Danica Kragic

Danica Kragic
KTH Royal Institute of Technology | KTH · School of Computer Science and Communication (CSC)

About

339
Publications
85,143
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
13,483
Citations
Citations since 2017
58 Research Items
8144 Citations
201720182019202020212022202302004006008001,0001,2001,400
201720182019202020212022202302004006008001,0001,2001,400
201720182019202020212022202302004006008001,0001,2001,400
201720182019202020212022202302004006008001,0001,2001,400

Publications

Publications (339)
Preprint
Full-text available
In this work we propose algorithms to explicitly construct a conservative estimate of the configuration spaces of rigid objects in 2D and 3D. Our approach is able to detect compact path components and narrow passages in configuration space which are important for applications in robotic manipulation and path planning. Moreover, as we demonstrate, t...
Article
Cloth manipulation is a challenging task that, despite its importance, has received relatively little attention compared to rigid object manipulation. In this paper, we provide three benchmarks for evaluation and comparison of different approaches towards three basic tasks in cloth manipulation: spreading a tablecloth over a table, folding a towel,...
Preprint
The purpose of this benchmark is to evaluate the planning and control aspects of robotic in-hand manipulation systems. The goal is to assess the system's ability to change the pose of a hand-held object by either using the fingers, environment or a combination of both. Given an object surface mesh from the YCB data-set, we provide examples of initi...
Article
The purpose of this benchmark is to evaluate the planning and control aspects of robotic in-hand manipulation systems. The goal is to assess the system's ability to change the pose of a hand-held object by either using the fingers, environment or a combination of both. Given an object surface mesh from the YCB data-set, we provide examples of initi...
Chapter
Caging restricts the mobility of an object without necessarily immobilizing it completely. The object is caged if it cannot move arbitrarily far from its initial position. Apart from its common applications to grasping and manipulation, caging can also be considered as a problem dual to motion planning: an object is caged when it is isolated within...
Preprint
Full-text available
In this work, we address a planar non-prehensile sorting task. Here, a robot needs to push many densely packed objects belonging to different classes into a configuration where these classes are clearly separated from each other. To achieve this, we propose to employ Monte Carlo tree search equipped with a task-specific heuristic function. We evalu...
Preprint
Full-text available
We propose to leverage a real-world, human activity RGB datasets to teach a robot {\em Task-Oriented Grasping} (TOG). On the one hand, RGB-D datasets that contain hands and objects in interaction often lack annotations due to the manual effort in obtaining them. On the other hand, RGB datasets are often annotated with labels that do not provide eno...
Preprint
Full-text available
To coordinate actions with an interaction partner requires a constant exchange of sensorimotor signals. Humans acquire these skills in infancy and early childhood mostly by imitation learning and active engagement with a skilled partner. They require the ability to predict and adapt to one's partner during an interaction. In this work we want to ex...
Preprint
Full-text available
In this paper, we investigate learning forward dynamics models and multi-step prediction of state variables (long-term prediction) for contact-rich manipulation. The problems are formulated in the context of model-based reinforcement learning (MBRL). We focus on two aspects--discontinuous dynamics and data-efficiency--both of which are important in...
Conference Paper
Full-text available
In socially assistive robotics, an important research area is the development of adaptation techniques and their effect on human-robot interaction. We present a meta-learning based policy gradient method for addressing the problem of adaptation in human-robot interaction and also investigate its role as a mechanism for trust modelling. By building...
Preprint
In socially assistive robotics, an important research area is the development of adaptation techniques and their effect on human-robot interaction. We present a meta-learning based policy gradient method for addressing the problem of adaptation in human-robot interaction and also investigate its role as a mechanism for trust modelling. By building...
Preprint
Data-efficiency is crucial for autonomous robots to adapt to new tasks and environments. In this work we focus on robotics problems with a budget of only 10-20 trials. This is a very challenging setting even for data-efficient approaches like Bayesian optimization (BO), especially when optimizing higher-dimensional controllers. Simulated trajectori...
Preprint
We address the problem of motion planning for a robotic manipulator with the task to place a grasped object in a cluttered environment. In this task, we need to locate a collision-free pose for the object that a) facilitates the stable placement of the object, b) is reachable by the robot manipulator and c) optimizes a user-given placement objectiv...
Article
Full-text available
Hand it to you Our ability to grab, hold, and manipulate objects involves our dexterous hands, our sense of touch, and feedback from our eyes and muscles that allows us to maintain a controlled grip. Billard and Kragic review the progress made in robotics to emulate these functions. Systems have developed from simple, pinching grippers operating in...
Chapter
In collaborative tasks, people rely both on verbal and non-verbal cues simultaneously to communicate with each other. For human-robot interaction to run smoothly and naturally, a robot should be equipped with the ability to robustly disambiguate referring expressions. In this work, we propose a model that can disambiguate multimodal fetching reques...
Article
Full-text available
Planning and executing object manipulation requires integrating multiple sensory and motor channels while acting under uncertainty and complying with task constraints. As the modern environment is tuned for human hands, designing robotic systems with similar manipulative capabilities is crucial. Research on robotic object manipulation is divided in...
Preprint
Full-text available
This work focuses on the problem of in-hand manipulation and regrasping of objects with parallel grippers. We propose Dexterous Manipulation Graph (DMG) as a representation on which we define planning for in-hand manipulation and regrasping. The DMG is a disconnected undirected graph that represents the possible motions of a finger along the object...
Article
Full-text available
Perching helps small unmanned aerial vehicles (UAVs) extend their time of operation by saving battery power. However, most strategies for UAV perching require complex maneuvering and rely on specific structures, such as rough walls for attaching or tree branches for grasping. Many strategies to perching neglect the UAV’s mission such that saving ba...
Preprint
Modelling of contact-rich tasks is challenging and cannot be entirely solved using classical control approaches due to the difficulty of constructing an analytic description of the contact dynamics. Additionally, in a manipulation task like food-cutting, purely learning-based methods such as Reinforcement Learning, require either a vast amount of d...
Preprint
Full-text available
We develop a system for modeling hand-object interactions in 3D from RGB images that show a hand which is holding a novel object from a known category. We design a Convolutional Neural Network (CNN) for Hand-held Object Pose and Shape estimation called HOPS-Net and utilize prior work to estimate the hand pose and configuration. We leverage the insi...
Preprint
In collaborative tasks, people rely both on verbal and non-verbal cues simultaneously to communicate with each other. For human-robot interaction to run smoothly and naturally, a robot should be equipped with the ability to robustly disambiguate referring expressions. In this work, we propose a model that can disambiguate multimodal fetching reques...
Preprint
This paper presents an approach for learning invariant features for object affordance understanding. One of the major problems for a robotic agent acquiring a deeper understanding of affordances is finding sensory-grounded semantics. Being able to understand what in the representation of an object makes the object afford an action opens up for more...
Preprint
Full-text available
This paper addresses non-prehensile rearrangement planning problems where a robot is tasked to rearrange objects among obstacles on a planar surface. We present an efficient planning algorithm that is designed to impose few assumptions on the robot's non-prehensile manipulation abilities and is simple to adapt to different robot embodiments. For th...
Preprint
Full-text available
We develop an approach that benefits from large simulated datasets and takes full advantage of the limited online data that is most relevant. We propose a variant of Bayesian optimization that alternates between using informed and uninformed kernels. With this Bernoulli Alternation Kernel we ensure that discrepancies between simulation and reality...
Preprint
Full-text available
Human activity modeling operates on two levels: high-level action modeling, such as classification, prediction, detection and anticipation, and low-level motion trajectory prediction and synthesis. In this work, we propose a semi-supervised generative latent variable model that addresses both of these levels by modeling continuous observations as w...
Preprint
Full-text available
Successful Human-Robot collaboration requires a predictive model of human behavior. The robot needs to be able to recognize current goals and actions and to predict future activities in a given context. However, the spatio-temporal sequence of human actions is difficult to model since latent factors such as intention, task, knowledge, intuition and...
Preprint
Full-text available
Moving a human body or a large and bulky object can require the strength of whole arm manipulation (WAM). This type of manipulation places the load on the robot's arms and relies on global properties of the interaction to succeed---rather than local contacts such as grasping or non-prehensile pushing. In this paper, we learn to generate motions tha...
Preprint
Full-text available
Reinforcement Learning methods are capable of solving complex problems, but resulting policies might perform poorly in environments that are even slightly different. In robotics especially, training and deployment conditions often vary and data collection is expensive, making retraining undesirable. Simulation training allows for feasible training...
Conference Paper
Full-text available
Rearranging objects on a tabletop surface by means of nonprehensile manipulation is a task which requires skillful interaction with the physical world. Usually, this is achieved by precisely modeling physical properties of the objects, robot, and the environment for explicit planning. In contrast, as explicitly modeling the physical environment is...
Article
Rearranging objects on a tabletop surface by means of nonprehensile manipulation is a task which requires skillful interaction with the physical world. Usually, this is achieved by precisely modeling physical properties of the objects, robot, and the environment for explicit planning. In contrast, as explicitly modeling the physical environment is...
Article
Full-text available
We propose the Dexterous Manipulation Graph as a tool to address in-hand manipulation and reposition an object inside a robot's end-effector. This graph is used to plan a sequence of manipulation primitives so to bring the object to the desired end pose. This sequence of primitives is translated into motions of the robot to move the object held by...
Article
Full-text available
In this paper, we compute a conservative approximation of the path-connected components of the free space of a rigid object in a 2D workspace in order to solve two closely related problems: to determine whether there exists a collision-free path between two given configurations, and to verify whether an object can escape arbitrarily far from its in...
Article
Full-text available
Recent approaches in robot perception follow the insight that perception is facilitated by interaction with the environment. These approaches are subsumed under the term Interactive Perception (IP). This view of perception provides the following benefits. First, interaction with the environment creates a rich sensory signal that would otherwise not...
Article
Full-text available
With the advances in robotic technology, research in human-robot collaboration (HRC) has gained in importance. For robots to interact with humans autonomously they need active decision making that takes human partners into account. However, state-of-the-art research in HRC does often assume a leader-follower division, in which one agent leads the i...
Article
We present an adaptive grasping method that finds stable grasps on novel objects. The main contributions of this paper is in the computation of the probability of success of grasps in the vicinity of an already applied grasp. Our method performs grasp adaptions by simulating tactile data for grasps in the vicinity of the current grasp. The simulate...
Conference Paper
The current trend in computer vision is development of data-driven approaches where the use of large amounts of data tries to compensate for the complexity of the world captured by cameras. Are these approaches also viable solutions in robotics? Apart from 'seeing', a robot is capable of acting, thus purposively change what and how it sees the worl...
Conference Paper
Full-text available
Skilled robot task learning is best implemented by predictive action policies due to the inherent latency of sensorimotor processes. However, training such predictive policies is challenging as it involves finding a trajectory of motor activations for the full duration of the action. We propose a data-efficient deep predictive policy training (DPPT...
Article
Full-text available
Skilled robot task learning is best implemented by predictive action policies due to the inherent latency of sensorimotor processes. However, training such predictive policies is challenging as it involves finding a trajectory of motor activations for the full duration of the action. We propose a data-efficient deep predictive policy training (DPPT...
Article
Full-text available
In this work we propose an approach to learn a robust policy for solving the pivoting task. Recently, several model-free continuous control algorithms were shown to learn successful policies without prior knowledge of the dynamics of the task. However, obtaining successful policies required thousands to millions of training episodes, limiting the a...
Article
Full-text available
Fluent and safe interactions of humans and robots require both partners to anticipate the others' actions. A common approach to human intention inference is to model specific trajectories towards known goals with supervised classifiers. However, these approaches do not take possible future movements into account nor do they make use of kinematic cu...
Article
Full-text available
Generative models of 3D human motion are often restricted to a small number of activities and can therefore not generalize well to novel movements or applications. In this work we propose a deep learning framework for human motion capture data that learns a generic representation from a large corpus of motion capture data and generalizes well to ne...
Article
We consider the problem of finding grasp contacts that are optimal under a given grasp quality function on arbitrary objects. Our approach formulates a framework for contact-level grasping as a path finding problem in the space of super-contact grasps. The initial super-contact grasp contains all grasps and in each step along a path grasps are remo...
Chapter
Many tasks in robotics and computer vision are concerned with inferring a continuous or discrete state variable from observations and measurements from the environment. Due to the high-dimensional nature of the input data the inference is often cast as a two stage process: first a low-dimensional feature representation is extracted on which secondl...
Conference Paper
Exploring and modeling heterogeneous elastic surfaces requires multiple interactions with the environment and a complex selection of physical material parameters. The most common approaches model deformable properties from sets of offline observations using computationally expensive force-based simulators. In this work we present an online probabil...
Article
Full-text available
We present a novel approach and database which combines the inexpensive generation of 3D object models via monocular or RGB-D camera images with 3D printing and a state of the art object tracking algorithm. Unlike recent efforts towards the creation of 3D object databases for robotics, our approach does not require expensive and controlled 3D scann...
Conference Paper
In this work we study the problem of exploring surfaces and building compact 3D representations of the environment surrounding a robot through active perception. We propose an online probabilistic framework that merges visual and tactile measurements using Gaussian Random Field and Gaussian Process Implicit Surfaces. The system investigates incompl...
Article
Caging provides an alternative to point-contact-based rigid grasping, relying on reasoning about the global free configuration space of an object under consideration. While substantial progress has been made toward the analysis, verification, and synthesis of cages of polygonal objects in the plane, the use of caging as a tool for manipulating gene...
Chapter
We propose a new representation of 3D scene structure, named theta-disparity. The proposed representation is a 2D angular depth histogram that is calculated using a disparity map. It models the structure of the prominent objects in the scene and reveals their radial distribution relative to a point of interest. The proposed representation is analyz...
Article
We present a unified framework for grasp planning and in-hand grasp adaptation using visual, tactile, and proprioceptive feedback. The main objective of the proposed framework is to enable fingertip grasping by addressing problems of changed weight of the object, slippage, and external disturbances. For this purpose we introduce the Hierarchical Fi...
Article
Full-text available
Modeling of physical human-robot collaborations is generally a challenging problem due to the unpredictive nature of human behavior. To address this issue, we present a data-efficient reinforcement learning framework which enables a robot to learn how to collaborate with a human partner. The robot learns the task from its own sensorimotor experienc...
Article
Full-text available
In this paper, we provide an extensive evaluation of the performance of local descriptors for tracking applications. Many different descriptors have been proposed in the literature for a wide range of application in computer vision such as object recognition and 3D reconstruction. More recently, due to fast key-point detectors, local image features...