCC), a deadly form of liver cancer, is quite low. Although drug therapy is successful, patients with advanced liver cancer frequently develop resistance because of the significant phenotypic and genetic heterogeneity of these cells. The overexpression of drug efflux transporters, downstream ad...
The advancement of novel drug delivery systems (DDSs) represents a great tool to improve the outcome of cancer patients. DDSs, such as polymeric and dendrimeric conjugates, nanoparticles (NPs), microparticles, liposomes, extracellular vesicles (EVs), and many others, have been established to overcome the current anticancer treatment limitations due...
Coronavirus disease 2019 (COVID-19) has affected not only individual lives but also the world and global systems, both natural and human-made. Besides millions of deaths and environmental challenges, the rapid spread of the infection and its very high socioeconomic impact have affected healthcare, economic status and wealth, and mental health acros...
Autophagy, a lysosome-dependent protein degradation mechanism, is a highly conserved catabolic process seen in all eukaryotes. This cell protection system, which is present in all tissues and functions at a basic level, can be up- or downregulated in response to various stresses. A disruption in the natural route of the autophagy process is frequen...
The vacuolar H+-translocating ATPase (V-ATPase) is the major proton pump for intra-organellar acidification. Therefore, the integrity of the V-ATPase is closely associated with cellular homeostasis, and mutations in genes encoding V-ATPase components and assembly factors have been reported in certain types of diseases. For instance, the recurrent m...
Vac8 is the sole armadillo-repeat (ARM) protein in yeast. The function of Vac8 in the cytoplasm-to-vacuole targeting pathway has been known for a long time but its role in the phagophore assembly site localization and recruitment of autophagy-related protein complexes is slowly coming to light. Because Vac8 is also involved in formation of the nucl...
In the budding yeast Saccharomyces cerevisiae, macroautophagy/autophagy can be induced by various types of starvation. It is thought that potential autophagic substrates vary to meet specific nutritional demands under different starvation conditions. In a recent study, Gross et al. found that autophagy induced by phosphate starvation includes many...
Toxoplasma gondii is a ubiquitous protozoan parasite that can reside long-term within hosts as intracellular tissue cysts comprised of chronic stage bradyzoites. To perturb chronic infection requires a better understanding of the cellular processes that mediate parasite persistence. Macroautophagy/autophagy is a catabolic and homeostatic pathway th...
34 Macroautophagy/autophagy, a crucial cellular process, is typically measured using 35 fluorescence-based techniques, which can be costly, complex, and impractical for 36 clinical settings. In this paper, we introduce a novel, cost-effective, non-fluorescent 37 immunohistochemistry (IHC) method for evaluating autophagy flux. This technique, 38 bas...
Macroautophagy/autophagy is primarily accountable for the degradation of damaged organelles and toxic macromolecules in the cells. Regarding the essential function of autophagy for preserving cellular homeostasis, changes in, or dysfunction of, autophagy flux can lead to disease development. In the current paper, the complicated function of autopha...
Sepsis, a life-threatening condition resulting from a dysregulated response to pathogen infection, poses a significant challenge in clinical management. Here, we report a novel role for the autophagy receptor NCOA4 in the pathogenesis of sepsis. Activated macrophages and monocytes secrete NCOA4, which acts as a mediator of septic death in mice. Mec...
Macroautophagy/autophagy is an essential degradation process that removes abnormal cellular components, maintains homeostasis within cells, and provides nutrition during starvation. Activated autophagy enhances cell survival during stressful conditions, although overactivation of autophagy triggers induction of autophagic cell death. Therefore, ear...
The DNA damage response (DDR) pathway is a cardinal cellular stress response mechanism that during cancer development follows an antagonistic pleiotropy mode of action. Given that DDR activation is an energy demanding process, interplay with macroautophagy/autophagy, a stress response and energy providing mechanism, is likely to take place. While m...
The noncanonical ubiquitin-like conjugation cascade involving the E1 (Atg7), E2 (Atg3, Atg10), and E3 (Atg12-Atg5-Atg16 complex) enzymes is essential for incorporation of Atg8 into the growing phagophore via covalent linkage to PE. This process is an indispensable step in autophagy. Atg8 and E1-E3 enzymes are the first subset from the core autophag...
The destination of a damaged lysosome is either being repaired if the damage is small or degraded through a lysosome-specific macroautophagy/autophagy pathway named lysophagy when the damage is too extensive to repair. Even though previous studies report lumenal glycan exposure during lysosome damage as a signal to trigger lysophagy, it is possibly...
Lipophagy, a form of autophagy specific to the degradation of lipid droplets (LDs), plays an important role in the maintenance of cellular homeostasis and metabolic processes. A recent study has identified ATG14 (autophagy related 14) as a molecule that targets LDs and marks them for degradation via lipophagy; a process that is inhibited by the bin...
Ferroptosis, a recently identified type of non-apoptotic cell death, triggers the elimination of cells in the presence of lipid peroxidation and in an iron-dependent manner. Indeed, ferroptosis-stimulating factors have the ability of suppressing antioxidant capacity, leading to the accumulation of reactive oxygen species (ROS) and the subsequent ox...
The selective clearance of unwanted, damaged or dangerous components by macroautophagy/autophagy is critical for maintaining cellular homeostasis in organisms from yeast to humans. In recent years, significant progress has been made in understanding how phagophores selectively sequester specific cargo. Nevertheless, a fundamental question remains:...
CLU (clusterin) and PPARGC1A/PGC1α coordinately control mitophagy and mitochondrial biogenesis for oral cancer cell survival, Autophagy, ABSTRACT Mitophagy involves the selective elimination of defective mitochondria during chemotherapeutic stress to maintain mitochondrial homeostasis and sustain cancer growth. Here, we showed that CLU (clusterin)...
Macroautophagy/autophagy is a complex degradation process with a dual role in cell death that is influenced by the cell types that are involved and the stressors they are exposed to. Ferroptosis is an iron-dependent oxidative form of cell death characterized by unrestricted lipid peroxidation in the context of heterogeneous and plastic mechanisms....
It's April, so it is time to lighten up (think April Fools' Day). In this issue of the journal, I have two different sets of puzzles for you. Of course, these are not just for your amusement; there is an educational component as well. For example, the crossword puzzle requires you to think about autophagy and perhaps do some searching for names or...
Ferroptosis, an intricately regulated form of cell death characterized by uncontrolled lipid peroxidation, has garnered substantial interest since this term was first coined in 2012. Recent years have witnessed remarkable progress in elucidating the detailed molecular mechanisms that govern ferroptosis induction and defence, with particular emphasi...
Myasthenia gravis (MG) is an autoimmune disease of the neuromuscular junction (NMJ) that results from autoantibodies against nicotinic acetylcholine receptors (nAchRs) at NMJs. These autoantibodies are mainly originated from autoreactive B cells that bind and destroy nAchRs at NMJs preventing nerve impulses from activating the end-plates of skeleta...
Autophagy, a self-degradative process vital for cellular homeostasis, plays a significant role in adipose tissue metabolism and tumorigenesis. This review aims to elucidate the complex interplay between autophagy, obesity, and cancer development, with a specific emphasis on how obesity-driven changes affect the regulation of autophagy and subsequen...
Despite the challenges posed by drug resistance and side effects, chemotherapy remains a pivotal strategy in cancer treatment. A key issue in this context is macroautophagy (commonly known as autophagy), a dysregulated cell death mechanism often observed during chemotherapy. Autophagy plays a cytoprotective role by maintaining cellular homeostasis...
Atherosclerosis refers to a unique form of chronic inflammatory anomaly of the vasculature, presented as rupture-prone or occlusive lesions in arteries. In advanced stages, atherosclerosis leads to the onset and development of multiple cardiovascular diseases with lethal consequences. Inflammatory cytokines in atherosclerotic lesions contribute to...
Cardiovascular diseases (CVDs) refer to a group of conditions that affect the heart and blood vessels and are a leading cause of death worldwide. Ferroptosis is an iron-dependent regulated cell death process that occurs due to unlimited lipid peroxidation and subsequent plasma membrane rupture. Impaired ferroptosis has been linked to the pathophysi...
A multifunctional role of Atg8-family proteins (Atg8 from yeast and human LC3 and GABARAP subfamilies, all referred to here as ATG8s) in macroautophagy/autophagy is carried out by two protein domains, the N-terminal helical domain (NHD) and ubiquitin-like (UBL) domain. Previous studies showed that the NHD of PE-conjugated ATG8s mediates membrane he...
The Atg12 protein in yeast is an indispensable polypeptide in the highly conserved ubiquitin-like conjugation system operating in the macroautophagy/autophagy pathway. Atg12 is covalently conjugated to Atg5 through the action of Atg7 and Atg10; the Atg12–Atg5 conjugate binds Atg16 to form an E3 ligase that functions in a separate conjugation pathwa...
ACSL: acyl-CoA synthetase long chain family; DISC: death-inducing signaling complex; DAMPs: danger/damage-associated molecular patterns; Dtgn: dispersed trans-Golgi network; FAR1: fatty acyl-CoA reductase 1; GPX4: glutathione peroxidase 4; LPCAT3: lysophosphatidylcholine acyltransferase 3; LPS: lipopolysaccharide; MUFAs: monounsaturated fatty acids...
Macroautophagy/autophagy is a highly conserved catabolic process vital for cellular stress responses and maintaining equilibrium within the cell. Malfunctioning autophagy has been implicated in the pathogenesis of various diseases, including certain neurodegenerative disorders, diabetes, metabolic diseases and cancer. Cells face diverse metabolic c...
Regulatory T cells (Tregs), possess a pivotal function in the maintenance of immune homeostasis. The dysregulated activity of Tregs has been associated with the onset of autoimmune diseases and cancer. Hence, Tregs are promising targets for interventions aimed at steering the immune response toward the desired path, either by augmenting the immune...
Multiple sclerosis (MS) is a chronic progressive demyelinating disease of the central nervous system (CNS) due to an increase of abnormal peripherally auto-reactive T lymphocytes which elicit autoimmunity. The main pathophysiology of MS is myelin sheath damage by immune cells and a defect in the generation of myelin by oligodendrocytes. Macroautoph...
Macroautophagy/autophagy is an essential catabolic process for maintaining homeostasis and cell survival under stressful conditions. We previously characterized the metabolic transcription factor Stb5 as a negative modulator of autophagy through its regulation of genes involved in NADPH production. However, the molecular mechanisms regulating STB5...
Despite chimeric antigen receptor (CAR) T cell therapy’s extraordinary success in subsets of B-cell lymphoma and leukemia, various barriers restrict its application in solid tumors. This has prompted investigating new approaches for producing CAR T cells with superior therapeutic potential. Emerging insights into the barriers to CAR T cell clinical...
Autophagy, in the form of lipophagy, is an important catabolic pathway mediating the degradation of lipid droplets and mobilization of lipids for physiological function. However, the molecular mechanism and the protein receptors that link lipid droplets/LDs to the autophagy machinery remain unknown. Here, we discuss a recent study by Chung et al. t...
Nearly fifty million older people suffer from neurodegenerative diseases, including Alzheimer (AD) and Parkinson (PD) disease, a global burden expected to triple by 2050. Such an imminent "neurological pandemic" urges the identification of environmental risk factors that are hopefully avoided to fight the disease. In 2022, strong evidence in mouse...
The emergence of drug resistance is a major challenge for oncologists. Resistance can be categorized as acquired or intrinsic; the alteration of several biological mechanisms contributes to both intrinsic and acquired resistance. Macroautophagy/autophagy is the primary process in eukaryotes for the degradation of macromolecules and organelles. This...
Macroautophagy/autophagy is a highly conserved pathway of cellular degradation and recycling that maintains cell health during homeostatic conditions and facilitates survival during stress. Aberrant cellular autophagy contributes to the pathogenesis of human diseases such as cancer, neurodegeneration, and cardiovascular, metabolic and lysosomal sto...
Selenoprotein GPX4 (glutathione peroxidase 4), originally known as PHGPX (phospholipid hydroperoxide glutathione peroxidase), is the main oxidoreductase in the use of glutathione as a reducing agent in scavenging lipid peroxidation products. There are three GPX4 isoforms: cytosolic (cGPX4), mitochondrial (mGPX4), and nuclear (nGPX4), with distinct...
Pancreatic cancer (PC) is a serious gastrointestinal tract disease for which the 5-year survival rate is less than 10%, even in developed countries such as the USA. The genomic profile alterations and dysregulated biological mechanisms commonly occur in PC. Macroautophagy/autophagy is a cell death process that is maintained at a basal level in phys...
The DNA double-strand breaks are particularly deleterious, especially when an error-free repair pathway is unavailable, enforcing the error-prone recombination pathways to repair the lesion. Cells can resume the cell cycle but at the expense of decreased viability due to genome rearrangements. One of the major players involved in recombinational re...
Macroautophagy/autophagy is involved in many aspects of human development including the formation of neuronal circuits. A recent study from Dutta et al. found that the recruitment of Egfr (Epidermal growth factor receptor) to synapses suppresses autophagic degradation of presynaptic proteins, a requirement for proper neuronal circuit development. T...
Autophagy is a catabolic cellular process that targets and eliminates superfluous cytoplasmic components via lysosomal degradation. This evolutionarily conserved process is tightly regulated at multiple levels as it is critical for the maintenance of homeostasis. Research in the past decade has established that dysregulation of autophagy plays a ma...
Mitophagy plays an important role in mitochondrial homeostasis by selective degradation of mitochondria. During mitophagy, mitochondria should be fragmented to allow engulfment within autophagosomes, whose capacity is exceeded by the typical mitochondria mass. However, the known mitochondrial fission factors, dynamin-related proteins Dnm1 in yeasts...
Macroautophagy/autophagy is a conserved catabolic pathway that is vital for maintaining cell homeostasis and promoting cell survival under stressful conditions. Dysregulation of autophagy is associated with a variety of human diseases, such as cancer, neurodegenerative diseases, and metabolic disorders. Therefore, this pathway must be precisely reg...
Chronic infection with Helicobacter pylori is the primary risk factor for the development of gastric cancer. Hindering our ability to comprehend the precise role of autophagy during H. pylori infection is the complexity of context-dependent autophagy signaling pathways. Recent and ongoing progress in understanding H. pylori virulence allows new fro...
As a highly regulated and dynamically balanced intracellular degradation mechanism, macroautophagy/autophagy plays an essential housekeeping role in different successive stages of skin wound healing; from the homeostasis and inflammatory stages to the proliferative and remodeling stages. Under both progressive and defective skin wound healing condi...
Macroautophagy (hereafter referred to as autophagy), a highly conserved metabolic process, regulates cellular homeostasis by degrading dysfunctional cytosolic constituents and invading pathogens via the lysosomal system. In addition, autophagy selectively recycles specific organelles such as damaged mitochondria (via mitophagy), and lipid droplets...
TNF (tumor necrosis factor) is an important cytokine that regulates immune responses in response to microbial infection. Two fates can be induced by TNF sensing, including activation of NFKB/NF-κB and cell death, which are mainly regulated by the formation of TNFRSF1A/TNFR1 (TNF receptor superfamily member 1A) complex I and complex II, respectively...
Macroautophagy/autophagy is an evolutionarily conserved biological process among eukaryotes that degrades unwanted materials such as protein aggregates, damaged mitochondria and even viruses to maintain cell survival. Our previous studies have demonstrated that MoVast1 acts as an autophagy regulator regulating autophagy, membrane tension, and stero...
Mitophagy regulates cancer stem cell (CSC) populations affecting tumorigenicity and malignancy in various cancer types. Here, we report that cisplatin treatment led to the activation of higher mitophagy through regulating CLU (clusterin) levels in oral CSCs. Moreover, both the gain-of-function and loss-of-function of CLU indicated its mitophagy-spe...
Transitions from the early to late phagophore, which occur to engulf cytoplasmic material within an autophagosome for macroautophagic/autophagic degradation, involve dynamic ultrastructural changes that are not fully understood. A recent study combined cryo-electron tomography (cryo-ET) with extensive computational analysis to get a better insight...
In this editors’ corner, the section editors were asked to indicate where they see the autophagy field heading and to suggest what they consider to be key unanswered questions in their specialty area.
Ferroptosis is a type of iron-dependent regulated cell death characterized by unrestricted lipid peroxidation and membrane damage. Although GPX4 (glutathione peroxidase 4) plays a master role in blocking ferroptosis by eliminating phospholipid hydroperoxides, the regulation of GPX4 remains poorly understood. Here, we report an unexpected role for c...
Well, because you ask that question, we are going to attempt to explain exactly why we do indeed need another journal focused on autophagy. If you are reading this far, you presumably know what “autophagy” means, so we do not have to impress upon you the importance of this topic, and how autophagic dysfunction is associated with numerous diseases i...
A significant number of follicular lymphoma patients display recurrent mutations in subunits and regulators of the vacuolar-type H⁺-translocating ATPase (V-ATPase). Past studies focusing on the role of these mutations highlighted essential functions of macroautophagy/autophagy, amino-acid, and nutrient-sensing pathways in the pathogenesis of this d...
Macroautophagy/autophagy, a cellular process that sequesters and breaks down cellular components in the lysosome/vacuole, is important in various events where cell composition undergoes changes. Broadly, autophagy is involved in T cell regulation including maintaining cell homeostasis. One process where a cell alters its composition is in the activ...
Recent developments in lysosome biology have transformed our view of lysosomes from static garbage disposals that can also act as suicide bags to decidedly dynamic multirole adaptive operators of cellular homeostasis. Lysosome‐governed signaling pathways, proteins, and transcription factors equilibrate the rate of catabolism and anabolism (autophag...
Macroautophagy (autophagy) has been a highly conserved process throughout evolution and allows cells to degrade aggregated/misfolded proteins, dysfunctional or superfluous organelles and damaged macromolecules, in order to recycle them for biosynthetic and/or energetic purposes to preserve cellular homeostasis and health. Changes in autophagy are i...
Macroautophagy (autophagy) has been a highly conserved process throughout evolution and allows cells to degrade aggregated/misfolded proteins, dysfunctional or superfluous organelles and damaged macromolecules, in order to recycle them for biosynthetic and/or energetic purposes to preserve cellular homeostasis and health. Changes in autophagy are i...
5-HETE, 5-hydroxyeicosatetraenoic acid; ACSL4, acyl-CoA synthetase long chain family member 4; AP, acute pancreatitis; ATG, autophagy related; AGER, advanced glycosylation end-product specific receptor; DAMPs, danger/damage-associated molecular patterns; FTH1, ferritin heavy chain 1; GPX4, glutathione peroxidase 4; IL, interleukin; INSR, insulin re...
In recent years, an increasing number of studies have started to investigate the roles of ions and ion channels in macroautophagy/autophagy. One finding is that calcium regulates multiple stages of autophagy with lysosomal calcium release being important for autophagosome and lysosome fusion. MCOLN3/TRPML3, as a calcium-permeable channel that is lo...
Macroautophagy/autophagy is the process by which portions of the cytoplasm are sequestered within a transient compartment and delivered to the degradative organelle of the cell, the vacuole or lysosome. Autophagy is a fundamental cytoprotective mechanism, and defects in this process are associated with many diseases. For example, the inability to d...
Macroautophagy/autophagy is an evolutionarily conserved and tightly regulated catabolic process involved in the maintenance of cellular homeostasis whose dysregulation is implicated in several pathological processes. Autophagy begins with the formation of phagophores that engulf cytoplasmic cargo and mature into double-membrane autophagosomes; the...
Vps13 is a large, conserved protein that transports lipids between membranes. Its localization at multiple organelle membranes and membrane contact sites suggests its important physiological roles. In addition, the high correlation of mutant VPS13 with certain diseases, especially those involving neurodegeneration, makes this protein of considerabl...
Neuro-nanotechnology holds great promise for targeting and modulating neuro-molecular pathways.
Nanomaterials can induce or inhibit autophagy, oxidative stress, and ER stress using various molecular pathways, making them proper carriers for diagnosis and treatment of neurodegenerative diseases.
‘Autophagy’ refers to an evolutionarily conserved process through which cellular contents, such as damaged organelles and protein aggregates, are delivered to lysosomes for degradation. Different forms of autophagy have been described on the basis of the nature of the cargoes and the means used to deliver them to lysosomes. At present, the prevaili...
Substrates that are selected for degradation by autophagy interact in more complex eukaryotes with Atg8-family proteins via the LC3-interacting region (LIR) that is often preceded by either acidic residues or phosphorylated serine or threonine. These upstream amino acid residues increase the binding affinity of the LIR motif to its binding site on...
Macroautophagy (hereafter "autophagy") is a membrane-mediated biological process that involves engulfing and delivering cytoplasmic components to lysosomes for degradation. In addition to autophagy's pro-survival effect during nutrient starvation, excessive activation of autophagy machinery can also cause regulated cell death, especially iron-depen...
Small 30-nm vesicles containing the integral membrane protein Atg9 provide the initial membrane source for autophagy in yeast. Atg23, is an Atg9 binding protein that is required for Atg9 vesicle trafficking but whose exact function is unknown. In our recent paper, we explored the function of Atg23 using an approach combining cellular biology and bi...
The conjugation of Atg8-family proteins with phospholipids on the double-membrane phagophore is one of the hallmarks of macroautopahgy/autophagy. However, in the past decades, Atg8-family proteins are also found on single-membrane structures, including the phagosome, endosome and lysosome. While the physiological importance of the non-canonical Atg...
Mitophagy, as one of the most important cellular processes to ensure quality control of mitochondria, aims at transporting damaged, aging, dysfunctional or excess mitochondria to vacuoles (plants and fungi) or lysosomes (mammals) for degradation and recycling. The normal functioning of mitophagy is critical for cellular homeostasis from yeasts to h...