Daniel BonnUniversity of Amsterdam | UVA · Van der Waals-Zeeman Institute
Daniel Bonn
Prof. Dr.
About
520
Publications
235,532
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
25,708
Citations
Introduction
Additional affiliations
January 2012 - present
January 2006 - present
January 1993 - December 2012
Publications
Publications (520)
We investigate the effect of high wind speeds on the breakup mechanisms that govern the formation of a spray from nozzles that form liquid sheets, which subsequently break up. The fragmentation mechanism of liquid sheets from spray nozzles has recently been described in detail under quiescent conditions. With high wind speeds, measurements of the d...
The coalescence of liquid drops is a fundamental process that remains incompletely understood, particularly in the intermediate regimes where capillary, viscous, and inertial forces are comparable. Here, we experimentally investigate the dynamics of drop-to-drop coalescence during the transition between viscous and inertial regimes using high-speed...
The distance traveled by drops in a spray is of paramount importance for many applications of spraying, from aerosol virus transmission to pesticide spraying on crops. Commonly used models to describe droplet trajectories in sprays often neglect interactions between droplets such as coalescence and air drag. We study the behavior of monodisperse an...
Can globular proteins be considered as Pickering emulsionstabilizers? In recent years, there has been a growing
interest in the study of Pickering emulsions due to their unique properties. Among these, protein-stabilized Pickering emulsions have garnered significant attention, thanks to their environmentally friendly nature and wide-ranging applica...
The key parameter for describing frictional strength at the onset of sliding is the static friction coefficient. Yet, how the static friction coefficient at the macroscale emerges from contacting asperities at the microscale is still an open problem. Here, we present friction experiments in which the normal load was varied over more than three orde...
Background:
Aerosol therapy is commonly used during treatment with high-flow nasal cannula (HFNC) in the intensive care unit (ICU). Heated humidification inside the HFNC tubing circuit leads to unwanted condensation, which may greatly limit the efficiency of drug delivery. In this study, we aimed to investigate whether a novel humidification syste...
Take a thin cylindrical shell and twist it; it will buckle immediately. Such unavoidable torsional buckling can lead to systemic failure, for example by disrupting the blood flow through arteries. In this study, we prevent this torsional buckling instability using a combination of auxeticity and orthotropy in cylindrical metamaterial shells with a...
This file is associated with the paper titled "Using mobile air cleaners in school classrooms for aerosol removal: which, where and how", published in journal Indoor and Built Environment. It contains the supplementary information which helps explaining the methods, as well as data that supports the findings of the study. The study investigated the...
Mobile air cleaners (MACs) have been proposed as a supplementary solution to combat the spread of respiratory aerosols in school classrooms. To determine which, where and how to use MACs, seven small- and medium-sized MACs were selected and assessed for different settings and configurations by 1) a decay test for determining the clean air delivery...
Simple yield stress materials are composed of soft particles, bubbles, or droplets with purely repulsive forces. The constituent elements are typically too large to undergo thermal fluctuations, suggesting that the material internal structure, and therefore its rheology, should not change over time. Here, we explore the rheology of Carbopol, a prot...
Soft amorphous materials are viscoelastic solids ubiquitously found around us, from clays and cementitious pastes to emulsions and physical gels encountered in food or biomedical engineering. Under an external deformation,...
The viscoelastic relaxation time of a polymer solution is often measured using capillary breakup extensional rheometry (CaBER) where a droplet is placed between two plates which are pulled apart to form a thinning filament. For a slow plate retraction protocol, required to avoid inertio-capillary oscillations for low-viscosity liquids, we show expe...
Dry granular materials consist of a vast ensemble of discrete solid particles interacting through complex frictional forces at the contact points. The particles are so large that these systems are believed to be completely athermal. Here, we arrest the dynamics of a flowing granular material in a steady-state-flow configuration, enabling an isolate...
We introduce a new ionization technique for compact, portable mass spectrometers. It consists of a syringe with sample liquid capped by a self-ionizing spray nozzle containing a microfabricated nozzle chip. Interaction of the sample liquid with the nozzle wall results in electrical charging without the need for electronics. Elaborate cleaning proce...
In this experimental and numerical study, we revisit the question of the onset of the elastic regime in viscoelastic pinch-off. This is relevant for all modern filament thinning techniques which aim at measuring the extensional properties of low-viscosity polymer solutions such as the Slow Retraction Method (SRM) in Capillary Breakup Extensional Rh...
Obtaining insights into friction at the nanoscopic level and being able to translate these into macroscopic friction behavior in real-world systems is of paramount importance in many contexts, ranging from transportation to high-precision technology and seismology. Since friction is controlled by the local pressure at the contact it is important to...
Studying the effect of mechanical perturbations on granular systems is crucial for understanding soil stability, avalanches, and earthquakes. We investigate a granular system as a laboratory proxy for fault gouge. When subjected to a slow shear, granular materials typically exhibit a stress overshoot before reaching a steady state. We find that sho...
Water is known to play an important role in collagen self-assembly, but it is still largely unclear how water–collagen interactions influence the assembly process and determine the fibril network properties. Here, we use the H 2 O/D 2 O isotope effect on the hydrogen-bond strength in water to investigate the role of hydration in collagen self-assem...
Contact mechanics, spanning nanometer to tectonic scales, faces long-standing challenges arising from multiscale random roughness, which hinders experimental validation of theories. Understanding multi-asperity rough contacts is vital for addressing catastrophic consequences of these contacts failing such as earthquakes and for diverse technologica...
The sol–gel transition involves the transformation of a colloidal suspension into a system-spanning, interconnected gel. This process is widely used to reinforce mechanically weakened porous artifacts, such as sculptures but the impact of the restricted geometry (porous network) on the gelation dynamics of the solution remains unclear. Here, using...
The droplet size in emulsions is known to affect the rheological properties and plays a crucial role in many applications of emulsions. Despite its importance, the underlying mechanisms governing droplet size in emulsification remain poorly understood. We investigate the average drop size and size distribution upon emulsification with a high-shear...
Currently, nasal administration of active pharmaceutical ingredients is most commonly performed using swirl-nozzle-based pump devices or pressurized syringes. However, they lead to limited deposition in the more active regions of the nasal cavity, especially the olfactory region, which is crucial for nose-to-brain drug delivery. This research propo...
Constitutive relations are needed to predict the behavior of complex fluids in nonviscometric flows. This is an area that is largely unexplored for yield stress materials because of the difficulty describing the elastoviscoplastic behavior for arbitrary flows. Here, we measure the shear and extensional rheology of a simple tunable yield stress syst...
We investigated the nucleation and growth processes of individual NaCl crystals from an evaporating salt solution that is supersaturated. We find that crystals nucleate at the liquid/vapor interface, resulting in distinct “pendant” crystals, which reach millimeter dimensions. The substantial size of the crystals induces deformation of the interface...
Controlling macroscopic friction is crucial for numerous natural and industrial applications, ranging from forecasting earthquakes to miniaturizing semiconductor devices, but predicting and manipulating friction phenomena remains a challenge due to the unknown relationship between nanoscale and macroscopic friction. Here, we show experimentally tha...
Importance
Infection control guidelines have historically classified high-flow nasal oxygen and noninvasive ventilation as aerosol-generating procedures that require specialized infection prevention and control measures.
Objective
To evaluate the current evidence that high-flow nasal oxygen and noninvasive ventilation are associated with pathogen-...
A key challenge in the recycling of multilayer plastic films of polyethylene and polyamide, as typically used for food packaging, is to assess and control the phase separation of the two types of polymers in the recycled material, the specifics of which determine the mechanical strength of the recycled material. However, visualizing the polyamide-i...
Frost damage in porous materials is a weathering mechanism that can cause dangerous rockfalls or damage to built cultural heritage. The volume expansion of 9% when water freezes is usually seen as the cause of frost damage. This does not, however, explain why partially saturated porous stones also show damage despite the fact that ice should have r...
The COVID-19 pandemic caused a paradigm shift in our way of using heating, ventilation, and air-conditioning (HVAC) systems in buildings. In the early stages of the pandemic, it was indeed advised to reduce the reuse and thus the recirculation of indoor air to minimize the risk of contamination through inhalation of virus-laden aerosol particles em...
Water is known to play an important role in collagen self assembly, but it is still largely unclear how water-collagen interactions influence the assembly process and determine the fibril network properties. Here, we use the H 2 O/D 2 O isotope effect on the hydrogen-bond strength in water to investigate the role of hydration in collagen self assem...
Two and a half centuries after Coulomb's explanation of the angle of repose of a granular pile in relation to frictional slip between different layers, our understanding of yielding processes in granular materials remains incomplete. The main reason for this is that granular piles are comprised of a vast ensemble of discrete solid particles that in...
The coefficient of static friction between solids normally increases with the time they have remained in static contact before the measurement. This phenomenon, known as frictional aging, is at the origin of the difference between static and dynamic friction coefficients but has remained difficult to understand. It is usually attributed to a slow e...
Studying the effect of mechanical perturbations on granular systems is crucial for understanding soil stability, avalanches, and earthquakes. We investigate a granular system as a laboratory proxy for fault gouge. When subjected to a slow shear, granular materials typically exhibit a stress overshoot before reaching a steady state. We find that sho...
Nebulization of mRNA therapeutics can be used to directly target the respiratory tract. A promising prospect is that mucosal administration of lipid nanoparticle (LNP)-based mRNA vaccines may lead to a more efficient protection against respiratory viruses. However, the nebulization process can rupture the LNP vehicles and degrade the mRNA molecules...
Emulsions often act as carriers for water-insoluble solutes that are delivered to a specific target. The molecular transport of solutes in emulsions can be facilitated by surfactants and is often limited by diffusion through the continuous phase. We here investigate this transport on a molecular scale by using a lipophilic molecular rotor as a prox...
The question of when and how dense granular materials start to flow under stress, despite many industrial and geophysical applications, remains largely unresolved. We develop and test a simple equation for the onset of quasistatic flows of granular materials which is based on the frictional aging of the granular packing. The result is a nonmonotoni...
Pea protein isolate (Pisum sativum L., PPI) has been much studied in the last decade because of its potential as a bio-based alternative for surfactants to produce innovative and environmentally friendly emulsion products. PPI is ideal due to its favorable nutritional properties, low allergenicity and low environmental impact. Despite its growing p...
Deliquescence is a first-order phase transition, happening when a salt absorbs water vapor. This has a major impact on the stability of crystalline powders that are important for example in pharmacology, food science and for our environment and climate. Here we show that during deliquescence, the abundant salt sodium sulfate decahydrate, mirabilite...
When two solid objects slide over each other, friction results from the interactions between the asperities of the (invariably rough) surfaces. Lubrication happens when viscous lubricants separate the two surfaces and carry the load such that solid-on-solid contacts are avoided. Yet, even small amounts of low-viscosity lubricants can still signific...
What measurable physical properties allow one to distinguish surfactant-stabilised from Pickering emulsions? Whereas surfactants influence oil/water interfaces by lowering the oil/water interfacial tension, particles are assumed to have little effect on the interfacial tension. Here we perform interfacial tension (IFT) measurements on three differe...
Sprays are of great importance for many applications, with drop size being a crucial parameter. Especially in agriculture applications, simple flat fan spray nozzles are often supplemented by a Venturi component to achieve larger drop sizes and hence, prevent unwanted spray drift of the smallest droplets. The general believe is that these larger dr...
Icicles are known for their universal conelike shape and rippled surface, and for both these features theories have been developed. However, experimental results appear to be at odds with the existing theories: for pure water in fact very irregular icicles are observed, and it is only if some salt is present that the cone shape and the surface ripp...
Polytetrafluoroethylene [PTFE (Teflon)] is a uniquely slippery polymer, with a coefficient of friction that is an order of magnitude lower than that of other polymers. Though known as nonsticky, PTFE leaves a layer of material behind on the substrate while sliding. Here, we use contact-sensitive fluorescent probes to image the sliding contact in si...
The remarkable elastic properties of polymers are ultimately due to their molecular structure, but the relation between the macroscopic and molecular properties is often difficult to establish, in particular for (bio)polymers that contain hydrogen bonds, which can easily rearrange upon mechanical deformation. Here we show that two-dimensional infra...
The COVID-19 pandemic caused a paradigm shift in our way of using heating, ventilation, and air-conditioning (HVAC) systems in buildings. In the early stages of the pandemic, it was indeed advised to reduce the reuse and thus the recirculation of indoor air to minimize the risk of contamination through inhalation of virus-laden aerosol particles em...
Hydrodynamic lubrication is studied for both shear thinning and viscoelastic polymer solutions. We find that elasticity, notably strong normal stresses, does not change the friction significantly for the range of parameters tested in this manuscript. Shear-thinning properties, on the other hand, do change the formation of the lubricating layer thic...
Environmentally sensitive molecular rotors are widely used to probe the local molecular environment in e.g. polymer solutions, polymer glasses, and biological systems. These applications make it important to understand its fluorescence properties in the vicinity of a solid surface, since fluorescence microscopy generically employs cover slides, and...
Capillary adhesion due to water adsorption from the air can contribute to friction, especially for smooth interfaces in humid environments. We show that for multiasperity (naturally oxidized) Si-on-Si interfaces, the friction coefficient goes through a maximum as a function of relative humidity. An adhesion model based on the boundary element metho...
Inspired by ideas from NMR, we have developed Infrared Diffusion‐Ordered Spectroscopy (IR‐DOSY), which simultaneously characterizes molecular structure and size. We rely on the fact that the diffusion coefficient of a molecule is determined by its size through the Stokes–Einstein relation, and achieve sensitivity to the diffusion coefficient by cre...
The charging of poorly conducting liquids due to flows is a well-known phenomenon, yet the precise charging mechanism is not fully understood. This is especially relevant for sprays, where the spray plume dynamics and maximum distance travelled of a spray dramatically changes for different levels of charging: charging of the droplets makes them rep...
During the high velocity impact of an object on a solid covered with a thin fluid layer, a lubricated contact exists within the short time in which the liquid is squeezed out from the contact. This is important for e.g. the grip of shoes on wet surfaces. We experimentally study the squeeze flow of such layers and find that the amount of viscous dis...
Inspired by ideas from NMR, we have developed Infrared Diffusion‐Ordered Spectroscopy (IR‐DOSY), which simultaneously characterizes molecular structure and size. We rely on the fact that the diffusion coefficient of a molecule is determined by its size through the Stokes‐Einstein relation, and achieve sensitivity to the diffusion coefficient by cre...
A circular jet breaks up into droplets via the Rayleigh-Plateau instability, retaining a circular cross section throughout. If, however, the nozzle from which the jet issues is elongated, the circular symmetry is broken, and the jet forms a chainlike structure with neighboring links separated by 90∘. The cause of this structure is two-dimensional c...
The remarkable elastic properties of polymers are ultimately due to their molecular structure, but the relation between the macroscopic and molecular properties is often difficult to establish, in particular for (bio)polymers that contain hydrogen bonds, which can easily rearrange upon mechanical deformation. Here we show that two-dimensional infra...
We investigate the effect of the addition of polymers on the flow properties of emulsions. Surfactant-stabilised 80 v% oil-in-water emulsions, exhibiting a yield stress, with either xanthan gum (a stiff, rodlike polymer) or polyethylene oxide (PEO, a flexible, elastic polymer) in the continuous phase (concentrations between 0.005 wt% and 0.5 wt%) a...
When two macroscopic objects touch, the real contact typically consists of multiple surface asperities that are deformed under the pressure that holds the objects together. Application of a shear force makes the objects slide along each other, breaking the initial contacts. To investigate how the microscopic shear force at the asperity level evolve...
Emulsions often act as carriers for water-insoluble solutes that are delivered to a specific target. The molecular transport of solutes in emulsions can be facilitated by surfactants and is often limited by diffusion through the continuous phase. We here investigate this transport on a molecular scale by using a lipophilic molecular rotor as a prox...
Sprays are of great importance for many applications, with drop size being a crucial parameter. Especially in agriculture applications, simple flat fan spray nozzles are often supplemented by a Venturi component to achieve larger drop sizes and hence prevent un-wanted spray drift of the smallest droplets. The general believe is that these larger dr...
We study drop impact for the case where the impacted surface is cooled below the freezing temperature of the liquid droplet. The freezing is found to affect the spreading dynamics of the impacting drops and, thus, the degree of surface coverage. The cooling of the surface leads to the arrest of the three-phase contact line, impeding droplet spreadi...
Cardiac exercise stress testing (CEST) is an important diagnostic tool in daily cardiology practice. However, during intense physical activity microdroplet aerosols, potentially containing SARS-CoV-2 particles, can persist in a room for a long time. This poses a potential infection risk for the medical staff involved in CEST, as well as for the pat...
The convective transport rate of polymers through confined geometries depends on their size, allowing for size-based separation of polymer mixtures (chromatography). Here, we investigate whether mixtures of active polymers can be separated in a similar manner based on their activity. We use thin, living Tubifex tubifex worms as a model system for a...
Inspired by ideas from NMR, we have developed Infrared Diffusion-Ordered Spectroscopy (IR-DOSY), which simultaneously characterizes molecular structure and size. We rely on the fact that the diffusion coefficient of a molecule is determined by its size through the Stokes-Einstein relation, and achieve sensitivity to the diffusion coefficient by cre...
The transition from static to dynamic friction is often described as a fracture instability. However, studies on slow sliding processes aimed at understanding frictional instabilities and earthquakes report slow friction transients that are usually explained by empirical rate-and-state formulations. We perform very slow ( $$\sim$$ ∼ nm/s) macroscop...
Viscosity is a key property of liquids, but it is difficult to measure in short-lived, metastable samples due to the long measuring times required by conventional rheology. Here, we show how this problem can be solved by using fluorescent molecular rotors. The excited-state fluorescence decay rate of these molecules is sensitive to the viscosity of...
Pickering emulsions stabilized by ethyl cellulose nanoparticles have recently received –great attention for their remarkable stability and numerous industrial applications. De- spite this, the exact stabilization mechanism of such Pickering emulsions is still not fully understood. Both the stabilization of the emulsion by particle adsorption at the...
The effect of viscoelasticity on sprays produced from agricultural flat fan nozzles is investigated experimentally using dilute aqueous solutions of polyethylene oxide (PEO). Measurements of the droplet size distribution reveal that polymer addition to water results in the formation of overall bigger droplets with a broader size distribution. The m...
We propose a new ‘active particle’ system in which the particles are in fact polymer-like. We experimentally study the rheology of long, slender, and entangled living worms (Tubifex Tubifex, or ‘sludge worms’). Performing classical rheology experiments on this entangled polymer-like system, we find that the rheology is qualitatively similar to that...