
Daniel Kempf- University of Stuttgart
Daniel Kempf
- University of Stuttgart
About
15
Publications
5,237
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
97
Citations
Introduction
Current institution
Publications
Publications (15)
High-order methods are well-suited for the numerical simulation of complex compressible turbulent flows, but require additional stabilization techniques to capture instabilities arising from the underlying non-linear hyperbolic equations. This paper provides a detailed comparison of the effectiveness of entropy stable discontinuous Galerkin methods...
This work presents GALÆXI as a novel, energy-efficient flow solver for the simulation of compressible flows on unstructured hexahedral meshes leveraging the parallel computing power of modern Graphics Processing Units (GPUs). GALÆXI implements the high-order Discontinuous Galerkin Spectral Element Method (DGSEM) using shock capturing with a finite-...
This work presents GALÆXI as a novel, energy-efficient flow solver for the simulation of compressible flows on unstructured meshes leveraging the parallel computing power of modern Graphics Processing Units (GPUs). GALÆXI implements the high-order Discontinuous Galerkin Spectral Element Method (DGSEM) using shock capturing with a finite-volume subc...
Large-scale simulations pose significant challenges not only to the solver itself but also to the pre- and postprocessing framework. Hence, we present generally applicable improvements to enhance the performance of those tools and thus increase the feasibility of large-scale jobs and convergence studies. To accomplish this, we use a shared memory a...
Modern high-order discretizations bear considerable potential for the exascale era due to their high fidelity and the high, local computational load that allows for computational efficiency in massively parallel simulations. To this end, the discontinuous Galerkin (DG) framework FLEXI was selected to demonstrate exascale readiness within the Center...
Turbulent inflow methods offer new possibilities for an efficient simulation by reducing the computational domain to the interesting parts. Typical examples are turbulent flow over cavities, around obstacles or in the context of zonal large eddy simulations. Within this work, we present the current state of two turbulent inflow methods implemented...
We present the extension of a discontinuous Galerkin framework to zonal direct-hybrid aeroacoustic simulations. This extension provides the ability to simultaneously perform a zonal large eddy simulation (LES), solving the compressible Navier–Stokes equations, and an acoustic propagation simulation, solving the acoustic perturbation equations. In d...
Hybrid simulation methods are state of the art in computational aeroacoustics. The acoustic sources rely on an accurate prediction of the underlying hydrodynamic field, typically computed with low-fidelity simulation models. In complex flows, low-fidelity models reach their limit. Thus, computationally intense high-fidelity models like wall-resolve...
Sliding meshes are a powerful method to treat deformed domains in computational fluid dynamics, where different parts of the domain are in relative motion. In this paper, we present an efficient implementation of a sliding mesh method into a discontinuous Galerkin compressible Navier-Stokes solver and its application to a large eddy simulation of a...
Sliding meshes are a powerful method to treat deformed domains in computational fluid dynamics, where different parts of the domain are in relative motion. In this paper, we present an efficient implementation of a sliding mesh method into a discontinuous Galerkin compressible Navier-Stokes solver and its application to a large eddy simulation of a...
The quality of the scale resolving domain's inflow condition determines the accuracy of the overall computation when considering a zonal large eddy simulation. However, the generation of scale-and time-resolved turbulence remains a challenging task, and a number of different approaches have been proposed. Within this work, a new turbulent inflow me...
Erosion and fouling caused by ingested particles causes performance degradation and safety issues in turbo-machinery components. Simulating these processes is a complex multiphysics and multiscale problem which has not reached a satisfactory level of maturity yet. The current state of the art approach is based on RANS solutions, which provide an av...
Erosion and fouling of engine blades and subsequent performance degradation due to particle-laden flows pose a complex multiscale and multiphysics problem for CFD simulation. This work presents a framework for turbomachinery simulations which predicts particle motion on a time-accurate LES flow field obtained with high-order accurate Discontinuous...