
Daniel FarinottiETH Zurich & WSL Birmensdorf - Switzerland
Daniel Farinotti
Professor
About
136
Publications
68,284
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
8,211
Citations
Introduction
Daniel Farinotti is a glaciologist at the Laboratory of Hydraulics, Hydrology and Glaciology (VAW), ETH Zurich, and at the Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf.
Additional affiliations
August 2016 - August 2021
August 2016 - August 2021
November 2014 - present
Publications
Publications (136)
Ground penetrating radar (GPR) has been extensively used in glaciology to infer glacier's ice thickness, liquid water content, water drainage pathways, and other properties. The interpretation of such GPR data is not always straightforward and for temperate glaciers, the signal is often affected by strong scattering and attenuation. It has often be...
Glaciers in the Tien Shan are vital for freshwater supply, emphasising the importance of modelling their future evolution. While detailed 3D models are suitable for well-studied glaciers, regional and global assessments rely on simplified approaches. However, their accuracy remains understudied. Here, we compare the evolution of six glaciers in the...
Accelerating glacier melt rates were observed during the last decades. Substantial ice loss occurs particularly during heat waves that are expected to intensify in the future. Because measuring and modelling glacier mass balance on a daily scale remains challenging, short-term mass balance variations, including extreme melt events, are poorly captu...
Water resources sustainability in High Mountain Asia (HMA) surrounding the Tibetan Plateau (TP)—known as Asia’s water tower—has triggered widespread concerns because HMA protects millions of people against water stress1,2. However, the mechanisms behind the heterogeneous trends observed in terrestrial water storage (TWS) over the TP remain poorly u...
Glacier mass loss affects sea level rise, water resources, and natural hazards. We present global glacier projections, excluding the ice sheets, for shared socioeconomic pathways calibrated with data for each glacier. Glaciers are projected to lose 26 ± 6% (+1.5°C) to 41 ± 11% (+4°C) of their mass by 2100, relative to 2015, for global temperature c...
Debris flows threaten communities in mountain regions worldwide. Combining modern photogrammetric processing with autonomous unoccupied aerial vehicle (UAV) flights at sub-weekly intervals allows mapping of sediment dynamics in a debris flow catchment. This provides important information for sediment disposition that pre-conditions the catchment fo...
Accelerating glacier melt rates were observed during the last decades. Substantial ice loss occurs particularly during heat waves that are expected to intensify in the future. Because measuring and modelling glacier mass balance at the daily scale remains challenging, short-term mass balance variations, including extreme melt events, are poorly cap...
Plain Language Summary
The motion of glaciers is often assumed to be smooth and slow. But this is not always true. During hot summer days, the ice of alpine glaciers melts. The meltwater runs through the ice down to the boundary between ice and rock, and builds up pressure. At a Swiss mountain glacier, our measurements show that during times of hig...
Glaciers around the world are shrinking rapidly and will continue to do so in the next decades. Anticipating the consequences resulting from such glacier changes is key to design and implement adequate mitigation measures. Here, we focus on the future evolution of potential ice-dammed and supraglacial lakes in High Mountain Asia, as such lakes are...
The monitoring of glaciers in Switzerland has a long tradition, yet glacier changes during the 20th century are only known through sparse observations.
Here, we estimate a halving of Swiss glacier volumes between 1931 and 2016 by mapping historical glacier elevation changes at high resolution.
Our analysis relies on a terrestrial image archive know...
The monitoring of Earth’s and planetary surface elevations at larger and finer scales is rapidly progressing through the increasing availability and resolution of digital elevation models (DEMs). Surface elevation observations are being used across an expanding range of fields to study topographical attributes and their changes over time, notably i...
Glacier monitoring in Switzerland has resulted in some of the longest and most complete data series globally. Mass balance observations at individual locations, starting in the 19th century, are the backbone of the monitoring as they represent the raw and original glaciological data demonstrating the response of snow accumulation and snow/ice melt...
Ongoing climate change and associated glacier retreat is
causing rapid environmental change, including shifts in high-alpine
landscapes. Glacier lakes, which can form in topographical depressions left
behind by glacier retreat, are prominent features within such landscapes.
Whilst model-based estimates for the number and area of future glacier lake...
Glaciers play a crucial role in the Earth System: they are important water suppliers to lower‐lying areas during hot and dry periods, and they are major contributors to the observed present‐day sea‐level rise. Glaciers can also act as a source of natural hazards and have a major touristic value. Given their societal importance, there is large scien...
Currently, about 12 %–13 % of High Mountain Asia’s glacier area is debris-covered, which alters its surface mass balance. However, in regional-scale modelling approaches, debris-covered glaciers are typically treated as clean-ice glaciers, leading to a bias when modelling their future evolution. Here, we present a new approach for modelling debris...
Debris flows threaten communities in mountain regions worldwide. Combining modern photogrammetric processing with autonomous unmanned aerial vehicle (UAV) flights at sub-weekly intervals allows mapping of sediment dynamics in a debris flow catchment. This provides important information for sediment disposition that pre-conditions the catchment for...
With ongoing climate change water availability in the source regions of alpine streams are at stake. In particular, dry mountain regions which currently rely on glacial meltwater will need to adapt. Since rock glaciers are more resilient to climate change and occur in nearly all high‐mountain catchments around the globe with some form of glacieriza...
The englacial and subglacial drainage systems exert key controls on glacier dynamics. However, due to their inaccessibility, they are still only poorly understood and more detailed observations are important, particularly to validate and tune physical models describing their dynamics. By creating artificial glacier moulins – boreholes connected to...
Ongoing climate change and associated glacier retreat is causing rapid environmental change, including shifts in high-alpine landscapes. Glacier lakes, which can form in topographical depressions left behind by glacier retreat, are prominent features within such landscapes. Whilst model-based estimates for the number and area of future glacier lake...
The monitoring of glaciers in Switzerland has a long tradition, yet glacier changes during the 20th century are only known through sparse observations. Here, we estimate a halving of Swiss glacier volumes between 1931 and 2016 by mapping historical glacier elevation changes at high resolution. Our analysis relies on a terrestrial image archive know...
Glacier monitoring in Switzerland has resulted in some of the longest and most complete data series globally. Mass balance observations at individual locations, starting in the 19th century, are the backbone of the monitoring as they represent the raw and original glaciological data demonstrating the response of snow accumulation and snow/ice melt...
Plain Language Summary
Glaciers mostly move smoothly and slowly. But regularly at specific locations at the glacier bed, the ice suddenly slips forward. This slip causes an “icequake” which is similar to a small earthquake, but so weak, that one cannot feel it. However, electronic sensors on the ice surface can measure it but lots of information ge...
The glacier-dammed Lac des Faverges, located on Glacier de la Plaine Morte (Swiss Alps), has drained annually as a glacier lake outburst flood since 2011. In 2018, the lake volume reached more than 2 × 106 m3, and the resulting flood caused damage to the infrastructure downstream. In 2019, a supraglacial channel was dug to artificially initiate a s...
Short-term glacier variations can be important for water supplies or hydropower production, and glaciers are important indicators of climate change.
This is why the interest in near-real-time mass balance nowcasting is considerable.
Here, we address this interest and provide an evaluation of continuous observations of point mass balance based on on...
Currently, about 12–13 % of High Mountain Asia's glacier area is debris-covered, altering its surface mass balance. However, in regional-scale modelling approaches, debris-covered glaciers are typically treated as clean-ice glaciers, leading to a potential bias when modelling their future evolution. Here, we present a new approach for modelling deb...
The glacier-dammed Lac des Faverges, located on Glacier de la Plaine Morte (Swiss Alps), drained annually as a glacier lake outburst flood since 2011. In 2018, the lake volume reached more than 2 × 106 m3 and the resulting flood caused damages to the infrastructure downstream. In 2019, a supraglacial channel was dug to artificially initiate a surfa...
With the Paris Agreement, the urgency of limiting ongoing anthropogenic climate change has been recognised. More recent discussions have focused on the difference of limiting the increase in global average temperatures below 1.0, 1.5, or 2.0 ∘C compared to preindustrial levels. Here, we assess the impacts that such different scenarios would have on...
A deadly cascade
A catastrophic landslide in Uttarakhand state in India on February 2021 damaged two hydropower plants, and more than 200 people were killed or are missing. Shugar et al. describe the cascade of events that led to this disaster. A massive rock and ice avalanche roared down a Himalayan valley, turning into a deadly debris flow upstre...
Evacuation of basal sediment by subglacial drainage is an important mediator of rates of glacial erosion and glacier flow. Glacial erosion patterns can produce closed basins (i.e., overdeepenings) in glacier beds, thereby introducing adverse bed gradients that are hypothesised to reduce drainage system efficiency and thus favour basal sediment accu...
Accurate knowledge of the ice thickness distribution and glacier bed topography is essential for predicting dynamic glacier changes and the future developments of downstream hydrology, which are impacting the energy sector, tourism industry and natural hazard management. Using AIR-ETH, a new helicopter-borne ground-penetrating radar (GPR) platform,...
Temperature measurements in boreholes are the most common method allowing the quantitative and direct observation of permafrost evolution in the context of climate change. Existing boreholes and monitoring networks often emerged in a scientific context targeting different objectives and with different setups. A standardized, well-planned and robust...
Glaciers distinct from the Greenland and Antarctic ice sheets are shrinking rapidly, altering regional hydrology¹, raising global sea level² and elevating natural hazards³. Yet, owing to the scarcity of constrained mass loss observations, glacier evolution during the satellite era is known only partially, as a geographic and temporal patchwork4,5....
Since rock glaciers are believed to be more resilient to climate change, water stores therein may become important water reservoirs in future, in particular in dry regions, which currently rely on glacial runoff. In order to estimate and evaluate the future runoff potential from permafrost and rock glaciers, distributed runoff models suitable for h...
Due to climate change, worldwide glaciers are rapidly declining. The trend will continue into the future, with consequences for sea level, water availability and tourism. Here, we assess the future evolution of all glaciers in Scandinavia and Iceland until 2100 using the coupled surface mass-balance ice-flow model GloGEMflow. The model is initialis...
Glacier mass-balance observations at seasonal resolution have been performed since 1914 at two sites on Claridenfirn, Switzerland. The measurements are the longest uninterrupted records of glacier mass balance worldwide. Here, we provide a complete re-analysis of the 106-year series (1914–2020), focusing on both point and glacier-wide mass balance....
With the Paris Agreement, the urgency of limiting ongoing anthropogenic climate change has been recognized. More recent discussions have focused on the difference of limiting the increase in global average temperatures below 1.0, 1.5, or 2.0 °C compared to pre-industrial levels. Here, we assess the impacts that such different scenarios would have o...
The artificial reduction of glacier melt is gaining increased attention due to accelerated ice wastage with atmospheric warming. In Switzerland, active coverage of glaciers using geotextiles is performed at currently nine sites and since up to 15 years. The measures represent an efficient method to locally safeguard the operability of ski slopes or...
Knowing the ice thickness distribution of a glacier is of fundamental importance for a number of applications, ranging from the planning of glaciological fieldwork to the assessments of future sea-level change. Across spatial scales, however, this knowledge is limited by the paucity and discrete character of available thickness observations. To obt...
The seasonal snowpack is a globally important water resource that is notoriously difficult to measure. Existing instruments make measurements of falling or accumulating snow water equivalent (SWE) that are susceptible to bias, and most represent only a point in the landscape. Furthermore the global array of SWE sensors is too sparse and too poorly...
Glaciers fulfil important short-term functions like drinking water supply and they are important indicators of climate change. This is why the interest in near real-time mass balance nowcasting is high. Here, we address this interest and provide an evaluation of seven continuous observations of point mass balance based on on-line cameras transmitti...
Although worldwide inventories of glacier area have been coordinated
internationally for several decades, a similar effort for glacier ice
thicknesses was only initiated in 2013. Here, we present the third
version of the Glacier Thickness Database (GlaThiDa v3), which includes
3 854 279 thickness measurements distributed over
roughly 3000 glaciers...
The Mont-Blanc massif, being iconic with its large glaciers and peaks of over 4,000 m, will experience a sharp increase in summer temperatures during the twenty-frst century. By 2100, the impact of climate change on the cryosphere and hydrosphere in the Alps is expected to lead to a decrease in annual river discharge. In this work, we modelled the...
As glaciers adjust their size in response to climate
variations, long-term changes in meltwater production can be expected,
affecting the local availability of water resources. We investigate glacier
runoff in the period 1955–2016 in the Maipo River basin (4843 km2,
33.0–34.3∘ S, 69.8–70.5∘ W), in the semiarid Andes of Chile.
The basin contains mor...
Abstract. Although worldwide inventories of glacier area have been coordinated internationally for several decades, a similar effort for glacier ice thicknesses was only initiated in 2013. Here, we present the third version of the Glacier Thickness Database (GlaThiDa v3), which includes 3 854 279 thickness measurements distributed over more than 30...
Accurate estimations of ice thickness and volume are indispensable for ice flow modelling, hydrological forecasts and sea-level rise projections. We present a new ice thickness estimation model based on a mass-conserving forward model and a Bayesian inversion scheme. The forward model calculates flux in an elevation-band flow-line model, and transl...
Glaciers in the European Alps rapidly lose mass to adapt to changes in climate conditions. Here, we investigate the relationship and lag between climate forcing and geometric glacier response with a regional glacier evolution model accounting for ice dynamics. The volume loss occurring as a result of the glacier‐climate imbalance increased over the...
Global-scale glacier shrinkage is one of the most prominent signs of ongoing climatic change. However, important differences in glacier response exist at the regional scale, and evidence has accumulated that one particular region stands out: the Karakoram. In the past two decades, the region has shown balanced to slightly positive glacier budgets,...
Abstract. As glaciers adjust their size in response to climate variations, long-term changes in meltwater production can be expected, affecting the local availability of water resources. We investigate glacier runoff in the period 1955–2016 in the Maipo River Basin (4 843 km<sup>2</sup>), semiarid Andes of Chile. The basin contains more than 800 gl...
Climate change is causing widespread glacier retreat1, and much attention is devoted to negative impacts such as diminishing water resources2, shifts in runoff seasonality3, and increases in cryosphere-related hazards4. Here we focus on a different aspect, and explore the water-storage and hydropower potential of areas that are expected to become i...
Extreme low and high flows can have negative economic, social, and ecological effects and are expected to become more severe in many regions due to climate change. Besides low and high flows, the whole flow regime, i.e., annual hydrograph comprised of monthly mean flows, is subject to changes. Knowledge on future changes in flow regimes is importan...
Sediment discharge from glaciers impacts downstream aquatic habitats, hydropower operations, and river infrastructure. Since discharge of subglacial sediment will evolve in response to glacier retreat, estimating future subglacial sediment dynamics is of great relevance. To develop tools and methods to better constrain the responsible processes, we...
Glaciers in the European Alps play an important role in the hydrological cycle, act as a source for hydroelectricity and have a large touristic importance. The future evolution of these glaciers is driven by surface mass balance and ice flow processes, of which the latter is to date not included explicitly in regional glacier projections for the Al...
Extreme low and high flows can have negative economical, societal, and ecological effects and are expected to become more severe in many regions due to climate change. Besides low and high flows, the whole flow regime is subject to changes. Knowledge on future changes in flow regimes is important since regimes contain information on both extremes a...
Knowledge of the ice thickness distribution of the world’s glaciers is a fundamental prerequisite for a range of studies. Projections of future glacier change, estimates of the available freshwater resources or assessments of potential sea-level rise all need glacier ice thickness to be accurately constrained. Previous estimates of global glacier v...
In Alpine regions, future changes in glacier and snow cover are expected to change runoff regimes towards higher winter but lower summer discharge. The low summer discharge will coincide with the highest water demand for irrigation, and local and regional water shortages are expected to become more likely. One possible measure to adapt to these cha...
Glaciers in the European Alps play an important role in the hydrological cycle, act as a source for hydroelectricity and have a large touristic importance. The future evolution of these glaciers is driven by surface mass balance and ice flow processes, which the latter is to date not included in regional glacier projections for the Alps. Here, we m...