Daniel Berveiller

Daniel Berveiller
  • PhD in plant ecophysiology
  • Engineer at French National Centre for Scientific Research

About

68
Publications
33,106
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
4,544
Citations
Introduction
I'm site manager of the FR-Fon Fontainebleau-Barbeau forest station (www.barbeau.universite-paris-saclay.fr) involved as Class 1 site in the ICOS RI (Integrated Carbon Observation System). H2O/CO2 fluxes by Eddy corelation, soil CO2 respiration, tree growth and micrometeorology are some examples of what is monitored on this experimental site. I am also involved in various other scientific projects, mainly to design whole plant experiment using several sensors and Campbell Sci. dataloggers.
Current institution
French National Centre for Scientific Research
Current position
  • Engineer
Additional affiliations
December 2010 - present
CNRS - University of Paris-Sud 11
Position
  • Engineer
Description
  • Administrative, financial and technical management of forest experimental site BARBEAU FR_Fon (Fluxnet, CaboEurope, ICOS): micrometeorology, CO2/H2O fluxes (Eddy flux, chamber flux), ecosystemic measurements.
October 2002 - November 2010
CNRS - University of Paris-Sud 11
Position
  • Design engineer
Description
  • Technical management of TGA100A: stable isotope measurements of CO2 (air, plant respiration). Biochemical analysis of plant compound (sugars, starch, proteins) and enzymatic activities (RubisCO, PEPC, ...). Experimental design to fit with field.
Education
December 2005 - October 2008
University of Paris-Sud
Field of study
  • Tree ecophysiology
September 2001 - September 2002
University of Lorraine
Field of study
  • Forest Biology

Publications

Publications (68)
Article
Full-text available
The fundamental trade‐off between current and future reproduction has long been considered to result in a tendency for species that can grow large to begin reproduction at a larger size. Due to the prolonged time required to reach maturity, estimates of tree maturation size remain very rare and we lack a global view on the generality and the shape...
Article
Full-text available
Aim: To quantify the intra-community variability of leaf-out (ICVLo) among dominant trees in temperate deciduous forests, assess its links with specific and phylogenetic diversity, identify its environmental drivers and deduce its ecological consequences with regard to radiation received and exposure to late frost. Location: Eastern North America...
Preprint
Full-text available
Far-red Sun-Induced chlorophyll Fluorescence (SIF) is increasingly used as a proxy of vegetation Gross Primary Production (GPP) across different ecosystems and at spatiotemporal resolutions going from proximal to satellite-based remote sensing measurements. However, the use of SIF to probe variations in GPP in forests is challenged by (1) confoundi...
Article
Full-text available
Spring phenology is a key indicator of temperate and boreal ecosystems' response to climate change. To date, most phenological studies have analyzed the mean date of budburst in tree populations while overlooking the large variability of budburst among individual trees. The consequences of neglecting the within-population variability (WPV) of budbu...
Preprint
Full-text available
Aim. To quantify the intra-community variability of leaf-out (ICVLo) among dominant trees in temperate deciduous forests, assess its links with specific and phylogenetic diversity, identify its environmental drivers, and deduce its ecological consequences with regard to radiation received and exposure to late frost. Location. Eastern North Americ...
Article
Full-text available
Carbon dioxide (CO2) uptake by plant photosynthesis, referred to as gross primary production (GPP) at the ecosystem level, is sensitive to environmental factors, including pollutant exposure, pollutant uptake, and changes in the scattering of solar shortwave irradiance (SWin) - the energy source for photosynthesis. The 2020 spring lockdown due to C...
Preprint
Full-text available
Spring phenology is a key indicator of temperate and boreal ecosystems’ response to climate change. To date, most phenological studies have analyzed the mean date of budburst in tree populations while overlooking the large variability of budburst among individual trees. The consequences of neglecting the within-population variability (WPV) of budbu...
Article
Full-text available
The relationships that control seed production in trees are fundamental to understanding the evolution of forest species and their capacity to recover from increasing losses to drought, fire, and harvest. A synthesis of fecundity data from 714 species worldwide allowed us to examine hypotheses that are central to quantifying reproduction, a foundat...
Article
Climate change is imposing drier atmospheric and edaphic conditions on temperate forests. Here, we investigated how deep soil (down to 300 cm) water extraction contributed to the provision of water in the Fontainebleau-Barbeau temperate oak forest over two years, including the 2018 record drought. Deep water provision was key to sustain canopy tran...
Article
Full-text available
Lack of tree fecundity data across climatic gradients precludes the analysis of how seed supply contributes to global variation in forest regeneration and biotic interactions responsible for biodiversity. A global synthesis of raw seedproduction data shows a 250‐fold increase in seed abundance from cold‐dry to warm‐wet climates, driven primarily by...
Preprint
Full-text available
Climate change is imposing drier atmospheric and edaphic conditions on temperate forests. Here, we investigated how deep soil (down to 300 cm) water extraction contributed to the provision of water in the Fontainebleau-Barbeau temperate oak forest over two years, including the 2018 record drought. Deep water provision was key to sustain canopy tran...
Article
Full-text available
Heatwaves exert disproportionately strong and sometimes irreversible impacts on forest ecosystems. These impacts remain poorly understood at the tree and species level and across large spatial scales. Here, we investigate the effects of the record-breaking 2018 European heatwave on tree growth and tree water status using a collection of high-tempor...
Article
Full-text available
Annual time-series of the two satellites C-band SAR (Synthetic Aperture Radar) Sentinel-1A and 1B data over five years were used to characterize the phenological cycle of a temperate deciduous forest. Six phenological metrics of the start (SOS), middle (MOS) and end (EOS) of budburst and leaf expansion stage in spring, and the start (SOF), middle (...
Article
Full-text available
Plant transpiration links physiological responses of vegetation to water supply and demand with hydrological, energy, and carbon budgets at the land–atmosphere interface. However, despite being the main land evaporative flux at the global scale, transpiration and its response to environmental drivers are currently not well constrained by observatio...
Article
Full-text available
Tree phenology is a major driver of forest–atmosphere mass and energy exchanges. Yet, tree phenology has rarely been monitored in a consistent way throughout the life of a flux-tower site. Here, we used seasonal time series of ground-based NDVI (Normalized Difference Vegetation Index), RGB camera GCC (greenness chromatic coordinate), broadband NDVI...
Article
Full-text available
Reliable phenological observations are needed to quantify the impact of climate change on tree phenology. Ground observations remain a prime source of phenological data, but their accuracy and precision have not been systematically quantified. The high subjectivity of ground phenological observations affects their accuracy, and the high within‐popu...
Article
Full-text available
p>The following authors were omitted from the original version of this Data Descriptor: Markus Reichstein and Nicolas Vuichard. Both contributed to the code development and N. Vuichard contributed to the processing of the ERA-Interim data downscaling. Furthermore, the contribution of the co-author Frank Tiedemann was re-evaluated relative to the co...
Preprint
Full-text available
Annual time-series of the two satellites C-band SAR (Synthetic Aperture Radar) Sentinel-1 A and B data over five years were used to characterize the phenological cycle of a temperate deciduous forest. Six phenological markers of the start, middle and end of budburst and leaf expansion stage in spring and the leaf senescence in autumn were extracted...
Article
Full-text available
Plant transpiration links physiological responses of vegetation to water supply and demand with hydrological,energy and carbon budgets at the land-atmosphere interface. However, despite being the main land evaporative flux at the global scale, transpiration and its response to environmental drivers are currently not well constrained by observations...
Article
We apply and compare three widely applicable methods for estimating ecosystem transpiration (T) from eddy covariance (EC) data across 251 FLUXNET sites globally. All three methods are based on the coupled water and carbon relationship, but they differ in assumptions and parameterizations. Intercomparison of the three daily T estimates shows high co...
Preprint
Full-text available
Tree phenology is a major driver of forest-atmosphere mass and energy exchanges. Yet tree phenology has historically not been recorded at flux measurement sites. Here, we used seasonal time-series of ground-based NDVI (Normalized Difference Vegetation Index), RGB camera GCC (Greenness Chromatic Coordinate), broad-band NDVI, LAI (Leaf Area Index), f...
Article
Full-text available
The FLUXNET2015 dataset provides ecosystem-scale data on CO2, water, and energy exchange between the biosphere and the atmosphere, and other meteorological and biological measurements, from 212 sites around the globe (over 1500 site-years, up to and including year 2014). These sites, independently managed and operated, voluntarily contributed their...
Article
Full-text available
The FLUXNET2015 dataset provides ecosystem-scale data on CO2, water, and energy exchange between the biosphere and the atmosphere, and other meteorological and biological measurements, from 212 sites around the globe (over 1500 site-years, up to and including year 2014). These sites, independently managed and operated, voluntarily contributed their...
Article
Full-text available
The impact of atmospheric reactive nitrogen (Nr) deposition on carbon (C) sequestration in soils and biomass of unfertilized, natural, semi-natural and forest ecosystems has been much debated. Many previous results of this dC/dN response were based on changes in carbon stocks from periodical soil and ecosystem inventories, associated with estimates...
Article
Phenological cameras have been used over a decade for identifying plant phenological markers (budburst, leaf senescence) and more generally the greenness dynamics of forest canopies. The analysis is usually carried out over the full camera field of view, with no particular analysis of the variability of phenological markers among trees. Here we sho...
Article
Full-text available
We assembled homogenized long-term time series, up to 19 years, of measurements of net ecosystem exchange of CO2 (NEE) and its partitioning between gross primary production (GPP) and respiration (Reco) for five different ecosystems representing the main plant functional types (PFTs) in France. Part of these data was analyzed to determine the influe...
Preprint
Full-text available
Phenological cameras have been used over a decade for identifying plant phenological markers (budburst, leaf senescence) and more generally the greenness dynamics of forest canopies. The analysis is usually carried out over the full camera field of view, with no particular analysis of the variability of phenological markers among trees. Here we sho...
Article
Leaf phenology is a major driver of ecosystem functioning in temperate forests, and a robust indicator of climate change. Both the inter-annual and inter-population variability of leaf phenology have received much attention in the literature; in contrast, the within-population variability of leaf phenology has been far less studied. Beyond its impa...
Article
Tree ring synthesis is a key process in wood production; however, little is known of the origin and fate of the carbon involved. We used natural 13C abundance to investigate the carbon-use process for the ring development in a temperate deciduous (Quercus petraea (Matt.) Liebl.) and a Mediterranean evergreen (Quercus ilex L.) oak. The sapwood carbo...
Article
Full-text available
Measuring in situ soil fluxes of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) continuously at high frequency requires appropriate technology. We tested the combination of a commercial automated soil CO2 flux chamber system (LI-8100A) with a CH4 and N2O analyzer (Picarro G2308) in a tropical rainforest for 4 months. A chamber closure...
Article
Full-text available
Solar radiation is a key driver of energy and carbon fluxes in natural ecosystems. Radiation measurements are essential for interpreting ecosystem scale greenhouse gases and energy fluxes as well as many other observations performed at ecosystem stations of the Integrated Carbon Observation System (ICOS). We describe and explain the relevance of th...
Article
Full-text available
Research infrastructures play a key role in launching a new generation of integrated long-term, geographically distributed observation programmes designed to monitor climate change, better understand its impacts on global ecosystems, and evaluate possible mitigation and adaptation strategies. The pan-European Integrated Carbon Observation System co...
Article
Full-text available
Leaf mass per area (LMA) and leaf equivalent water thickness (EWT) are key leaf functional traits providing information for many applications including ecosystem functioning modeling and fire risk management. In this paper, we investigate two common conclusions generally made for LMA and EWT estimation based on leaf optical properties in the near-i...
Article
Full-text available
Measuring in situ soil fluxes of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) continuously at high frequency requires appropriate technology. We tested the combination of a commercial automated soil CO2 flux chamber system (LI-8100A) with a CH4 and N2O analyzer (Picarro G2308) in a tropical rainforest for 4 months. A chamber closure...
Article
Although the analysis of flux data has increased our understanding of the interannual variability of carbon inputs into forest ecosystems, we still know little about the determinants of wood growth. Here, we aimed to identify which drivers control the interannual variability of wood growth in a mesic temperate deciduous forest. We analysed a 9-yr...
Article
Full-text available
We investigate the benefits of assimilating in situ and satellite data of the fraction of photosynthetically active radiation (FAPAR) relative to eddy-covariance flux measurements for the optimization of parameters of the ORCHIDEE biosphere model. We focus on model parameters related to carbon fixation, respiration and phenology. The study relies o...
Article
Full-text available
Although forest management is one of the instruments proposed to mitigate climate change, the relationship between forest management and canopy albedo has been ignored so far by climate models. Here we develop an approach that could be implemented in Earth system models. A stand-level forest gap model is combined with a canopy radiation transfer mo...
Article
Full-text available
Despite an emerging body of literature linking canopy albedo to forest management, understanding of the process is still fragmented. We combined a stand-level forest gap model with a canopy radiation transfer model and satellite-derived model parameters to quantify the effects of forest thinning, that is removing trees at a certain time during the...
Article
Full-text available
Forest management is considered to be one of the more easy to implement instruments available to mitigate climate change as it can lead to increased sequestration of atmospheric carbon dioxide. However, the changes in canopy albedo, and hence surface energy balance, may neutralise or offset the climate benefits of carbon sequestration. Although the...
Article
To study the effect of fruit position on the stem on photoassimilate partitioning in two Iranian melon cultivars (Suski-Sabz and Jalali-Zard), a greenhouse experiment was conducted. Three fruit positions (retaining one fruit on 3rd, 7th or 11th node of two lateral branches) and three leaf positions for 13C-labelling (3rd, 8th or 12th leaf from the...
Article
Some forest plants adapt to shade by mixotrophy, i.e., they obtain carbon both from photosynthesis and from their root mycorrhizal fungi. Fully achlorophyllous species using exclusively fungal carbon (the so-called mycoheterotrophic plants) have repeatedly evolved from such mixotrophic ancestors. However, adaptations for this evolutionary transitio...
Conference Paper
Full-text available
We combine ALOS-PALSAR coherence images with airborne LiDAR data, both acquired over the Piton de la Fournaise volcano (Reunion Island, France), to study the main errors affecting repeat-pass InSAR measurements and understand their causes. The high resolution DTM generated using LiDAR data is used to subtract out the topographic contribution from t...
Article
Full-text available
• Context The carbon isotope composition of the CO2 efflux (δ13CE) from ecosystem components is widely used to investigate carbon cycles and budgets at different ecosystem scales. δ13CE, was considered constant but is now known to vary along seasons. The seasonal variations have rarely been compared among different ecosystem components. • Aims We a...
Article
• Phloem is the main pathway for transferring photosynthates belowground. In situ(13) C pulse labelling of trees 8-10 m tall was conducted in the field on 10 beech (Fagus sylvatica) trees, six sessile oak (Quercus petraea) trees and 10 maritime pine (Pinus pinaster) trees throughout the growing season. • Respired (13) CO(2) from trunks was tracked...
Conference Paper
Soil and trunk respiration are the major sources of carbon from forest ecosystems to the atmosphere and they account for a large fraction of total ecosystem respiration. The amount of photosynthate allocated to respiration affects the growth of the tree and the potential for carbon sequestration of forest ecosystems. This study, aiming at understan...
Article
Full-text available
In the context of climate change, the amount of carbon allocated to soil, particularly fresh litter, is predicted to increase with terrestrial ecosystem productivity, and may alter soil carbon storage capacities. In this study we performed a 1-year litter-manipulation experiment to examine how soil CO2 efflux was altered by the amount of fresh litt...
Article
Full-text available
The present study examines the impact of the C source (reserves vs current assimilates) on tree C isotope signals and stem growth, using experimental girdling to stop the supply of C from leaves to stem. Two-year-old sessile oaks (Quercus petraea) were girdled at three different phenological periods during the leafy period: during early wood growth...
Article
Full-text available
• Nitrogen (N) is one of the most important resources for plants, generally enhancing leaf photosynthesis because a large part of it is allocated to Rubisco and thylakoïds. This is well known in leaves where photosynthesis (i.e. gas exchange, Rubisco activity, chlorophyll content) is positively correlated to leaf N content. • In order to test this...
Conference Paper
Full-text available
The uncertainties of ecosystem response to global climate changes illustrate the need to improve knowledge of ecosystem functioning, in particular to explain the carbon (C) stock and fluxes variations and the abiotic and biotic factors driving such variations. Trunk CO2 efflux (RT) is a major component of total CO2 forest ecosystem efflux, but in c...
Conference Paper
Trunk CO2 efflux is a major component of total CO2 forest ecosystem efflux but its determinism is still poorly understood. This CO2 flux could originate from different carbon sources (respiration of newly assimilates or reserves; xylem sap flow dissolved CO2). These potential CO2 sources of the ecosystem vary at a diurnal and seasonal time scale. T...
Thesis
L'assimilation de carbone des plantes est principalement assurée par la photosynthèse foliaire mais d'autres organes tels que les tiges des espèces ligneuses sont capables de photosynthétiser. L'objectif principal de cette thèse a été d’examiner chez les arbres, les processus écophysiologiques et biochimiques, encore très peu étudiés, de la photosy...
Article
This article aims at finding efficient hyperspectral indices for the estimation of forest sun leaf chlorophyll content (CHL, µg cmleaf− 2), sun leaf mass per area (LMA, gdry matter mleaf− 2), canopy leaf area index (LAI, m2leaf msoil− 2) and leaf canopy biomass (Bleaf, gdry matter msoil− 2). These parameters are useful inputs for forest ecosystem s...
Article
Full-text available
Disentangling the autotrophic and heterotrophic components of soil CO2 efflux is critical to understanding the role of soil system in terrestrial carbon (C) cycling. In this study, we combined a stable C-isotope natural abundance approach with the trenched plot method to determine if root exclusion significantly affected the isotopic composition (δ...
Article
Full-text available
In woody species, the photosynthesis of stems, especially young branches, occurs by refixing part of the internal respiratory CO2. The present study aims to improve the physiological characterization of stem photosynthesis by examining enzymatic characteristics. During an entire growing season, three enzymatic activities that are linked to C3 and C...
Article
Full-text available
The stable C isotope composition (delta13C) of CO2 respired by trunks was examined in a mature temperate deciduous oak forest (Quercus petraea). Month-to-month, day-to-day and diurnal, measurements were made to determine the range of variations at different temporal scales. Trunk growth and respiration rates were assessed. Phloem tissue was sampled...
Article
Full-text available
The photosynthetic characteristics of current-year stems of six deciduous tree species, two evergreen tree species and ginkgo (Ginkgo biloba L.) were compared. Gas exchange, chlorophyll concentration, nitrogen concentration and maximum quantum yield of PSII were measured in stems in summer and winter. A light-induced decrease in stem CO2 efflux was...
Article
Here, the kinetic properties and immunolocalization of phosphoenolpyruvate carboxylase (PEPC) and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) in young stems of Fagus sylvatica were investigated. The aim of the study was to test the hypothesis that there is a C4-like photosynthesis system in the stems of this C3 tree species. The activ...
Article
Full-text available
Pedunculate (Quercus robur L.) and sessile (Q. petraea [Matt.] Liebl.) oaks are known to display different ecological requirements, particularly relative to root hypoxia induced by water-logging. Q. robur is more tolerant to hypoxia than Q. petraea. We designed an experiment aiming at identifying morphological and physiological responses to root hy...
Article
Some green orchids obtain carbon (C) from their mycorrhizal fungi and photosynthesis. This mixotrophy may represent an evolutionary step towards mycoheterotrophic plants fully feeding on fungal C. Here, we report on nonphotosynthetic individuals (albinos) of the green Cephalanthera damasonium that likely represent another evolutionary step. Albino...
Article
The (13)C natural abundance of CO(2) respired by plants has been used in the laboratory to examine the discrimination processes that occur during respiration. Currently, field measurements are being expanded to interpret the respiration delta(13)C signature measured at ecosystem and global levels. In this context, forests are particularly important...

Network

Cited By