Daniel Gyllborg

Daniel Gyllborg
Stockholm University | SU · Department of Biochemistry and Biophysics

PhD

About

38
Publications
9,204
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
2,172
Citations
Citations since 2017
31 Research Items
2134 Citations
20172018201920202021202220230100200300400
20172018201920202021202220230100200300400
20172018201920202021202220230100200300400
20172018201920202021202220230100200300400
Additional affiliations
May 2018 - present
Stockholm University
Position
  • PostDoc Position
Description
  • Science for Life Laboratory, Molecular Diagnostics
September 2017 - January 2018
Karolinska Institutet
Position
  • Researcher
September 2012 - September 2017
Karolinska Institutet
Position
  • PhD Student
Education
August 2009 - June 2011
Stockholm University
Field of study
  • Neurochemistry with Molecular Neurobiology
August 2003 - December 2007
University of Wisconsin–Madison
Field of study
  • Neuroscience
August 2003 - December 2007
University of Wisconsin–Madison
Field of study
  • Molecular Biology

Publications

Publications (38)
Article
Full-text available
The spatiotemporal regulation of cell fate specification in the human developing spinal cord remains largely unknown. In this study, by performing integrated analysis of single-cell and spatial multi-omics data, we used 16 prenatal human samples to create a comprehensive developmental cell atlas of the spinal cord during post-conceptional weeks 5–1...
Preprint
Full-text available
The human spinal cord contains diverse cell types, governed by a series of spatiotemporal events for tissue assembly and functions. However, the spatiotemporal regulation of cell fate specification in the human developing spinal cord remains largely unknown. Single-cell RNA sequencing and spatial transcriptomics techniques have advanced the underst...
Article
Full-text available
Highly multiplexed spatial mapping of transcripts within tissues allows for investigation of the transcriptomic and cellular diversity of mammalian organs previously unseen. Here we explore a direct RNA (dRNA) detection approach incorporating the use of padlock probes and rolling circle amplification in combination with hybridization-based in situ...
Article
Full-text available
The ability to spatially resolve the cellular architecture of human cortical cell types over informative areas is essential to understanding brain function. We combined in situ sequencing gene expression data and single-nucleus RNA-sequencing cell type definitions to spatially map cells in sections of the human cortex via probabilistic cell typing....
Article
Full-text available
The mammalian brain develops through a complex interplay of spatial cues generated by diffusible morphogens, cell–cell interactions and intrinsic genetic programs that result in probably more than a thousand distinct cell types. A complete understanding of this process requires a systematic characterization of cell states over the entire spatiotemp...
Article
Full-text available
Background A range of spatially resolved transcriptomic methods has recently emerged as a way to spatially characterize the molecular and cellular diversity of a tissue. As a consequence, an increasing number of computational techniques are developed to facilitate data analysis. There is also a need for versatile user friendly tools that can be use...
Preprint
Full-text available
The ability to spatially resolve the cellular architecture of human cortical cell types over informative areas is essential to understanding brain function. We combined in situ sequencing gene expression data and single-nucleus RNA-sequencing cell type definitions to spatially map cells in sections of the human cortex via probabilistic cell typing....
Preprint
Full-text available
Highly multiplexed spatial mapping of multiple transcripts within tissues allows for investigation of the transcriptomic and cellular diversity of mammalian organs previously unseen. Here we explore the possibilities of a direct RNA (dRNA) detection approach incorporating the use of padlock probes and rolling circle amplification in combination wit...
Article
Full-text available
Visualization of the transcriptome in situ has proven to be a valuable tool in exploring single-cell RNA-sequencing data, providing an additional spatial dimension to investigate multiplexed gene expression, cell types, disease architecture or even data driven discoveries. In situ sequencing (ISS) method based on padlock probes and rolling circle a...
Preprint
Full-text available
The mammalian brain develops through a complex interplay of spatial cues generated by diffusible morphogens, cell-cell interactions, and intrinsic genetic programs that result in the generation of likely more than a thousand distinct cell types. Therefore, a complete understanding of mammalian brain development requires systematic mapping of cell s...
Chapter
Recent advances of image-based in situ mRNA quantification methods allow to visualize where in a tissue section a set of genes is expressed. It enables to map large numbers of genes in parallel and by capturing cellular boundaries allows to assign genes to cells. Here, we present a high-throughput, multi-targeted gene expression profiling technique...
Preprint
Full-text available
The choroid plexus (ChP) produces cerebrospinal fluid and forms a critical barrier between the brain and the circulation. While the ChP forms in each brain ventricle, it adopts a different shape in each one and remarkably little is known about the mechanisms underlying its development. Here, we show that epithelial WNT5A is critical for determining...
Article
Full-text available
Liver X receptors (LXRs) and their ligands are potent regulators of midbrain dopaminergic (mDA) neurogenesis and differentiation. However, the molecular mechanisms by which LXRs control these functions remain to be elucidated. Here, we perform a combined transcriptome and chromatin immunoprecipitation sequencing (ChIP-seq) analysis of midbrain cell...
Preprint
Full-text available
Visualization of the transcriptome in situ has proven to be a valuable tool in exploring single-cell RNA-sequencing data, providing an additional dimension to investigate spatial cell typing and cell atlases, disease architecture or even data driven discoveries. The field of spatially resolved transcriptomic technologies is emerging as a vital tool...
Preprint
In situ sequencing method for parallel targeted analysis of short RNA fragments in morphologically preserved tissue. This protocol can be used to detect RNA molecules at the single cell level to aid in the identification of cell types according to their gene expression. The technique uses padlock probes to target desired genes of interest and rolli...
Article
Full-text available
WNTs are lipid-modified proteins that control multiple functions in development and disease via short- and long-range signaling. However, it is unclear how these hydrophobic molecules spread over long distances in the mammalian brain. Here we show that WNT5A is produced by the choroid plexus (ChP) of the developing hindbrain, but not the telencepha...
Preprint
Full-text available
Protocol for multiplexed in situ sequencing in tissue sections as an image-based spatial transcriptomic method. This is the second iteration of In Situ Sequencing (HybISS: Hybridization based In Situ Sequencing) based on the principles published in Ke et al. Nature Methods, 2013 and more recently Qian et al. Nature Methods, 2019. Here we present a...
Preprint
Full-text available
In situ sequencing method for parallel targeted analysis of short RNA fragments in morphologically preserved tissue. This protocol can be used to detect RNA molecules at the single cell level to aid in the identification of cell types according to their gene expression. The technique uses padlock probes to target desired genes of interest and rolli...
Article
Full-text available
The development of midbrain dopaminergic (mDA) neurons is controlled by multiple morphogens and transcription factors. However, little is known about the role of extracellular matrix proteins in this process. Here we examined the function of roof plate-specific spondins (RSPO1-4) and the floor plate-specific, spondin 1 (SPON1). Only RSPO2 and SPON1...
Article
Parkinson’s disease (PD) is a neurodegenerative disorder in which the loss of dopaminergic neurons in the midbrain (mDA neurons) causes progressive loss of motor control and function. Using embryonic and mDA neurons, midbrain tissue from mice, and differentiated human neural stem cells, we investigated the mechanisms controlling the survival of mDA...
Preprint
Full-text available
Midbrain dopaminergic (mDA) neurons degenerate in Parkinson’s disease and are one of the main targets for cell replacement therapies. However, a comprehensive view of the signals and cell types contributing to mDA neurogenesis is not yet available. By analyzing the transcriptome of the mouse ventral midbrain at a tissue and single-cell level during...
Article
Wnt signalling is a highly conserved pathway across species that is critical for normal development and is deregulated in multiple disorders including cancer and neurodegenerative diseases. Wnt signalling is critically required for midbrain dopaminergic (mDA) neuron development and maintenance. Understanding the molecular processes controlled by Wn...
Article
Full-text available
Cartilaginous structures are at the core of embryo growth and shaping before the bone forms. Here we report a novel principle of vertebrate cartilage growth that is based on introducing transversally-oriented clones into pre-existing cartilage. This mechanism of growth uncouples the lateral expansion of curved cartilaginous sheets from the control...
Article
Full-text available
Understanding human embryonic ventral midbrain is of major interest for Parkinson’s disease. However, the cell types, their gene expression dynamics, and their relationship to commonly used rodent models remain to be defined. We performed single-cell RNA sequencing to examine ventral midbrain development in human and mouse. We found 25 molecularly...
Article
Full-text available
Understanding human embryonic ventral midbrain is of major interest for Parkinson’s disease. However, the cell types, their gene expression dynamics, and their relationship to commonly used rodent models remain to be defined. We performed single-cell RNA sequencing to examine ventral midbrain development in human and mouse. We found 25 molecularly...
Article
Full-text available
Cranial neural crest cells populate the future facial region and produce ectomesenchyme-derived tissues, such as cartilage, bone, dermis, smooth muscle, adipocytes, and many others. However, the contribution of individual neural crest cells to certain facial locations and the general spatial clonal organization of the ectomesenchyme have not been d...
Article
Full-text available
Pre-B-cell leukemia homeobox (PBX) transcription factors are known to regulate organogenesis, but their molecular targets and function in midbrain dopaminergic neurons (mDAn) as well as their role in neurodegenerative diseases are unknown. Here, we show that PBX1 controls a novel transcriptional network required for mDAn specification and survival,...
Article
Full-text available
One size does not fit all Oligodendrocytes are best known for their ability to myelinate brain neurons, thus increasing the speed of signal transmission. Marques et al. surveyed oligodendrocytes of developing mice and found unexpected heterogeneity. Transcriptional analysis identified 12 populations, ranging from precursors to mature oligodendrocyt...
Article
Understanding human embryonic ventral midbrain is of major interest for Parkinson’s disease. However, the cell types, their gene expression dynamics, and their relationship to commonly used rodent models remain to be defined. We performed single-cell RNA sequencing to examine ventral midbrain development in human and mouse. We found 25 molecularly...
Article
Gene-regulatory biomolecules such as splice correcting oligonucleotides and anti-microRNA oligonucleotides are important tools in the struggle to understand and treat genetic disorders caused by defective gene expression or aberrant splicing. However, oligonucleotides generally suffer from low bioavailability, hence requiring efficient and non-toxi...

Network

Cited By