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Bounded rationality is what cognitive psychology is all
about. And the study of bounded rationality is not the study
of optimization in relation to task environments.

Herbert A. Simon

God, as John Locke (1690/1959) asserted, “has afforded us only the twi-
light of probability; suitable, I presume, to the state of mediocrity and
probationership he has been pleased to place us in here. ... ” In the two
preceding chapters, we argued that humans can make the best of this me-
diocre uncertainty. Ignorance about real-world environments, luckily, is
often systematically rather than randomly distributed and thus allows or-
ganisms to navigate through the twilight with the recognition heuristic. In
this chapter, we analyze heuristics that draw inferences from information
beyond mere recognition. The source of this information can be direct
observation, recall from memory, firsthand experience, or rumor. Darwin
(1872/1965), for instance, observed that people use facial cues, such as
eyes that waver and lids that hang low, to infer a person’s guilt. Male
toads, roaming through swamps at night, use the pitch of a rival’s croak
to infer its size when deciding whether to fight (Krebs & Davies, 1991).
Inferences about the world are typically based on cues that are uncertain
indicators: The eyes can deceive, and so can a medium-sized ethologist
mimicking a large toad with a deep croak in the darkness. As Benjamin
Franklin remarked in a letter in 1789: “In this world nothing is certain
but death and taxes” (Smyth, 1907, p. 69).

How do people make inferences, predictions, and decisions from a
bundle of imperfect cues and signals? The classical view of rational judg-
ment under uncertainty is illustrated by Benjamin Franklin’s moral alge-

75
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bra. In an often-cited letter to the British scientist Joseph Priestley, Frank-
lin (1772/1987) explained how to decide which of two options to take,
based on uncertain cues (which he calls “reasons”):

[Mly Way is, to divide half a Sheet of Paper by a Line into two Col-
umns, writing over the one Pro, and over the other Con. Then during
three or four Days Consideration I put down under the different
Heads short Hints of the different Motives that at different Times
occur to me for or against the Measure. When I have thus got them
all together in one View, I endeavor to estimate their respective
Weights; and where I find two, one on each side, that seem equal, I
strike them both out: If I find a Reason pro equal to some two Rea-
sons con, I strike out the three. If I judge some two Reasons con
equal to some three Reasons pro, I strike out the five; and thus pro-
ceeding I find at length where the Ballance lies; and if after a Day
or two of farther Consideration nothing new that is of Importance
occurs on either side, I come to a Determination accordingly. And
tho’ the Weight of Reasons cannot be taken with the Precision of
Algebraic Quantities, yet when each is thus considered separately
and comparatively, and the whole lies before me, I think I can judge
better, and am less likely to make a rash Step; and in fact I have
found great Advantage from this kind of Equation, in what may be
called Moral or Prudential Algebra. (p. 878)

Franklin’s moral algebra, or what we will call Franklin’s rule, is to
search for all reasons, positive or negative, weigh each carefully, and add
them up to see where the balance lies. This linear combination of reasons
carries the moral sentiment of rational behavior: carefully look up every
bit of information, weigh each bit in your hand, and combine them into a
judgment. Franklin’s method is a variant of the classical view of rational-
ity which emerged in the Enlightenment (see chapter 1), a view that is not
bound to linear combinations of reasons. Classical rationality assumes
that the laws of probability are the laws of human minds, at least of the
educated ones (the hommes éclairés, see Daston, 1988). As Pierre-Simon
Laplace (1814/1951, p. 196) put it, “the theory of probabilities is at bottom
only common sense reduced to calculus.”

But in real-world situations with sufficient complexity, the knowledge,
time, and computation necessary to realize the classical ideal of un-
bounded rationality can be prohibitive—too much for humble humans,
and often also too much for the most powerful computers. For instance,
if one updates Franklin’s weighted linear combination of reasons into its
modern and improved version, multiple linear regression, then a human
would have to estimate the weights that minimize the error in the “least
squares” sense for all the reasons before combining them linearly—a task
most of us could not do without a computer. If one were to further update
Franklin’s method to (nonlinear) Bayesian networks, then the task could
become too computationally complex to be solved by a computer.

Despite their psychological implausibility, the preferred models of cog-
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nitive processes since the cognitive revolution of the 1960s were those
assuming demons: subjective expected utility maximizing models of
choice, exemplar models of categorization, multiple regression models of
judgment, Bayesian models of problem solving, and neural-network mod-
els of almost everything. Demons that can perform amazing computations
have not only swamped cognitive psychology, but also economics, opti-
mal foraging theory, artificial intelligence, and other fields. Herbert Simon
has countered, “there is a complete lack of evidence that, in actual human
choice situations of any complexity, these computations can be, or are in
fact, performed” (1955a, p. 104).

Simon proposed to build models of bounded rationality rather than of
optimizing. But how? What else could mental processes be, if not the lat-
est statistical techniques?

Simple Stopping Rules

In this chapter, we deal with the same type of task as in chapter 2: deter-
mining which of two objects scores higher on a criterion. This task is a
special case of the more general problem of estimating which subclass of
a class of objects has the highest values on a criterion (as in chapter 3).
Examples are treatment allocation (e.g., which of two patients to treat first
in the emergency room, with life expectancy after treatment as the crite-
rion), financial investment (e.g., which of two securities to buy, with
profit as criterion), and demographic predictions (e.g., which of two cities
has higher pollution, crime, mortality rates, and so on).

To illustrate the heuristics, consider the following two-alternative
choice task:

Which of the two cities has a larger population?
(a) Hannover
(b) Bielefeld

Assume that a person has heard of both cities, so cannot use the recog-
nition heuristic. This person needs to search for cues that indicate larger
population. Search can be internal (in memory) or external (e.g., in librar-
ies). Limited search is a central feature of fast and frugal heuristics: not
all available information is looked up, and consequently, only a fraction
of this information influences judgment. (In contrast, laboratory experi-
ments in which the information is already conveniently packaged and laid
out in front of the participants eliminate search, and in line with this
experimental approach, many theories of cognitive processes do not even
deal with search.)

Limited search implies a stopping rule. Fast and frugal heuristics use
simple stopping rules. They do not follow the classical prescription to
search as long as the perceived marginal benefits of acquiring additional
information exceed the perceived marginal costs (Stigler, 1961). That
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minds could and would routinely calculate this optimal cost-benefit
trade-off is a dominant, yet implausible, assumption in models of informa-
tion search (see the epigram introducing this chapter).

We demonstrate a simple stopping rule with figure 4-1. This figure rep-
resents a person’s knowledge about four objects a, b, ¢, and d (cities,
for example) with respect to five cues (such as whether the city has a
big-league soccer team, is a state capital, and so forth) and recognition
(whether or not the person has heard of the city before). For instance, if
one city has a soccer team in the major league and the other does not,
then the city with the team is likely, but not certain, to have the larger
population. Suppose we wish to decide which of city a and city b is
larger. Both @ and b are recognized, so the recognition heuristic cannot be
used. Search for further knowledge in memory brings to mind information
about Cue 1, the soccer team cue. City a has a soccer team in the major
league, but city b does not (these cue values are represented by “1” and

Take The Best
(One-Reason Decision Making)

a b c d

Recognition

Cue 1

Cue 2

Cue 3

Cue 4

Cue 5

Figure 4-1: Nlustration of bounded search through limited knowledge.
Objects a, b, and ¢ are recognized (+), d is not (-). Cue values are binary
(0 or 1); missing knowledge is shown by a question mark. For instance, to
infer whether a > b, Take The Best looks up only the values in the lined
space. To infer whether b > ¢, search is bounded to the dotted space. The
other cue values are not looked up and so are shown within the diagram
as shrouded in the fog of memory.
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“0” in figure 4-1). Therefore, the cue discriminates between the two cities.
Search is terminated, and the inference is made that city a is the larger
city. More generally, for binary (or dichotomous) cues, the simple stop-
ping rule is:
If one object has a positive cue value (“1”) and the other does not
(i.e., either “0” or unknown) then stop search.

For convenience, we use “1” for positive cue values, those that indicate
higher criterion values (e.g., a larger population) and “0” for negative cue
values, which indicate lower criterion values. If the condition of the stop-
ping rule is not met, then search is continued for another cue, and so on.
For instance, when deciding between b and ¢ in figure 4-1, Cue 1 does
not discriminate, but Cue 2 does. Object b is inferred to be larger on the
basis of this single cue. Limited search works in a step-by-step way; cues
are looked up one by one, until the stopping rule is satisfied (similar to
the Test Operate Test Exit procedures of Miller et al., 1960). If no cue is
found that satisfies the stopping rule, a random guess is made. No costs
or benefits need to be computed to stop search. The following heuristics—
Minimalist, Take The Last, and Take The Best—use this simple stopping
rule. They also use the same heuristic principle for decision, one-reason
decision making, that is, they base an inference on only one reason or cue.
They differ in how they search for cues.

Heuristics

The Minimalist

The minimal intuition needed for cue-based inference is the direction in
which a cue points, for instance, whether having a soccer team in the
major league indicates a large or a small population. This direction can,
for instance, be estimated from a small learning sample (and the estimated
direction may sometimes be wrong, see below). The Minimalist has only
this minimal intuition. Nothing more is known, for instance, about which
cues are better predictors than others. Consequently, the heuristic for
search that the Minimalist uses is to look up cues in random order. When-
ever the Minimalist can, it will take advantage of the recognition heuristic
(see chapter 2). However, there are situations where the recognition heu-
ristic cannot be used, that is, when both objects are recognized, or when
recognition is not correlated with the criterion.
The Minimalist heuristic can be expressed in the following steps:

Step 0. If applicable, use the recognition heuristic; that is, if only
one object is recognized, predict that it has the higher value
on the criterion. If neither is recognized, then guess. If both
are recognized, go on to Step 1.

Step 1. Random search: Draw a cue randomly (without replace-
ment) and look up the cue values of the two objects.
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Step 2. Stopping rule: If one object has a positive cue value (“1”)
and the other does not (i.e., either “0” or unknown value)
then stop search and go on to Step 3. Otherwise go back to
Step 1 and search for another cue. If no further cue is found,
then guess.

Step 3. Decision rule: Predict that the object with the positive cue
value has the higher value on the criterion.

Take The Last

Like the Minimalist, Take The Last only has an intuition in which direc-
tion a cue points but not which cues are more valid than others. Take The
Last differs from the Minimalist only in Step 1. It uses a heuristic princi-
ple for search that draws on a strategy known as an Einstellung set. Karl
Duncker and other Gestalt psychologists demonstrated that when people
work on a series of problems, they tend to start with the strategy that
worked on the last problem when faced with a new, similar-looking prob-
lem (Duncker, 1935/1945; Luchins & Luchins, 1994), and thereby build
up an Einstellung set of approaches to try. For the first problem, Take The
Last tries cues randomly like the Minimalist, but from the second problem
onward it starts with the cue that stopped search the last time. If this cue
does not stop search, it tries the cue that stopped search the time before
last, and so on. Because cues that recently stopped search tend to be more
likely than others to stop search (i.e., they are cues with higher discrimi-
nation rates), Take The Last tends to search for fewer cues than the Mini-
malist. For instance, if the last decision was based on the soccer team cue,
Take The Last would try the soccer team cue first on the next problem. In
contrast to the Minimalist, Take The Last needs a memory for what cues
discriminated in the past. Step 1 of Take The Last is:

Step 1. Einstellung search: If there is a record of which cues stopped
search on previous problems, choose the cue that stopped
search on the most recent problem and has not yet been
tried. Look up the cue values of the two objects. Otherwise
try a random cue and build up such a record.

Take The Best

There are environments for which humans or animals know (rightly or
wrongly) not just the signs of cues, but also which cues are better than
others. An order of cues can be genetically prepared (e.g., cues for mate
choice in many animal species) or learned by observation. In the case of
learning, the order of cues can be estimated from the relative frequency
with which they predict the criterion. For example, the validity of the
soccer team cue would be the relative frequency with which cities with
soccer teams are larger than cities without teams. The validity is com-
puted across all pairs in which one city has a team and the other does
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not. If people can order cues according to their perceived validities—
whether or not this subjective order corresponds to the ecological order—
then search can follow this order of cues. Take The Best first tries the cue
with the highest validity, and if it does not discriminate, the next best
cue, and so on. Its motto is “take the best, ignore the rest.” Take The Best
differs from the Minimalist only in Step 1, which becomes:

Step 1. Ordered search: Choose the cue with the highest validity
that has not yet been tried for this choice task. Look up the
cue values of the two objects.

Note that the order that Take The Best uses is not an “optimal” one—it
is, rather, a frugal ordering. It does not attempt to grasp the dependencies
between cues, that is, to construct an order from conditional probabilities
or partial correlations (see chapter 6). The frugal order can be estimated
from a small sample of objects and cues (see chapter 5).

To summarize, the three fast and frugal heuristics just presented em-
body the following properties: limited search using step-by-step proce-
dures, simple stopping rules, and one-reason decision making. One-rea-
son decision making, basing inferences on just one cue, is implied by the
specific stopping rule used here. It is not implied by all simple stopping
rules. Furthermore, one-reason decision making does not necessarily im-
ply the stopping rule used by the three heuristics. For instance, one could
search for a large number of cues that discriminate between the two alter-
natives (such as in a situation where one has to justify one’s decision) but
still base the decision on only one cue.

Compare the spirit of these simple heuristics to Franklin’s rule. One
striking difference is that all three heuristics practice one-reason decision
making. Franklin’s moral algebra, in contrast, advises us to search for all
reasons—at least during several days’ consideration—and to weigh care-
fully each reason and add them all up to see where the balance lies. The
three heuristics avoid conflicts between cues that may point in opposite
directions. Avoiding conflicts makes the heuristics noncompensatory: No
amount of contrary evidence from later (unseen) cues can compensate for
or counteract the decision made by an earlier cue. An example is the infer-
ence that a is larger than b in figure 4-1; neither the two positive values
for b nor the “0” value for a can reverse this inference. Basing an entire
decision on just one reason is certainly bold, but is it smart?

Psychologically Plausible but Dumb?

Consider first a species that practices one-reason decision making closely
resembling Take The Best. In populations of guppies, the important adap-
tive task of mate choice is undertaken by the females, which respond to
both physical and social cues (Dugatkin, 1996). Among the physical cues
they value are large body size and bright orange body color. The main
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social cue they use is whether they have observed the male in question
mating with another female. The cues seem to be organized in a hierarchy,
with the orange-color cue dominating the social cue. If a female has a
choice between two males, one of which is much more orange than the
other, she will choose the more orange one. If the males are close in or-
angeness, she prefers the one she has seen mating with another female.
She prefers this one even if he has slightly less orange color. The stopping
rule for the orangeness cue is that one male must be much (about 40%)
more orange than the other. Mate choice in female guppies illustrates lim-
ited search, simple stopping rules, and one-reason decision making.

People, not just lower animals, often look up only one or two relevant
cues, avoid searching for conflicting evidence, and use noncompensatory
strategies (e.g., Einhorn, 1970; Einhorn & Hogarth, 1981, p. 71; Fishburn,
1988; Hogarth, 1987; Payne et al., 1993; Shepard, 1967a). For instance,
Take The Best (unlike the Minimalist and Take the Last) is related to lexi-
cographic strategies. The term lexicographic signifies that the cues are
looked up in a fixed order of validity, like the alphabetic order used to
arrange words in a dictionary. The Arabic (base 10) and Babylonian (base
12) number systems are lexicographic. To see which of two numbers with
equal numbers of digits is larger, one has to look at the first digit: If this
digit is larger, the whole number is larger. If they are equal, one has to
look at the second digit, and so on. This simple method is not possible
for Roman numbers, which are not lexicographic. In experimental studies,
lexicographic strategies seem to be favored under time constraints (Payne
et al., 1993; see also chapter 7). In addition, Take The Best and the more
general framework of probabilistic mental models (Gigerenzer et al., 1991)
have been successful in integrating various empirical phenomena (Di-
Fonzo, 1994; Gigerenzer et al., 1991; Juslin, 1993; McClelland & Bolger,
1994).

However, simple heuristics that embody one-reason decision making,
avoid conflicts, and are noncompensatory were often discredited as irra-
tional, because they look stupid in comparison to traditional norms of
rationality that focus on coherence rather than on performance in real-
world environments. For instance, when Keeney and Raiffa (1993) discuss
lexicographic strategies, they repeatedly insert warnings that this strategy
“is more widely adopted in practice than it deserves to be” because “it is
naively simple” and “will rarely pass a test of ‘reasonableness’” (pp. 77—
78). They did not actually perform such a test. We shall.

Can Fast and Frugal Heuristics Be Accurate?

Heuristics are often evaluated by principles of internal coherence, rather
than by criteria that measure their performance in the external world: ac-
curacy, frugality, and speed, among others. The major exception in judg-
ment and decision-making research is the work by Payne et al. (1993),
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who have systematically compared the “effort-accuracy” trade-off of sim-
ple strategies to the performance of the weighted additive rule (Franklin’s
rule), which is often taken as normative for preferences (see also Beach &
Mitchell, 1978; Beach et al., 1986). In contrast to our research, Payne
and his colleagues studied preferences in artificial problems rather than
inferences about the real world. One consequence is that there is no ex-
ternal criterion for accuracy (e.g., the actual population of a city), so
norms must be constructed. In their studies, the weighted additive rule
is taken as the gold standard, and accuracy is defined as how close a strat-
egy comes to this rule. Therefore, no strategy can ever be more accurate
than the norm.' When making inferences about the real world, however,
it does not necessarily hold that the weighted additive rule is the best one
can do.

How accurate can heuristics be that violate the following two com-
mandments that are often taken as characteristic of rational judgment?

Complete search. Thou shalt find all the information available. If thou
cannot because of time or computational constraints, then compute the
point where the cost of further searching exceeds the benefits of doing so,
and search until this point.

Compensation. Thou shalt combine all pieces of information. Thou
shalt not rely on just one piece.

While Franklin’s rule respects both commandments, the Minimalist,
Take The Last, and Take The Best heuristics violate them. They do not
look up all cue values (limited search) and do use a simple stopping rule.
They do not combine cue values (noncompensation). The Minimalist, in
addition, can violate transitivity, a sacred principle of internal coherence.

To answer the question of how accurate fast and frugal heuristics are,
we evaluated their performance in a competition that pitted three stan-
dard statistical strategies against the three fast and frugal heuristics intro-
duced above. The goal was to see which strategy would yield the most
accurate inferences while looking up the fewest cue values.

The Competitors

To provide standards of comparison, we introduce three competitors that
do not violate these commandments of rational judgment. The first is a
weighted linear combination of cues, which we call Franklin’s rule, be-
cause it applies Franklin’s principles to the two-alternative choice tasks
considered here. It is actually a more empirical method than Franklin’s

1. An exception is when the weighted additive rule is modified to use only
limited information.

2. Intransitivity can result from the fact that the Minimalist picks cues in ran-
dom order, as is illustrated by figure 4-1. For instance, if Cue 1 happens to be
applied to objects @ and b, Cue 2 to b and ¢, and Cue 3 to a and ¢, we get the
intransitive judgment a > b, b> ¢, and ¢ > a.
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original moral algebra because the weights are not subjective but com-
puted from the data. In the present simulation, the cue weights are ecolog-
ical validities, to be defined shortly. Franklin’s rule multiplies each cue
value by its weight and sums the total, inferring that the object with the
larger sum is the larger object. In the simulation, positive and negative
cue values are coded as 1 and 0, respectively.

The other two competitors are linear combinations of cues, like Frank-
lin’s rule. One of them demands considerably more knowledge and com-
putation, and one demands less. The more demanding algorithm is multi-
ple linear regression. Multiple regression takes care of the dependencies
between cues by calculating weights that minimize the error in the least-
squares sense. Variants of weighted linear models have been proposed as
descriptive or prescriptive models of cognitive processes, for instance, in
N. H. Anderson’s (e.g., 1981) information integration theory and in social
judgment research (Brehmer, 1994; Brunswik, 1955). As descriptions of
psychological processes, weighted linear models, and particularly multi-
ple linear regression, are questionable given the complex computations
they assume (Brehmer & Brehmer, 1988; Einhorn & Hogarth, 1975; Ho-
garth, 1987). A more psychologically plausible version of a linear strategy
employs unit weights, as suggested by Robyn Dawes (e.g., 1979). This
strategy simply adds up the number of positive cue values (or ones) and
subtracts the number of negative cue values (or zeroes). Thus it is fast (it
does not involve much computation), but not frugal (it looks up all cues).
For short, we call this strategy Dawes’s rule.

In the simulations we report, these three linear models serve as bench-
marks against which to evaluate the performance of the fast and frugal
heuristics. Note that Franklin’s rule and multiple linear regression use all
the information the three heuristics use, and more. They also carry out
more sophisticated computations on this information.

The Environment

After Germany was reunified in 1990, the country had 83 cities with more
than 100,000 inhabitants. These cities and nine cues for population size
constituted the environment for the simulation. The cues were chosen
from people’s reported cues in experiments (Gigerenzer et al., 1991; Giger-
enzer & Goldstein, 1996a). The task was to infer which of two cities has a
larger population. Each cue has two important characteristics: its ecologi-
cal validity and its discrimination rate. The ecological validity of a cue is
the relative frequency with which the cue correctly predicts the criterion,
defined with respect to the reference class (here, all German cities with
more than 100,000 inhabitants). For instance, if one checks all pairs in
which one city has a soccer team but the other city does not, one finds
that in about 87% of these cases the city with the team also has the higher
population. This .87 value is the ecological validity of the soccer team
cue. In general, the ecological validity v; of the ith cue is:
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v; = number of correct predictions/number of predictions

where the number of predictions is the number of pairs in which one
object has a positive and the other a negative value. The ecological validi-
ties of the cues varied over the whole range (table 4-1).

A cue with a high ecological validity, however, is not very useful if its
discrimination rate is small. The discrimination rate of a cue is the rela-
tive frequency with which a cue discriminates between pairs of objects
from the reference class. The discrimination rate is a function of the distri-
bution of the cue values and the number N of objects in the reference
class. Let the relative frequencies of the positive and negative cue values
be x and y respectively. Then the discrimination rate d; of the ith cue is:

d = 2X,Yi

1-—

as an elementary calculation shows. Thus, if N is very large, the discrimi-
nation rate is approximately 2x;y;.

The larger the ecological validity of a cue, the better the inferences.
The larger the discrimination rate, the more often a cue can be used to
make an inference. The pairwise correlations between the nine cues
ranged between —.25 and .54, with an average absolute value of .19.

Different strategies extract different information from the environment.
The Minimalist, for instance, does not extract information about which

Table 4-1: Gues, Ecological Validities, and Discrimination Rates

Ecological Discrimination

Cue Validity Rate
National capital (Is the city the national

capital?) 1.0 .02
Exposition site (Was the city once an

exposition site?) 91 .25
Soccer team (Does the city have a team in

the major leagues?) .87 .30
Intercity train (Is the city on the Intercity

line?) .78 .38
State capital (Is the city a state capital?) 77 .30
License plate (Is the abbreviation only one

letter long?) .75 .34
University (Is the city home to a univer-

sity?) 71 51
Industrial belt (Is the city in the industrial

belt?) .56 .30
East Germany (Was the city formerly in

East Germany?) .51 .27
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cues are better than others; it only needs to estimate in which direction a
cue points. Take The Best extracts information about the order in which
cues should be tried. All competitors made use of the actual cue values
from the complete environment to calculate parameters such as ecological
validities or regression coefficients.

Limited Knowledge

We simulated subjects with varying degrees of knowledge about this envi-
ronment. Limited knowledge can take two forms. One is limited recogni-
tion of objects. The other is limited knowledge about the cue values of
recognized objects. To model limited recognition knowledge, we simu-
lated subjects who recognized between 0 and all (83) German cities (i.e.,
84 different levels of recognition). To model limited knowledge of cue
values, we simulated six classes of subjects, who knew 0, 10, 20, 50, 75,
or 100% of the cue values associated with the objects they recognized.
Combining the two sources of limited knowledge resulted in 6 x 84 types
of subjects, each having different degrees and kinds of limited knowledge.
For each type of subject, we created 500 simulated individuals, who dif-
fered randomly from one another in the particular objects and cue values
they knew.

The simulation needed to be realistic in the sense that the simulated
subjects should be able to invoke the recognition heuristic. Therefore, the
sets of cities the simulated subjects recognized had to be carefully chosen
so that the recognized cities were larger than the unrecognized ones a
certain percentage of the time. We performed a survey to get an empirical
estimate of the actual relationship between the recognition of cities and
city populations. In a survey of undergraduates at the University of Chi-
cago, we found that the cities they recognized (within the 83 largest in
Germany) were larger than the cities they did not recognize in about 80%
of the cases. We incorporated this value into our simulations by choosing
sets of cities (for each knowledge state, that is, for each number of cities
recognized) where the known cities were larger than the unknown cities
in about 80% of all cases. Thus, the cities known by the simulated sub-
jects had the same relationship between recognition and population as
did those of the human subjects. For details of the simulation see Giger-
enzer and Goldstein (1996a).

Each simulated subject made inferences about which of two cities is
larger, using each of six strategies: the three fast and frugal heuristics
(Take The Best, Take The Last, and the Minimalist) and the three linear
methods (regression, Franklin’s rule, and Dawes’s rule). The question of
how well a fast and frugal heuristic performs in a real-world environment
has rarely been posed in research on inductive inference. If the simple
heuristics are adapted to environmental structures, then they should not
fail outright.
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How Frugal Are the Heuristics?

We measure frugality by the number of cues a heuristic looks up. The
three linear models always look up and integrate all 10 cues (9 ecological
cues plus recognition). Across all states of limited knowledge, Take The
Last looked up on average only 2.6 cues, the Minimalist 2.8 cues, and
Take The Best 3.0 cues (table 4-2). Take The Last owes its frugality to the
Einstellung set, which tends to collect the cues that discriminate most
often. The reason why the Minimalist looked up fewer cues than Take
The Best is that cue validities and cue discrimination rates are negatively
correlated (table 4-1). Therefore, randomly chosen cues tend to have
higher discrimination rates than cues chosen by cue validity. All in all,
the three heuristics look up less than a third of the cues used by the linear
models, on average.

How Accurate Are the Heuristics?

How accurate are the three heuristics, given that they look up only a frac-
tion of the available information? Recall that the Minimalist looks up on
average only 2.8 cues, uses one-reason decision making, does not know
which cues are better than others, and can violate transitivity. It must be
doomed to fail. Table 4-2, however, shows that the Minimalist achieves
an average accuracy of 64.7%. This is slightly higher than Take The Last,
but lower than Take The Best with 65.8%. But how much more accurate
are Dawes’s rule, Franklin’s rule, and multiple regression, which use all
cues’ values and combine them? The result in table 4-2 is surprising.
Dawes’s rule is outperformed by each of the three heuristics, although

Table 4-2: A Tournament Between Three Fast and Frugal
Heuristics (Minimalist, Take The Last, Take The Best) and
Three Linear Strategies (Dawes’s Rule, Franklin’s Rule, and
Multiple Regression)

Knowledge Frugality
About (Number of Accuracy
Strategy Cues Cues Looked Up) (%)
Take The Last direction 2.6 64.5
Minimalist direction 2.8 64.7
Take The Best order 3.0 65.8
Dawes’s rule direction 10.0 62.1
Franklin’s rule validities 10.0 62.3
Multiple regression beta weights 10.0 65.7

Note. Results are averaged across all levels of limited knowledge, that is, limited rec-
ognition and limited number of cue values known (see text). For instance, the Mini-
malist looked up only 2.8 cues on the average and made 64.7% correct inferences.
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Dawes’s rule has all the information that the Minimalist and Take The
Last have (only Take The Best knows about the order of cues, which is
not available to Dawes’s rule). Franklin’s rule has all the information that
each of the three heuristics has, and more. Still, it is outperformed by
even the most frugal of the simple heuristics.

How do the heuristics compare to a more powerful competitor? Multi-
ple regression calculates a set of weights considered optimal for linear
prediction, and arriving at these weights requires considerable computa-
tional might. Though it makes more accurate inferences than both the
Minimalist and Take The Last, regression is matched in accuracy by the
fast and frugal Take The Best.

Figure 4-2 shows the accuracy of the six competitors as a function of
the number of cities recognized. Here, the situation where all competitors
perform best is shown, namely when knowledge of cue values is 100%.
The figure shows that the Minimalist and Take The Last can compete well
with the other algorithms in accuracy when the number of objects recog-
nized is limited, but take a loss when all are known, that is, when com-
plete information is available. Franklin’s rule and Dawes’s tule match
Take The Best when no or all objects are recognized, but suffer with inter-
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Figure 4-2: Results of the competition among decision strategies when

knowledge of cue values is 100% but recognition rate varies.
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mediate levels of recognition. Why is this? The reason is that these two
strategies violate the wisdom of the recognition heuristic. They sometimes
choose unrecognized cities as larger than recognized ones. In this environ-
ment, most cities have more negative cue values than positive ones: for
example, the average city is not a state capital, does not have a major
league soccer team, and so on. Dawes’s rule, which subtracts the number
of negative cue values from the number of positive ones, often arrives at
a negative total for a recognized city that exceeds that of an unrecognized
city (which is always -1, because of one negative reason: no recognition).
The same holds for Franklin’s rule, which weights the reasons (Giger-
enzer & Goldstein, 1996a). Therefore, an unrecognized city is often in-
ferred to be larger than a recognized one, which turns out to be a bad
idea in this environment where the recognized cities were larger than the
unrecognized cities 80% of the time. When one helps the linear strategies
by endowing them with the recognition heuristic, their performance
roughly matches that of Take The Best and multiple regression.

Figure 4-2 also illustrates a less-is-more effect (see chapter 2) in four of
the six strategies. In contrast to figure 2-4, which shows a noisy less-is-
more effect obtained by Take The Best in a simulation where the recogni-
tion validity was determined empirically at each level of recognition, here
we see it in a smooth, refined form—a result of holding the recognition
validity constant at our estimate of its empirical average.

Trade-Off Between Accuracy and Frugality

Within the three heuristics, the expected trade-off holds: the more frugal
(the fewer cue values looked up), the less accurate. However, when we
compare the family of heuristics to the three linear strategies, things get
very interesting. Compared to multiple regression, Take The Best did not
sacrifice accuracy for frugality—it achieved both. Compared to Dawes’s
and Franklin’s rules, all three heuristics managed to be more accurate and
yet more frugal at the same time.

When we first obtained these results, we could not believe them. We
hired independent programmers in the United States and Germany to re-
run the simulations to exclude possible wishful thinking on our part.
When we finally published the results, we also included the data on the
environment so that everyone could perform their own replications, and
many did (Gigerenzer & Goldstein, 1996a). Fast and frugal heuristics do
not necessarily have to trade accuracy for simplicity.

Can Frugality and Accuracy Both Be Possible?

Fast and frugal heuristics can make accurate inferences about unknown
properties of the world, that is, inferences that are equal to or more accu-
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rate than the three linear strategies. In designing these simulations, we
wondered if the heuristics would fail dismally. Before we reported the
results, three eminent researchers in judgment and decision making pre-
dicted that Take The Best might perform 10 or 5 percentage points worse
than the linear strategies. Each of the three heuristics, however, exceeded
these expectations, and even outperformed some of the linear strategies.
Take The Best matched or outperformed them all. At that juncture we
did not understand how the competition could come out that way. The
answer—in the form of what we call ecological rationality—only emerged
after some further struggling, and will be developed in chapter 6. Here we
summarize a few insights.

The observation of a flat maximum for linear models is one insight. If
many sets of weights can perform about as well as the optimal set of
weights in a linear model, this is called a flat maximum. The work by
Robyn Dawes and others (e.g., Dawes & Corrigan, 1974) made this phe-
nomenon known to decision researchers, but has actually been known
longer. Since Wilks (1938) wrote about the robustness of equal weights,
many have argued that weights are irrelevant both for making predictions
by an artificial system (such as an IQ test) and for describing actual human
inferences. In psychometrics, weighting the components of a test battery
is rare because various weighting schemes result in surprisingly similar
composite scores, that is, in flat maxima (e.g., Gulliksen, 1950). Flat max-
ima seem to occur when cues are strongly positively correlated. The per-
formance of fast and frugal heuristics indicates that a flat maximum can
extend beyond the issue of weights to decision strategies themselves: in-
ferences based solely on the best cue can be as accurate as those based on
a weighted linear combination of all cues.

There is also scattered earlier evidence that simple, noncompensatory
heuristics can perform well. However, because much of the earlier work
concentrated on preferences (rather than inferences) and on artificial stim-
uli (rather than real-world environments), external criteria of performance
were often hard to come by. As mentioned before, the closest relatives of
Take The Best are lexicographic strategies. Payne et al. (1993) showed that
lexicographic judgments can sometimes be close to those of a weighted
linear model, but they had no external criteria for accuracy. A second
class of close relatives are simple algorithms in machine learning, which
can perform highly accurate classifications (Holte, 1993; Rivest, 1987}. A
more distant relative to Take The Best is Elimination By Aspects (Tversky,
1972), which also employs limited search and a stopping rule, but deals
with preference rather than inference, does not use the order of cues but
a probabilistic criterion for search that requires knowledge of the quantita-
tive validities of each cue, has no recognition heuristic built in, and does
not employ one-reason decision making. Another more distant class of
relatives are classification and regression trees (CARTs), which use a sim-
ple decision tree and one-reason decision making, but differ in the knowl-
edge and computational power they use for setting up the simple tree. For
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instance, Breiman et al. (1993) reported a simple CART algorithm with
only three binary, ordered cues that classified heart-attack patients into
“high” and “low” risk groups. This noncompensatory tree was more accu-
rate than standard statistical classification methods, which used up to 19
variables (see chapter 1). The practical relevance is obvious: In the emer-
gency room, the physician can quickly obtain the measures on one, two,
or three variables, and does not need to perform any computations since
there is no integration. For theories that postulate mechanisms that resem-
ble Take The Best see relevance theory (Sperber et al., 1995) and optimal-
ity theory (Legendre et al., 1993; Prince & Smolensky, 1991).

All in all, the observation of flat maxima, the performance of simple
machine learning rules and CART trees, and the work by Payne, Bettman,
and Johnson gave us hope that there was something larger to discover
behind this first surprising finding.

Matching Stopping Rules to Environments

What structures of information in real-world environments can fast and
frugal heuristics exploit in order to perform as accurately as they did?
Where would they fail? Chapters 5 and 6 will address these questions.
Here, we will illustrate this idea of ecological rationality—the match be-
tween mind and environment—by the positive bias of the stopping rule.
Recall that the combination of a positive value and an unknown value
stop search, but a negative and an unknown value do not. This asymmetry
is what we mean by a positive bias. Positive biases of various kinds have
been observed in humans (e.g., Klayman & Ha, 1987) and can result in
both more frugal and more accurate inferences than an unbiased stopping
rule. Consider first an unbiased stopping rule that demands a positive and
a negative cue value (as proposed by Gigerenzer et al., 1991). This stop-
ping rule would be less frugal, because search would take longer when
there is limited knowledge (i.e., unknown cue values) than it would with
a positive bias. Now consider a faster, unbiased stopping rule that always
terminates search when the positive bias rule does, but in addition when
a negative and an unknown value are obtained. Compared to this second
unbiased stopping rule, a positive bias can be shown to achieve more ac-
curate judgments in environments where negative cue values are more
frequent than positive ones. The intuition for this result is that the un-
known value is most likely negative. If the unknown value is negative,
however, this will lead to fewer accurate judgments when one stops with
a negative and an unknown value, because this would often mean that
there were actually two negative values. Thus, a stopping rule with posi-
tive bias is ecologically rational in environments where negative cue val-
ues outnumber positive ones. An example is the environment studied in
this chapter, where only relatively few cities have soccer teams in the
major league, and only a few are state capitals (see also the “rarity” as-
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sumption of Oaksford & Chater, 1994). More generally, in environments
where positive indicators are few and scattered—a rare symptom that sig-
nals a disease, an unusual feature that hints competence—a stopping rule
with positive bias will prove ecologically rational.

Generalization

How does Take The Best estimate the order of cues? How do Take The
Last and the Minimalist learn in which direction a cue points? There are
several ways cues and their ranking may be learned. Cues, or the pre-
paredness to learn cues, may be genetically coded through evolution. Cues
for distance perception, mate choice, and food avoidance have been pro-
posed as examples (e.g., Buss, 1992). Cues can also be learned through
cultural transmission. For example, the cues needed for expertise can be
learned from apprenticeship and the exchange of trade secrets. Finally,
cues can be learned from direct observation. For instance, a person who
knows some cue values for just 10 German cities, and knows for some
pairs of these cities which has a higher population, could use this knowl-
edge to estimate the rank order and direction of cues for the entire set. In
contrast, in the simulations reported in this chapter, each strategy com-
puted the parameters needed (direction of cue, cue order, cue validities,
regression coefficients) from the entire data set.

How well would Take The Best do if it were to learn cues from a small
sample? Recall that Take The Best extracts from a learning sample only
the order and sign of the cues, a very small amount of information com-
pared to the real-valued weights, regression coefficients, or conditional
probabilities extracted by more complex statistical procedures. Thus, in
a learning situation, Take The Best takes away only a small amount of
information from a small sample. Regression, in contrast, extracts consid-
erably more information from a small sample. Which is the better policy?

Figure 4-3 shows Take The Best, Take The Last, and the Minimalist
competing with multiple regression at making generalizations from a
training set to a test set. Each strategy estimated its respective parameters
from a proportion (between 10% and 90%) of the German cities and made
predictions about the complement. The process of dividing the environ-
ment into training and test sets, learning the parameters from the training
set, and making predictions about the test set was repeated 500 times. In
these simulations recognition was not a factor, that is, all objects were
assumed to be recognized. Let us first consider the situation in which all
cue values are known for all objects in the training and test sets (figure 4-
3a). At the point where the training set is 50% of the total environment,
for instance, Take The Best reaches 72% correct predictions, whereas mul-
tiple regression achieves 71%. More generally, throughout the entire range
of training set sizes, Take The Best outperforms multiple regression, espe-
cially when the training set is small. Figure 4-3b shows a more difficult
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Figure 4-3: Generalizing from a training set to a test set. Results are
shown for training sets with between 10% and 90% of the objects. Com-
petitors were tested on the complement of the training set, so for instance
in the 10% condition, the test set included the remaining 90% of the ob-
jects. We also varied the amount of missing knowledge in the environ-
ment. Figure 4-3a shows the cases where the training and test sets had no
missing cue values. Figure 4-3b shows the case where 50% of the cue
values, selected at random, were eliminated (replaced with question
marks) from the overall environment before dividing it into training and
test sets.
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situation where half of the cue values were eliminated from the environ-
ment before the training and test sets were created. Here, the advantage of
Take The Best is slightly more pronounced. Furthermore, when the train-
ing set is very small, the two most simple heuristics, Take The Last and
Minimalist, perform as well as or better than the other strategies. These
results indicate that Take The Best is more robust than multiple regression
on this data set, and less prone to overfit a training set. Under situations
of limited knowledge, simpler strategies may be more robust.

What about the generalization ability of strategies that are more compu-
tationally expensive than multiple regression? Using the German cities
environment, Chater et al. (1997) tested Take The Best against complex
strategies, including neural networks and exemplar models of categoriza-
tion. Like multiple regression, none of these strategies has a stopping rule,
but rather use all available cues. When the training set was less than 40%
of the test set, Take The Best outperformed all other competitors. This
advantage was largest (10 percentage points) when the size of the training
set was smallest. Only when the training set grew beyond 40% of the
German cities environment (which is actually more knowledge than most
anybody has about German demographics, Germans included) did the
competitors’ performance increase above that of Take The Best, at most
attaining a margin of about five percentage points. Note however that the
simulations of Chater et al. have only dealt with the case where there were
no unknown cue values (as represented by the question marks in figure
4-1).

These results, which came as a surprise to us, show how very simple
heuristics can excel in situations where knowledge is limited, and where
generalizations must be made from one sample to another. Chapters 5 and
6 will address the robustness of fast and frugal heuristics in more detail.

The Adaptive Toolbox

The Minimalist, Take The Last, and Take The Best are candidates for the
collection of heuristics in what we call the adaptive toolbox. The empha-
sis is on “collection.” None of these three strategies can perform all possi-
ble inferences under uncertainty—for instance, all three are designed to
make estimates about which of two objects is larger, more effective, more
dangerous, and so on. They cannot, for instance, estimate the quantitative
values of one object. However, some of the building blocks—simple stop-
ping rules, one-reason decision making—can be recombined to make heu-
ristics for quantitative estimation, classification, and other tasks, as we
will see in later chapters.

One may think of a collection of heuristics as a body made up of organs
that have evolved over time rather than being designed in a grand plan.
Thus, the adaptive toolbox may have evolved by adding features to al-
ready existing tools, rather than by replacing one generation of tools with
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a completely new generation. The three heuristics studied in this chapter,
for instance, are built around the recognition heuristic. If the recognition
heuristic can be used, search for further knowledge is not needed. If it
cannot, the inference is made by the additional tools. Here, the order in
which these two layers of heuristics are invoked follows their likely de-
velopmental and evolutionary order: Recognition and recognition mem-
ory are the more fundamental adaptive functions, less able to be damaged
by age and brain injury (see chapter 2) than the recall memory used by
Take The Best and its relatives.

The single most important result in this chapter is: Fast and frugal heu-
ristics that embody simple psychological mechanisms can yield infer-
ences about a real-world environment that are at least as accurate as stan-
dard linear statistical strategies embodying classical properties of rational
judgment. This result liberates us from the widespread view that only
“rational” algorithms, from Franklin’s rule to multiple regression, can be
accurate. Human inference does not have to forsake accuracy for simplic-
ity. The mind can have it both ways.

When we concluded our first report of these results (Gigerenzer &
Goldstein, 1996a) with the previous sentence, deep in our hearts we still
had nagging doubts. Can heuristics really be fast, frugal, and accurate at
the same time? Maybe there is something peculiar to city populations, or
to German cities. Does the power of these heuristics to combine simplicity
and frugality with accuracy generalize to other domains? What structures
of information in natural environments do these heuristics exploit? Where
do they break down? The following chapters tell what we have learned,
so far. More surprises are to come.



