Daniel E. Pabon-Moreno

Daniel E. Pabon-Moreno
  • Biologist
  • PhD Student at Max Planck Institute for Biogeochemistry

About

8
Publications
8,392
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
329
Citations
Current institution
Max Planck Institute for Biogeochemistry
Current position
  • PhD Student

Publications

Publications (8)
Preprint
Full-text available
As global and regional vegetation diversity loss threatens essential ecosystem services under climate change, monitoring biodiversity dynamics and its role in ecosystem services is crucial in predicting future states and providing insights into climate adaptation and mitigation. In this context, remote sensing (RS) offers a unique opportunity to as...
Preprint
As global and regional vegetation diversity loss threatens essential ecosystem services under climate change, monitoring biodiversity dynamics and its role in ecosystem services is crucial in predicting future states and providing insights into climate adaptation and mitigation. In this context, remote sensing (RS) offers a unique opportunity to as...
Article
Full-text available
Estimating gross primary production (GPP), the gross uptake of CO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> by vegetation, is a fundamental prerequisite for understanding and quantifying the terrestrial carbon cycle. Over the last decade, multiple approaches have been developed to derive...
Article
Full-text available
The leaf economics spectrum1,2 and the global spectrum of plant forms and functions³ revealed fundamental axes of variation in plant traits, which represent different ecological strategies that are shaped by the evolutionary development of plant species². Ecosystem functions depend on environmental conditions and the traits of species that comprise...
Article
Full-text available
Tropical ecosystems experience particularly fast transformations largely as a consequence of land use and climate change. Consequences for ecosystem functioning and services are hard to predict and require analyzing multiple data sets simultaneously. Today, we are equipped with a wide range of spatio-temporal observation-based data streams that mon...
Article
Full-text available
Quantifying how vegetation phenology responds to climate variability is a key prerequisite to predicting how ecosystem dynamics will shift with climate change. So far, many studies have focused on responses of classical phenological events (e.g., budburst or flowering) to climatic variability for individual species. Comparatively little is known on...
Article
Full-text available
Plant functional diversity (FD) is an important component of biodiversity that characterizes the variability of functional traits within a community, landscape, or even large spatial scales. It can influence ecosystem processes and stability. Hence, it is important to understand how and why FD varies within and between ecosystems, along resources a...

Network

Cited By