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1. INTRODUCTION

In our time, the research required to comprehend the more

subtle aspects of the laws of nature and to use them for the

good of mankind is very costly. The society will be willing

to allocate the necessary resources for research only if the

gap between the forefront of science and the level of scientific

knowledge of the average individual narrows down. The purpose

of Boole Lecture is to make scientific knowledge accessible

to larger groups of individuals. In the 2007 Boole Lecture,

we discussed the necessity to explore alternative paradigms

for computing and communication and presented some striking

features of quantum information processing and provided

some insights into quantum parallelism as well as quantum

communication and teleportation.

The Annual Boole Lecture was established and is sponsored by the Boole Center for Research in Infor-

matics, the Cork Constraint Computation Center, the Department of Computer Science and the School of

Mathematics, Applied Mathematics and Statistics, at University College Cork. The series is named in

honor of George Boole (picture below), the first professor of Mathematics at UCC, whose seminal

work on logic in the mid-1800s is central to modern digital computing. To mark this great contribution,

leaders in the field of computing and mathematics are invited to talk to the general public on directions in

science, on past achievements and on visions for the future.
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Quantum mechanics and information theory were developed by

Heisenberg [1] in the mid-1920s and, respectively, by Shannon in

the late 1940s [2]. Quantum mechanics had a profound influence

on our understanding of nature and on our ability to exploit this

understanding for the good of mankind. Information theory

provided the foundation for the unprecedented development of

communication and computing systems we have witnessed in

the second half of the 20th century. The integration of quantum

mechanics and information theory promises to provide an even

deeper understanding of fundamental properties of nature and,

at the same time, support new and exciting applications.

During the last few decades of the 20th century, the

world witnessed the development in rapid succession of

microprocessors, high-speed optical communication, high

density storage technologies, followed by the widespread

use of sensors. We are able to collect enormous volumes of

information, process that information at high speed, transmit

the information through high-bandwidth channels, store it on

digital media and share it using the world wide web. Thus,

the full cycle at the heart of information revolution was

closed (Fig. 1), and this revolution became a reality that

profoundly affects our daily life.

Now, at the beginning of the 21st first century, information

processing is faced with new challenges: heat dissipation,

leakage and other physical phenomena limit our ability to

build increasingly smaller and faster solid-state devices; we

have a hard time to ensure security of our communication;

we are overwhelmed by the volume of information we are bom-

barded with, and it is increasingly more difficult to extract

useful information from the ocean of information garbage.

For many years we have enjoyed Moore’s law which

states that the number of transistors on a chip doubles

every 18 months, but an exponential growth cannot be sus-

tained indefinitely; sooner or later one will hit a wall. The

heat generated by densely packed solid-state devices in a

sphere of radius R is proportional to the volume, thus to

R3; the heat can be removed trough the surface of the

sphere, proportional to R2. In 1992, Ralph Merkle from

Xerox PARC calculated that a computer operating at room

temperature with a clock rate of 1 GHz and 1018 gates

packed in a volume of about 1 cm3 would dissipate 3 MW

of power. Leakage because of electromagnetic radiation, as

well as power dissipation, limits also the speed of micropro-

cessors. While we may still be able to increase the number of

transistors on a chip according to Moore’s law for a few more

years, we are going to see microprocessors with multiple

cores running at current clock rates rather than microproces-

sors with a higher clock rate.

The inquiring human mind is now searching for revolution-

ary means to overcome the limitations of computing and com-

munication systems based upon the laws of classical physics;

DNA computing and quantum information processing are the

most promising avenues explored nowadays.

Quantum information, information stored as the state of

atomic or subatomic particles provides a glimpse of hope to

overcome some of the limitations we mentioned. Yet, the

strange world of atomic or sub-atomic particles is governed

by quantum mechanics, a highly abstract and often counterin-

tuitive mathematical model of the physical world.

The marriage of quantum physics with computing and com-

munication cannot be a marriage of convenience, but one of

necessity; we have to overcome immensely difficult technologi-

cal problems and provide answers to fundamental questions

regarding our understanding of nature. Quantum information

has special properties: the state of a quantum system cannot be

measured or copied without disturbing it; a quantum state can

be entangled, two entangled systems have a definite global

state, though neither has a state of its own; we cannot reliably dis-

tinguish non-orthogonal states of a quantum system. Decoher-

ence, the randomization of the internal state of a quantum

computer because of interactions with the environment, is a

major problem in quantum information processing; fault-tolerant

quantum computing requires many more years of research.

Bennett and Shor summarized the main differences between

classical and quantum information [3]: “classical information

FIGURE 1. Our ability to collect, process, store, communicate and

disseminate information has increased considerably during the last

two decades of the 20th century. The 1980s was the decade of micro-

processors; advances in solid-state technologies allowed Intel to

increase the number of transistors on a chip from about 29 � 103

(8086) to 3.1 � 106 (Pentium) and to decrease the cost of the a micro-

processor considerably. In 1990s, we have seen major breakthroughs

in optical storage, high density solid-state storage technologies, fiber

optics communication and the widespread acceptance of the word

wide web. The first decade of the 21 century is the decade of

sensors and rapid information dissemination.
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can be copied freely, but can only be transmitted forward in

time to a receiver in the sender’s forward light cone. Entangle-

ment, by contrast cannot be copied, but can connect any two

points in space–time. Conventional data-processing oper-

ations destroy entanglement, but quantum operations can

create it, preserve it and use it for various purposes, notably

speeding up certain computations and assisting in the trans-

mission of classical data or intact quantum states (teleporta-

tion) from a sender to a receiver.”

The payoff of mastering quantum information could equally

be astounding: in quantum systems an exponential increase in

parallelism requires only a linear increase in the amount of

space needed, thus, in principle, a quantum computer will be

able to solve problems that cannot be solved with today’s com-

puters [4, 5]. Reversible quantum computers avoid logically

irreversible operations and can, in principle, dissipate arbitra-

rily little energy for each logic operation. Eavesdropping on a

quantum communication channel can be detected with very

high probability. Quantum information theory allows us to

design algorithms for quantum teleportation and for quantum

key distribution.

2. INFORMATION

Once asked ‘what is time,’ Richard Feynman answered: ‘time

is what happens when nothing else happens.’ Unfortunately,

history did not record Feynman’s answer to the question

‘what is information’ and thus we do not have a crisp, witty

and insightful answer to a question central to the 21st century

science.

Indeed, the questions ‘what is information’ and ‘what is its

relationship with the physical world’ become more important

as we try to better understand physical phenomena at quantum

scale and the behavior of biological systems. von Weizs̈acker’s

answer, ‘information is what is understood,’ implies that infor-

mation has a sender and a receiver who have a common under-

standing of the representation and the means to convey

information using some properties of the physical systems

[6]. He adds, ‘Information has no absolute meaning; it exists

relatively between two semantic levels’ [7].

Like matter and energy, information is a primitive concept,

thus it is rather difficult to rigorously define it. While matter

and energy preoccupied the minds of philosophers starting

with Leucippus and Democritus several hundred years

before our era and later preoccupied the minds of many gener-

ations of natural scientists, information per se became a

subject of serious investigation only after significant techno-

logical developments in communication in the late 1940s.

Earlier, in the 1930s, Leo Szilard was concerned with the

relation between information and energy and in 1960s Rolf

Landauer formulated his principle1, which relates information

with thermodynamic entropy.

The concept of ‘information’ was brought to the forefront of

science and engineering by Shannon who created Information

Theory in the context of a statistical theory of communication.

Shannon introduced the concept of entropy as a measure of

information and developed the theoretical foundation of coding

theory. Shannon’s statistical theory of communication pre-

sented in 1948 was essential for the development of modern

communication systems [8].

Informally, we all know that information abstracts proper-

ties of and allows us to distinguish objects/entities/phenom-

ena/thoughts. Information is a common denominator for the

very diverse contents of our material and spiritual world.

There is a common expression of information as strings of

bits, regardless of the objects/entities/processes/thoughts it

describes. Moreover, these bits are independent of their phys-

ical embodiment. Information can be expressed using pebbles

on the beach, mechanical relays, electronic circuits and even

atomic and subatomic particles.

Information is transformed using logic operations. Gates

implement logic operations and allow for automatic proces-

sing of information. The usefulness of information increases

if the physical embodiments of bits and gates become smaller

and we need less energy to process, store and transmit infor-

mation. This justifies our interest in quantum information.

Evolution requires the ability to make decisions and a basic

property of living matter is the capacity to distinguish objects

and entities in order to make such decisions; a virus is able to

distinguish the cells it can attach to an animal can distinguish a

mate from a predator. Intelligent behavior requires the ability

to distinguish concepts, ideas; scientists can distinguish the

results of an experiment as well as the hypothesis each

result confirms or rejects.

The concept of distinguishability provides a strong bond

between quantum mechanics and information theory as each

is concerned with the ability to distinguish information:

quantum information embodied by quantum states in the

case of the former, and classical information as generated by

different physical processes of the later.

Quantum mechanics and information theory are both

founded in non-determinism. Indeed, information theory was

developed as a statistical theory of communication and non-

determinism is a fundamental tenet of quantum mechanics.

But there are fundamental differences between the role

played by nondeterminism in information theory and in

quantum mechanics.

In his book ‘An Investigation of the Laws of Thought’,

Boole expresses the view that classical probabilities reflect

lack of knowledge: “probability is expectation founded upon

partial knowledge. A perfect acquaintance with all the circum-

stances affecting the occurrence of an event would change

expectation into certainty, and leave neither room nor demand

for a theory of probabilities” [9].

1Landauer’s Principle: when a computer erases a bit of information the

thermodynamic entropy of the environment increases by at least kB In 2,

kB—Boltzmann’s constant.
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In stark contrast with information theory and classical

physics where probabilities reflect lack of knowledge, the non-

determinism of quantum mechanics reflects our inability to

precisely know the state of atomic or subatomic particles.

The nondeterminism of quantum mechanics required the

development of quantum information theory. If a deterministic

model would be consistent with the experimental evidence

regarding the behavior of atomic and subatomic particles, as

quantum mechanics is, then classical information theory

would be sufficient to study the information encoded as the

state of quantum systems.

Mathematical models of the physical world describe the

state and the dynamics of physical systems and any such

description must consider the concept of information either

explicitly or implicitly. Quantum mechanics is a mathematical

model of the physical world developed in the mid-1920s to

explain the behavior of atomic and subatomic particles, at a

time when one could only dream about the practical appli-

cations of quantum effects for storing, processing and trans-

mission of information. It took almost six decades, until in

1982, Feynman envisioned the idea of a quantum computer,

a physical device which takes the advantage of the ‘weird’

behavior of quantum systems to process information.

Feynman conjectured that only a quantum computer would

be able to carry out an ‘exact simulation’ of a physical

system [10].

There is little wonder that information is not a central

concept in quantum mechanics, or that Information Theory,

as developed by Shannon, is not concerned with the behavior

of atomic and subatomic particles capable of carrying infor-

mation. The milestones that mark the inception of the infor-

mation age happened in the second half of the 20th century:

the transistor was invented by William Shockley, John

Bardeen and Walter Brattain, just before Christmas in 1947;

the first commercial computer, UNIVAC I became operational

in 1951; the DNA double helix strucrure was discovered by Sir

Francis Harry Compton Crick and James Dewey Watson in

1953; the first microprocessor, the 4004, was produced by

Intel in 1971.

There is no doubt that information plays an increasingly

important role in our society. As we are exposed to an outpour-

ing of information it becomes increasingly more difficult to

discriminate useful information from noise, to extract infor-

mation from apparently random data, to control complex

systems with information distributed among a large set of

actors, e.g. computer networks.

Information also plays a critical role in our understanding of

nature. This revelation was brought to us by quantum mech-

anics, by our desire to use quantum information, and by our

quest to understand biological systems. Fundamental ques-

tions on how accurately we can model the physical reality

and what are the limitations in our knowledge about the sur-

rounding universe do not have a clear and unambiguous

answer.

Nowadays, some believe that the focus of Information

Theory should migrate from the communication channel to

the recipient of information, from communication to the con-

sequences of receiving information. Indeed, in many instances

the timeliness of information is important; the context of the

information and the goals of the recipient of information

(whether a human or a machine) affect the usefulness of

information.

In spite of the significant progress made during the past

half century, there are profound questions that still remain to

be answered unequivocally by a unified information theory.

Some believe that information has three aspects: (i) a syntactic

aspect—the relationship between the symbols of the alphabet

used to construct a message, (ii) a semantic aspect—the mean-

ing of the message and (iii) a pragmatic aspect—the actions

taken by the parties involved in the exchange. Shannon’s

theory does not cover the semantic aspect of information

and cannot describe quantum and biological information

[11] that, most certainly, will play a critical role in the third

millennium.

3. QUBITS

A quantum bit or qubit is an elementary quantum object used

to store information. For now we view a qubit as a mathemati-

cal abstraction and we hint to possible physical implementa-

tions of this abstract object.

Aqubit’s state jcl is a vector in a two-dimensional complex

vector space. In this space, a vector has two components and

the projections of the vector on a basis of the vector space

are complex numbers. We use Dirac notations to represent a

vector jcl as

jcl ¼ a0j0lþ a1j1l ð1Þ

with a0 and a1 complex numbers and with j0l and j1l the

vectors forming an orthonormal basis for this two-dimensional

vector space [12].

A classical bit can be in one of two states, 0 or 1. Thus, we

can represent the state of a bit as b ¼ a10 þ a21, which has

exactly two forma: either a1 ¼ 1 and a2 ¼ 0 and the value of

the bit is b ¼ 0, or a1 ¼ 0 and a2 ¼ 1 and the value of the

bit is b ¼ 1.

In contrast, the state of a qubit can be represented by jcl ¼
a1j0l þ a2j1l, where j0l and j1l is an orthonormal pair of basis

vectors, called computational basis states. The only restriction

on the coefficients are that (i) a0 and a1 are complex numbers

and (ii) ja1j
2
þ ja2j

2 ¼ 1. Such a state is called a superposi-

tion of the basis vectors.

When we observe or measure a classical bit we determine

its state with a probability of 1; the bit is either in state 0

or in state 1 and the result of a measurement is strictly
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deterministic. On the other hand, when we observe or measure

the state of a qubit we get the result:

j0l with probability ja0j
2;

j1l with probability ja1j
2:

ð2Þ

For these statements to be true we need the vector length, or

the norm of the vector to be equal to one, otherwise the prob-

abilities do not sum to unity. This means that

ja0j
2 þ ja1j

2 ¼ a�0a0 þ a�1a1 ¼ 1 ð3Þ

with a*
i , i ¼ 0, 1 the complex conjugate of ai.

We say that a qubit is in a superposition state until we

measure it. For example, a qubit can be in state

1

2
j0lþ

ffiffiffi
3
p

2
j1l ð4Þ

and a measurement of the qubit yields the result j0l with

probability 1/4 and j1l with probability 3/4.

The superposition and the effect of the measurement of a

quantum state (the state of the qubit) really mean that there is

hidden information that is preserved in a closed quantum

system until it is forced to reveal itself to an external observer.

We say that the system is closed until it interacts with the

outside world, e.g. until we perform an observation of the system.

Two physical systems leading to the simplest possible

embodiments of a qubit are:

(1) the electron with two independent spin values,

+1/2, and

(2) the photon, with two independent polarizations, say

horizontal and vertical (in case of linear polarization),

or right hand and left hand (in case of circular

polarization).

The spin is an intrinsic angular momentum2 of a quantum

particle, related to an intrinsic rotation about an arbitrary

direction.

There are two classes of quantum particles, those with spin

value a multiple of one-half, called fermions, and those with

spin value a multiple of one, called bosons. The spin

quantum number of fermions can be s ¼ þ1/2, s ¼ 21/2, or

an odd multiple of s ¼+1/2. The spin quantum number of

bosons can be s¼ þ1, s ¼ 21, s ¼ 0 or a multiple of +1.

The spin of a quantum particle can be observed as an inter-

action of the intrinsic angular momentum of the particle

with an external magnetic field B.

One embodiment of a qubit is the spin state of a particle

with spin one-half, such as the electron3. ‘Spin’ does not

correspond to any property in classical mechanics. Classical

mechanics operates with the concept of an ‘angular momen-

tum’ arising from a rotation around a well-defined axis of a

body. A quantum particle such as the electron is not a

‘body’ in the classical sense and does not have a defined

axis of rotation. The electron is characterized by a charge,

which has a non-stationary spatial distribution. The variation

in time of this charge distribution can be associated with an

intrinsic rotation of the electron about directions randomly

oriented in space.

The observable associated with the electron intrinsic

rotation is the intrinsic angular momentum, also called the

spin angular momentum of the electron. The ‘spin’ is the

quantum number characterizing the intrinsic angular momen-

tum of the electron. The electron spin is found to have either

the value þ1/2 or 21/2 along the measurement axis, regard-

less of what that axis is (see Fig. 2a).

The qubit states j0l and j1l correspond to the spin up j"l and

spin down j#l states along a chosen axis such as the z-axis. It is

convenient to represent the spin states as orthogonal unit

vectors

j0l ¼ j"l ¼ 1

0

� �
j1l ¼ j#l ¼ 0

1

� �
: ð5Þ

A photon is another important two-state quantum system used

to embody a qubit. A photon can have two independent polar-

izations and systems using the polarization of a photon to

encode binary information have been used in real-life

experiments.

Photons differ from the spin one-half electrons in two ways:

(i) they are massless and (ii) they have spin one. A photon is

characterized by its vector momentum (the vector momentum

determines the frequency) and its polarization. In the classical

theory, light is described as having an electric field that oscil-

lates. The electric field can oscillate vertically, in a plane per-

pendicular to the direction of propagation, the z-axis, and then

we say that the light is x-polarized, as in Fig. 3a. The electric

field can oscillate horizontally in a plane perpendicular to the

direction of propagation, and then we say the light is

y-polarized as shown in Fig. 3b.

If the electric field has an arbitrary orientation in the

xy-plane, then it will have x and y components. If these com-

ponents are out of phase by 908, the electric field rotates and

the light is elliptically polarized. When the x and y com-

ponents are equal and out of phase by 908, the light is circu-

larly polarized. Circularly polarized light can be right-hand

polarized or left-hand polarized, depending on which way it

propagates along the z-direction.

If we look at the individual photons participating in the

‘light’, we cannot talk about an electric field associated with
2The intrinsic angular momentum of a quantum particle should be distin-

guished from its orbital momentum. 3The protons and the neutrons are other particles with spin 1/2.
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a single photon, but a single photon must have a property as

the analog of the classical phenomenon of polarization.

From the point of view of polarization, a photon can be

described as a two-state system; a photon can be in state jhl

or in state jvl. All photons in a classically y-polarized beam

of light are said to be in polarization state jhl and, similarly,

all photons in a classically x-polarized beam of light are said

to be in polarization state jvl. The states jhl and jvl can be

used as basis states to describe the polarization of a photon

(in a linearly polarized beam of light) with given momentum

oriented along the z-direction.

Actually, light contains photons in these two states of polar-

ization. If we use a polarization filter (or polarization analyzer)

and set its axis to let y-polarized light pass, then all photons in

the state jvl will be absorbed in the filter and only the photons

in state jhl will pass through. If the axis of the polarization

filter is set to let x-polarized light pass, then all photons in

state jhl will be absorbed and only photons in state jvl will

pass through.

The question is how to use the hidden information captured

by the state of a qubit. Now we discuss why quantum infor-

mation can be exploited to compute faster and to communicate

more securely.

4. QUANTUM PARALLELISM AND QUANTUM

ALGORITHMS

In 1985, Deutsch recognized that a quantum computer has

capabilities well beyond a classical computer and suggested

that such capabilities can be exploited by cleverly crafted

algorithms. Deutsch realized that a quantum computer

can evaluate a function f(x) for many values of x simul-

taneously and called this strikingly new feature quantum

parallelism [13].

Assume that the input vector jxl is in a superposition state

and can be expressed as a linear combination of 2m vectors

forming an orthonormal basis in Hm. The gate array performs

a linear transformation. Henceforth, the transformation is

applied to all basis vectors used to express the input super-

position simultaneously, and it generates a superposition of

results. In other words, the values of the function f(x) for the

2m possible values of its argument x are computed simul-

taneously. This effect is called quantum parallelism and

shows that quantum computers can provide an exponentially

increasing computational space in a linearly increasing

physical space.

Quantum parallelism allows us to construct the entire truth

table of a quantum gate array having 2n entries in one at once.

In a classical system, we can compute the truth table in one

time step with 2n gate arrays running in parallel, or we need

2n time steps with a single-gate array.

Quantum parallelism is best illustrated by the solution to the

so-called ‘Deutsch’s problem’. Consider a black box charac-

terized by a transfer function that maps a single input bit

x into an output, f(x). The transformation performed by the

black box, f(x), is a general function and might not be inverti-

ble. We assume that it takes the same amount of time, T, to

FIGURE 3. Linear photon polarization. (a) Vertical polarization, the

polarization vector, v along the x-axis. (b) Horizontal polarization, the

polarization vector, h along the y-axis.

FIGURE 2. The spin of the electron. (a) Electrons and other par-

ticles (fermions) have intrinsic angular momentum characterized by

the spin quantum number 1/2. (b) There are two rotation operators;

the first keeps the spin unchanged, and the second flips the spin to

an orthogonal state.
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carry out each of the four possible mappings performed by the

transfer function f(x) of the black box:

f ð0Þ ¼ 0 f ð0Þ ¼ 1 f ð1Þ ¼ 0 f ð1Þ ¼ 1: ð6Þ

The problem posed is to distinguish if f(0) ¼ f(1) or

f(0) = f(1).

Using a classical computer one alternative is to compute

sequentially f (0) and f (1) and then compare the results (see

Fig. 4a) with a total time 2T. A classical parallel solution is

illustrated in Fig. 4b, where we feed 0 as input to one of the

replicas of the black box and 1 to the other and then com-

pare the partial results. In this case, we obtain the answer

after time T.

Consider now a quantum computer with a transfer function

Uf that takes as input two qubits jxl (control) and jyl (target)

and two outputs, jxl and jyl � f(x)l. We have the choice of

selecting the states of the two qubits jxl and jyl. First, let us

choose for the second qubit the state jyl ¼ 1/
ffiffiffi
2
p

(j0l 2 j1l).
We know that j0l � f(x)l ¼ jf(x)l with � the XOR oper-

ation. Thus:

jyl� jf ðxÞl ¼
1ffiffiffi
2
p ðj0l� j1lÞ � jf ðxÞl ð7Þ

or

jyl� jf ðxÞl ¼
1ffiffiffi
2
p ðjf ðxÞl� j1l� f ðxÞlÞ: ð8Þ

But j1l � f(x)l is equal to 0 when f(x) ¼ 1 and it is equal to 1

when f(x) ¼ 0 thus:

j1l� jf ðxÞl ¼ ð�1Þ f ðxÞ
1ffiffiffi
2
p ðj0l� j1lÞ: ð9Þ

The quantum black box performs the following transformation

of the two qubits:

jxl�
1ffiffiffi
2
p ðj0l� j1lÞ

� �
�!
Uf

jxl� ð�1Þ f ðxÞ
1ffiffiffi
2
p ðj0l� j1lÞ

� �
:

ð10Þ

In these expressions, jxl � jyl denotes the tensor product of

the two vectors and Uf is the transfer function of the

quantum circuit. Let us now assume that the first qubit is in

state jxl ¼ 1/
ffiffiffi
2
p

(j0l þ j1l). The transformation performed by

the black box is:

1ffiffiffi
2
p ðj0lþ j1lÞ �

1ffiffiffi
2
p ðj0l� j1lÞ

� �
�!
Uf

1ffiffiffi
2
p ðj0lþ j1lÞ � ð�1Þ f ðxÞ

1ffiffiffi
2
p ðj0l� j1lÞ

� �
:

ð11Þ

The procedure described above can be generalized for a func-

tion f(x) where x is an n-tuple and can take any of the 2n values.

Aquantum black box allows us to compute at once the entire

table giving all possible 2N values of the function f(x). The

transfer function would then be:

½jxl� j0l� �!
Uf

½jxl� jf ðxÞl�: ð12Þ

We select as control input a qubit in the state:

jxl ¼
1ffiffiffi
2
p ðj0lþ j1lÞ
� ��n

¼
1ffiffiffi
2
p

X2n�1

x¼0

jxl: ð13Þ

We compute f(x) only once and generate a state that encodes

global properties of f(x):

1ffiffiffi
2
p

X2n�1

x¼0

jxl� jf ðxÞl: ð14Þ

The truly amazing result is that we compute the entire

table of 2n values at once regardless of the value of n.

This gives a totally different meaning to the concept of

massive parallelism. But, as always, there is a catch;

unfortunately, as soon as we perform one measurement of

state we can only recover one entry in the table. This

FIGURE 4. Classical and quantum parallelism. (a) Sequential sol-

ution to Deutsch’s problem using a classical computer. (b) A parallel

solution to Deutsch’s problem using a classical computer. (c) The

quantum black box with a transfer function Uf. It evaluates f(0) and

f(1) simultaneously.
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parallelism is not very useful as such, we must discover

clever ways of using it.

How similar are, at least conceptually, quantum and classi-

cal computers and, respectively, quantum and classical

algorithms? In a quantum computer, the logic circuits and

the time steps are essentially classical. Nevertheless, the

qubits, the bits the quantum circuits operate on, can be in a

superposition state; that’s why we can simultaneously carry

out multiple computations on the same computer, and that is

ultimately the source of the immense power of quantum

computers.

Quantum, as well as classical algorithms, start from an

initial state and then cause a set of state transformations of

the quantum, respectively, of the classical physical device,

which eventually lead to the desired result. Indeed, the first

step for any quantum computation is to initialize the system

to a state that we can easily prepare; then we carry out a

sequence of unitary transformations that cause the system to

evolve toward a state which provides the answer to the com-

putational problem.

A quantum operation is a rotation of the state jcl in an

N-dimensional Hilbert space. Thus, the ultimate challenge is

to build up powerful N-dimensional rotations as sequences

of one- and two-dimensional rotations.

For any quantum algorithm there are multiple paths leading

from the initial to the final state and there is a degree of inter-

ference among these paths. The amplitude of the final state,

thus the probability of reaching the desired final state depends

upon the interference among these paths. This justifies the

common belief that quantum algorithms are very sensitive to

perturbations and one has to be extremely careful when choos-

ing the transformations the quantum system is subjected to.

A computational problem is considered tractable if an algori-

thm to solve it in a number of steps and requiring storage space

polynomial in the size of the input exists. There are classically

intractable problems, such as the Travelling Salesman

Problem, which are proven to be in the complexity class non-

deterministic polynomial (NP).

In 1994, Shor found a polynomial time algorithm for the

factorization of n-bit numbers on quantum computers [14].

Shor’s algorithm reduces the factoring problem to the pro-

blem of finding the period of a function, but uses quantum par-

allelism to find a superposition of all values of the function in

one step. Then the algorithm calculates the Quantum Fourier

Transform of the function, which sets the amplitudes into

multiples of the fundamental frequency, the reciprocal of the

period. To factor an integer, the algorithm measures the

period of the function. Shor’s discovery generated a wave of

enthusiasm for quantum computing, for two major reasons:

the intrinsic intellectual beauty of the algorithm and the fact

that efficient integer factorization is a very important practical

problem. The security of widely used cryptographic protocols

is based upon the conjectured difficulty of the factorization of

large integers.

In 1996, Grover described a quantum algorithm for search-

ing an unsorted database containing N items in a time of orderffiffiffiffi
N
p

while on a classical computer the search requires a time of

order N [15]. The speed-up of Grover’s algorithm is achieved

by exploiting both quantum parallelism and the fact that,

according to quantum theory, a probability is the square of

an amplitude. Bennett et al. [16] and Zalka [17] showed that

Grover’s algorithm is optimal. No classical or quantum algor-

ithm can solve this problem faster than time of order
ffiffiffiffi
N
p

.

Preskill called Grover’s algorithm for searching an unsorted

database ‘perhaps the most important new development’ in

quantum complexity. “If quantum computers are being used

100 years from now, I would guess they will be used to run

Grover’s algorithm or something like it,” Preskill says.

Grover’s search algorithm can be applied directly to a wide

range of problems, see for example [18]. Even problems not

generally regarded as searching problems can be reformulated

to take advantage of quantum parallelism and entanglement,

and lead to algorithms which show a square root speed-up

over their classical counterparts [19].

The main idea of the quantum search algorithm is to rotate

the state vector in a two-dimensional Hilbert space defined by

an initial and a final (target) state vector. The algorithm is

iterative and each iteration causes the same amount of rotation.

5. HOW MUCH INFORMATION CAN WE ACQUIRE

ABOUT A QUANTUM STATE?

The answer to this question forces us to quantify the uncer-

tainty associated with a quantum state. It turns out that we

have to distinguish between two types of quantum states,

pure and mixed (impure) states, and that the density operator

allows us to make this distinction.

We can acquire maximal knowledge about pure states.

Whenever we can only attribute probabilities to possible

states, or when we are allowed to observe only a subsystem

of a composed system, we cannot acquire maximum infor-

mation about the entire quantum system and we say that the

system is in a mixed state.

In [20], we focused our discussion on pure states, which are

described by Dirac’s ket and bra vectors, or wave functions

in a Hilbert space of the corresponding dimension. The evol-

ution of a closed quantum system can be completely described

as a unitary transformation of pure states in a Hilbert space.

Pure states are characterized by maximal knowledge

or minimal ignorance; in principle there is nothing more to

be learned about the quantum system [3]. Pure states are

represented as points on the Bloch sphere.

Mixed states are used to describe:

(1) Ensembles, or statistical mixtures of pure states. In this

case the system can be in any of the pure states jc1l,
jc2l, jc3l, . . . with probabilities p1, p2, p3, . . .
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(2) Composite systems. For example, consider the case

when systems A and B are parts of a larger system,

AB in an entangled pure state.

Mixed states require a statistical characterization provided

by new concepts from quantum statistical mechanics, an

extension of quantum mechanics. Mixed states are represented

by points inside the Bloch sphere. For this reason it seems

more accurate to talk about the Bloch ball.

The distinction between pure and mixed states is best

described using the density operator, a positive semi-definite4,

self-adjoint operator with trace equal to unity. The density

operator of a system in a pure state jcl is defined as:

r ¼ jclkcj: ð15Þ

The density operator of the ensemble of pure states jc1l, jc2l,
jc3l . . . with probabilities p1, p2, p3, . . . is defined as:

r ¼
X
ðiÞ

pijcilkcij: ð16Þ

The density operator of an ensemble, r, captures only the

information available to an observer who has the opportunities

to examine infinitely many states of the ensemble. The entropy

of a mixed state of non-orthogonal pure states, which are

not mutually distinguishable, is given by von Neumann’s

expression [21]:

SðrÞ ¼ �TrðrÞ � log r: ð17Þ

When the pure states of the ensemble are orthogonal, they can

be treated as classical states and then the entropy is given by

the known Shannon expression:

H ¼ �
X
ðiÞ

pi � log pi: ð18Þ

We now turn our attention to composite systems. Composite

systems are of interest in quantum information theory

because quantum systems interact with one another and with

the environment; such interactions affect the information

encoded into the quantum state. For example, a system A in

a pure state may interact with the environment; as a result

of this interaction the state of the system may become a

mixed state.

Let us consider a quantum system C consisting of two sub-

systems A and B. The question we wish to explore is how to

gather information about one of the subsystems, A, from

measurements performed on the composite system, C ¼ AB

[3, 22]. The composite system may be in a product state

jcCl ¼ jcAl � jcBl with jcAl the state of subsystem A and

jcBl the state of subsystem B, or in a state with some degree

of entanglement between the two subsystems when jcCl =
jcAl � jcBl (Fig. 5).

To characterize composite systems, we use the partial of

the density matrix and the reduced density operator of a sub-

system of a composite system. Let C ¼ AB be a composite

system consisting of two subsystems A and B described by

the density operator rC. The partial trace of rC over system

B is:

TrB½rC� ¼ TrB½ja1lka2j � jb1lkb2j�

¼ ja1lka2jTrB½jb1lkb2j� ¼ ja1lka2jkb1jb2l
ð19Þ

with ja1l, ja2l any two vectors in the state space of A and jb1l,
jb2l any two vectors in the state space of B. The reduced

density operator of subsystem A is:

rA ¼ TrB½rC�: ð20Þ

Let C ¼ AB be a composite system in a product state with rA
the density operator of subsystemA, rB the density operator of

subsystem B, and rC ¼ rA � rB. Then the reduced density

operator of each subsystem is equal to the density operator

of the subsystem:

rA ¼ rA and rB ¼ rB: ð21Þ

Indeed, the trace of the density operator of a system is equal to

unity thus:

TrA½rA� ¼ 1 and TrB½rB� ¼ 1: ð22Þ

FIGURE 5. C is a composite system consisting of systems A and B.

The state and the density operators of the three systems are, respect-

ively, jjCl and rC, jjAl and rA, jjBl and rB. The composite system can

be either in a product state, or in an entangled state. C is in a product

state if jjCl ¼jjAl � jjBl; in this case, the reduced density operators

satisfy the equalities rA ¼ rA and rB ¼ rB.

4An n � n symmetric matrix A is positive semi-definite if 8v = 0 vT

Av � 0; the eigenvalues of A are real and non-negative, the diagonal elements

of A are non-negative and TrA � 0. The eigenvalues of a positive definite

matrix are real and positive.
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According to the definition of the reduced density operator:

rA ¼ TrB½rC� ¼ TrB½rA � rB� ¼ rATrB½rB� ¼ rA;

rB ¼ TrA½rC� ¼ TrA½rA � rB� ¼ rBTrA½rA� ¼ rB:
ð23Þ

This result reflects also our intuition; if indeed both the density

operator rA and the reduced density operator rA characterize

the same state of the system A, then the average of an obser-

vable should be the same regardless whether it is computed

using rA, or rA. This is true only for product states; if the

system is in an entangled state we expect that the interaction

of the two subsystems will affect the outcome of a measure-

ment in a more subtle manner.

Let MA be an observable of A and MC the

corresponding observable of A but performed on C ¼ AB.

Let IB be the identity matrix in the state space of B and rA
and rC be the density operators for the two systems,

respectively. Then:

M
C
¼M

A
� IB: ð24Þ

If jcCl is a pure state of the composite system C ¼ AB then

the eigenvalues of the reduced density operators of the

two component systems are identical. Thus, many properties

of the two subsystems that are determined by the eigenvalues

of the reduced density operators are the same for the two

subsystems.

Pure states have a particular appeal for quantum infor-

mation theory thus, a legitimate question is, if given a

quantum system A in a mixed state can we identify another

system B such that the composite system C ¼ AB is in a

pure state. In this case B, called a reference system, is only a

mathematical construct without a physical support.

The density operator of A, a subsystem of the composite

system AB, in the entangled pure state jcABl is:

r ¼ TrBjcABlkcABj: ð25Þ

In this case, the density operator captures only the

information available to an observer who has infinitely many

opportunities to examine the subsystem A of the composite

system AB.

Consider now a quantum system in a mixed state. The

Stern–Gerlach experiment (Fig. 6) illustrates the fact that a

beam of silver atoms consists of a mix of atoms with two

different spin values. The experimental setup uses a non-

uniform magnetic field whose z-axis component is normal to

the planar cap; the components of the magnetic field along

x and y axis are negligible. The atomic beam entering the

apparatus consists of a statistical mixture of silver atoms in

spin states j"l and j#l, which will be deflected upwards

and, respectively, downwards following their spin interaction

with the magnetic field. If the atomic beam consists of

N particles, then the probability of an atom to have its spin

up approaches the ratio N"/N for very large N; N" is

the number of atoms deflected upwards.

The value of an observable cannot be predicted with cer-

tainty. Yet, we have to make a distinction between the prob-

abilities associated with a pure state and the probabilities

associated with impure states or statistical mixtures. For

example, in case of spin one-half particles discussed above

we have two possible spin states, j"l and j#l; for any super-

position state jcl ¼ a0j"l þ a1j#l the sum of the probabilities

of the two possible states is 1, ja0j
2
þ ja1j

2 ¼ 1. The j"l and

j#l are pure states.

In our discussion of the Stern–Gerlach experiment, a pure

spin state corresponds to a completely polarized beam, while a

statistical mixture corresponds to either a partially polarized

beam when the probabilities of possible states are unequal,

or to an unpolarized beam if the probabilities of the states

are equal.

6. MONOGAMY OF ENTANGLEMENT

Quantum systems have a unique property: a composite system

can be in a pure state for which it is not possible to assign a

definite state to each of its component sub-systems. This

strong correlation of quantum states is called entanglement.

Erwin Schrödinger discovered the phenomenon of entangle-

ment5 and in 1935 he made the following crucial observation:

“Total knowledge of a composite system does not necessarily

include maximal knowledge of all its parts, not even when

these are fully separated from each other and at the moment

are not influencing each other at all.” Entanglement plays a

critical role in quantum computing and quantum communi-

cation; the concept of monogamy of entanglement justifies

why quantum states cannot be cloned.

FIGURE 6. The silver atomic beam entering the apparatus used in

the Stern–Gerlach experiment consists of a statistical mixture of

atoms in spin states j"l and j#l, which will be deflected upwards

and, respectively, downwards.

5Entanglement is the English translation of the German noun Verschrän-

kung, the name used by Schrödinger to describe this phenomenon.
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According to the postulates of quantum mechanics, the state

of a composite system is a vector in the Hilbert space6

obtained as a tensor product of the individual Hilbert spaces

Hn1
, Hn2

. . . Hnk
:

Hn1�n2			�nk
¼ Hn1

�Hn2
. . .�Hnk

: ð26Þ

In this expression, the states of the component systems are rep-

resented by vectors in lower dimensional Hilbert spaces, Hni
,

1 
 i 
 k, respectively. For example, a quantum system con-

sisting of two qubits is described using the orthonormal

basis fj00l, j01l, j10l, j11lg by a vector in H22 ¼H2 �H2:

jcl ¼ a00j00lþ a01j01lþ a10j10lþ a11j11l ð27Þ

with ja00j
2
þ ja01j

2
þ ja10j

2
þ ja11j

2 ¼ 1.

Sometimes the state of a two-qubit system can be factored

as the tensor product of the individual states of two qubits.

For example, when a00 ¼ a10 ¼ 1/2 and a01 ¼ a11 ¼ 2i/2

the state is:

jcl ¼
1

2
½j00lþ ij01l� j10l� ij11l�

¼
1

2
½j0l� ðj0lþ ij1lÞ � j1l� ðj0lþ ij1lÞ�

¼
1

2
ðj0l� j1lÞ � ðj0lþ ij1lÞ

¼ jc1l� jc2l:

ð28Þ

The individual states of the two qubits are well defined:

jc1l ¼
1ffiffiffi
2
p ðj0l� j1lÞ; jc2l ¼

1ffiffiffi
2
p ðj0lþ ij1lÞ: ð29Þ

This factorization is not always feasible. For example,

consider a special state of a two-qubit system when:

a00 ¼ a11 ¼ 1=
ffiffiffi
2
p
; a01 ¼ a10 ¼ 0: ð30Þ

The state:

jb00l ¼
j00lþ j11lffiffiffi

2
p ð31Þ

is called a Bell state and the pair of qubits is called an

Einstein–Podolski–Rosen (EPR) pair. There are three other

Bell states:

jb01l ¼
j01lþ j10lffiffiffi

2
p ; jb10l ¼

j00l� j11lffiffiffi
2
p ;

jb11l ¼
j01l� j10lffiffiffi

2
p :

ð32Þ

The Bell states form an orthonormal basis and can be distin-

guished from one another. The Bell states are entangled

states; all four states are called maximally entangled states.

The last one, jb11l is called an anti-correlated state.

It can be shown that the joint state of an EPR pair (a Bell

state) is known exactly (it is a pure state), while the state of

either qubit of the pair is not (it is a mixed state).

Let us pick one of the Bell states, say jb10l, and compute

its density operator, r(b10
). Then we compute the density oper-

ator of one of the qubits of the EPR pair, say the second one,

r(b10,second). We expect that the traces of the two density oper-

ators satisfy the known relations for pure and, respectively,

mixed states

Tr r2
ðb10Þ

h i
¼ 1 Tr r2

ðb10;secondÞ

h i
, 1: ð33Þ

First, we compute the density operator of the pair:

rðb10Þ
¼ jb10lkb10j ¼

ðj00l� j11lÞffiffiffi
2
p

ðk00j � k11jÞffiffiffi
2
p : ð34Þ

Then,

rðb10Þ
¼

1

2

1 0 0 �1

0 0 0 0

0 0 0 0

�1 0 0 1

0
BB@

1
CCA ð35Þ

and

r2
ðb10Þ
¼

1

2

1 0 0 �1

0 0 0 0

0 0 0 0

�1 0 0 1

0
BB@

1
CCA: ð36Þ

It follows that:

Tr r2
ðb10Þ

h i
¼

1

2
ð1þ 0þ 0þ 1Þ ¼ 1: ð37Þ

6A Hilbert space is a vector space over the field of complex numbers with

the distance defined as the inner product of two vectors.
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We compute the reduced density operator and the partial trace

for the second qubit of the EPR pair by tracing the first qubit

rðb10;secondÞ ¼ Trfirst rb10

h i

¼Trfirst

½j00lk00j � j00lk11j � j11lk00j þ j11lk11j�

2
:

ð38Þ

Then

rðb10;secondÞ ¼
j0lk0j þ j1lk1j

2
¼

1

2

1 0

0 1

� �
¼

I

2
ð39Þ

and

r2
ðb10;secondÞ ¼

1

4

1 0

0 1

� �
1 0

0 1

� �
¼

1

4

1 0

0 1

� �
: ð40Þ

It follows that

Tr r2
ðb10;secondÞ

h i
¼

1

4
ð1þ 1Þ ¼

1

2
: ð41Þ

To complete the proof of this proposition, we have to repeat

the calculation for the first qubit of the b10 pair following the

pattern presented above. Then we have to redo the calculations

for the other three Bell states b00, b01 and b11.

The monogamy of entanglement is the deeper root of our

inability to clone quantum states. Figure 7 illustrates why

the monogamy of entanglement prevents quantum states to

be cloned. Consider two maximally entangled quantum sys-

tems, A and B. Assume that we have a quantum copy

machine able to clone quantum states. If the input to this

quantum copy machine is system A, then the output will be

the original, system A, and a perfect replica of it, A0. Thus,

the quantum system B would end up being entangled with

both systems A and A0, in violation of the monogamy of

entanglement. The dotted line represents the original entangle-

ment of B with A, and the solid lines the entanglement of

B with A and its clone A0. As we have seen earlier, the joint

state of a maximally entangled pair system is a pure state,

while individual particles are in mixed state; thus, the state

of individual particles cannot be known with certainty and

individual particles cannot be cloned.

One of the most intriguing properties of quantum infor-

mation is the shareability of quantum correlations. While clas-

sical correlations can be shared among many parties, quantum

correlations cannot be shared freely, quantum correlations of

pure states are monogamous.

As we know from statistics, if two random variables X and Y

are correlated, then X can also be correlated with any number

of other random variables, Z, W, . . . and Y can also be corre-

lated with U, V, . . .. If two quantum systems A and B are in

a maximally entangled pure state, then neither of them can

be correlated with any other system in the universe.

There is a trade-off between the amount of entanglement of

two qubits and the quantum correlation each of the two qubits

could share with a third one. It is widely believed that if the

two qubits are as much entangled with each other as it is poss-

ible they cannot be entangled or even classically correlated

with another qubit.

Consider three qubits a, b, c such that the first two are in a

maximally entangled pure state [23]:

jcabl ¼
1ffiffiffi
2
p j0a � 0blþ

1ffiffiffi
2
p j1a � 1bl ð42Þ

and the third is in state jccl. There is no quantum state

shared by the three qubits, such that when we remove the

third qubit, c, we get the joint state of qubits a and b, jcabl,
and, at the same time, the three-qubit state does not

change when we interchange qubits b and c, i.e. we

entangle a with c instead of b. Thus, the joint state of the

three qubits is:

jcabcl ¼ jccl�
1ffiffiffi
2
p j0a � 0blþ

1ffiffiffi
2
p j1a � 1bl

� �
: ð43Þ

There is no symmetry, between qubits b and c, b is maximally

entangled with a while c is not entangled with a.

The monogamy of entanglement has important conse-

quences for quantum cryptography. If two parties, Alice and

Bob share an entangled quantum state they can communicate

securely.

The next question is if all entangled states are monogam-

ous. For example, are entangled mixed states monogamous?

Schumacher introduced the term sharable quantum states

and Bennett et al. [24] gave an example of a mixed entangled

state that is sharable rather than monogamous. Consider a

noisy quantum channel shared by Alice, Bob and Eve; with

probability 1/2 a qubit sent by Alice is transmitted unchanged

to Bob and with probability 1/2 the qubit is intercepted by Eve

FIGURE 7. In violation of the monogamy of entanglement, a

quantum copy machine would allow a quantum state B entangled

with another quantum state A to end up entangled with the two

copies of state A.
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and Bob gets a random qubit. When Alice sends to Bob half

of a maximally entangled pair, the state shared by Alice and

Bob is still entangled while the state shared by the three is

always symmetric in respect to Eve and Bob, thus Eve is

entangled with Alice as well.

7. EPR EXPERIMENT

EPR is the gedanken experiment proposed by Einstein, Podolsky

and Rosen to show that the description of a quantum system by

means of the wave function is incomplete. The EPR exper-

iment led some physicists to the belief that the nondetermin-

ism of quantum mechanics could be explained by the

existence of ‘hidden variables.’

If we knew the exact values of hidden variables, then we

would have a fully deterministic view of the world [25]. A

suggestive analogy was proposed by one of our students. He

said: “Imagine that we are behind a wall that obscures the

view of the other side where several machines throw tennis

balls over the wall. The trajectory of each ball depends upon

the setting of each machine; assuming that the tennis balls

are identical and their weight and diameter are known and

that there is no wind, the trajectory of each one is perfectly

deterministic. Yet, to us the trajectory of a ball appears to be

random. The nondeterminism is due to the lack of knowledge

of the initial conditions for each trajectory, the hidden

variables of this game.”

The EPR argument is based upon the concept of ‘element of

physical reality’ defined as follows: if without in any way dis-

turbing a system we can predict with certainty the value of a

physical quantity, then there exists an element of physical

reality corresponding to this physical quantity.

In his autobiography Einstein wrote [26]: “. . . the paradox

forces us to relinquish one of the following two assertions:

(i) the description by means of the wave function c is com-

plete, (ii) the real states of spatially separated objects are inde-

pendent of each other.” Einstein concluded that the quantum

mechanical description by means of the wave function is not

complete, he had no doubts that the second assertion is true.

Non-locality would violate one of the basic postulates of the

Special Theory of Relativity7.

We consider a composite system consisting of two particles,

‘particle 1’ and ‘particle 2’ prepared in such a state that their

total momentum is close to zero and their relative distance is

close to L, where L is much larger than the distance that

allows the two particles to interact with each other. If we

denote by g a normalizable function with a very high and

very narrow peak, and by x1, x2, p1, p2 the position and the

momentum of the two particles, then the state of the system

is described by an entangled wave function:

c ¼ gðx1 � x2 � LÞgð p1 þ p2Þ: ð44Þ

We do not know anything about the position of the particles or

about their individual momenta, we only know that they are at

distance L from one another and that the total momentum

is equal to zero.

If we measure the position of the first particle, x1, the wave

function allows us to predict with certainty, x2, the position of

the second particle. It is easy to argue based upon EPR defi-

nition that x2 corresponds to an element of the physical

reality. Indeed, the measurements on the two systems do not

affect each other because the distance L was chosen to be

large enough to prevent such interactions. Thus, no change

may take place in the second system as a result of the measure-

ment performed in the first system.

We could have measured the momentum of the first particle,

p1, and then we would have been able to predict the momen-

tum of the second one, p2. Similar arguments indicate that

p2 corresponds to an element of the physical reality. Yet,

Heisenberg’s inequality precludes the simultaneous assign-

ment of precise values to both the position, x2 and the momen-

tum, p2 of the second particle because the two operators

corresponding to the two measurements of observables do

not commute.

In a simpler version of the EPR experiment suggested by

Bohm (see [27]), a spin zero pion p0 decays into an electron

e2 and a positron eþ both spin one-half particles. If a spin

component of the electron, say Sz
e is measured when the two

decay products are far apart and found to be þ� /2, then we

can be sure that the Sz
p component of the positron spin will

be found equal to 2� /2. We could have measured the other

spin components of the electron, Sx
e and Sy

e, and then the spin

components of the positron Sx
p and Sy

p would have also been

predictable with certainty. Thus, the three spin components

of the positron spin, Sx
p, Sy

p and Sz
p would have corresponded

to ‘elements of the physical reality’ and that would have

been in contradiction with quantum mechanics which says

that at most one spin component of each particle may be

definite.

The EPR conclusion is that the quantum mechanical

description of the physical world by means of the weave func-

tion is incomplete, but the authors do not discuss whether a

complete description really exists.

8. QUANTUM TELEPORTATION

In a science fiction context, teleportation means: making an

object or person disintegrate in one place and have it

7Einstein’s Special Theory of Relativity describes the motion of particles

moving at close to the speed of light. The two basic postulates of special rela-

tivity are: (i) The speed of light is the same for all observers, no matter what

their relative speeds. (ii) The laws of physics are the same in any inertial (that

is, non-accelerated) frame of reference. This means that the laws of physics

observed by a hypothetical observer traveling with a relativistic particle

must be the same as those observed by an observer who is stationary in the

laboratory.
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reembodied as the same object or person somewhere else. In

the context of quantum information theory, teleportation

means [27]: “a way to scan out part of the information from

an object A, which one wishes to teleport, while causing the

remaining, unscanned, part of the information to pass, via the

EPR effect, into another object C which has never been in

contact with A. Later, by applying to C a treatment depending

on the scanned-out information, it is possible to maneuver C

into exactly the same state as A was in before it was

scanned.” In this process, the original state is destroyed.

Communication over quantum channels involves the trans-

port of quantum particles and could certainly benefit from the

formalism described above. This formalism allows us to

determine the state of system A, namely the original quantum

particle(s) prepared in a certain state jwAl based upon obser-

vations performed on the composite systemAB in state jwABl.
Quantum teleportation means the transfer of quantum state

from one particle to another [20]. In this process, one has to

perform a measurement of one particle of a composite system.

Assume that Alice and Bob are given a pair of entangled

particles called ‘particle 1’ and ‘particle 2’ in a maximally

entangled state (Fig. 8):

jb00l ¼
j00lþ j11lffiffiffi

2
p : ð45Þ

Then Bob takes ‘particle 2’ with him, while Alice keeps ‘particle 1’

with her. A third party, Eve, asks Alice to deliver a secret message to

Bob. The message is encoded ins the state of ‘particle 3’:

jcCl ¼ a0j0lþ a1j1: ð46Þ

Alice applies a CNOT gate to the pair, using the state of ‘particle 3’ as

the control qubit and the state of ‘particle 1’ as the target qubit. When

Alice performs a joint measurement of her two qubits, she gets the

results j00l, j01l, j10l, and j11l, which correspond to classical infor-

mation 00, 01, 10 and 11, respectively, with equal probability, p ¼

1/4. Alice then measures the state of ‘particle 1’ and sends over a clas-

sical communication channel the result of the measurement, ‘00’,

‘01’, ‘10’ or ‘11’. Then Bob applies one of the following four

transformations to the state of ‘particle 2’. If he receives the string

‘00’ he applies the identity transformation, I. He applies X if he

receives the string ‘01’, Z for ‘10’, and Y for ‘11’. As a result of

this transformation, the state of ‘particle 2’ is identical to the state

of ‘particle 3’.

It can be shown that quantum teleportation does not allow

an instantaneous exchange of information. The state of

Bob’s qubit after Alice’s measurement is not dependent

upon the state of ‘particle 3’. No measurement performed by

Bob after Alice’s measurement contains definite information

about ‘particle 3’. Therefore, Alice needs to use a classical

communication channel to transmit the result of her measure-

ment to Bob; in fact, she cannot use teleportation to transmit

information instantaneously to Bob.

The state jzl of the three particle systems after Alice

performs her measurement is:

jzl ¼
1

2
½j00lða0j0lþ a1j1lÞ

þ j01lða0j1lÞ þ a1j0lÞ þ j10lða0j0l� a1j1lÞ
þ j11lða0j1l� a1j0lÞ�:

ð47Þ

Indeed, the joint state of ‘particle 3’ and ‘particle 1’ is:

jjl ¼ jcCl� jb00l ¼ a0

a1

� �
�

1ffiffiffi
2
p

1

0

0

1

0
BB@

1
CCA ð48Þ

FIGURE 8. Schematics of quantum teleportation with maximally

entangled particles. At the beginning of the experiment Eve’s particle

is in state jcCl ¼ a0j0l þ a1j1l; the pair of particles shared by Alice

and Bob are in a maximally entangled state jb00l. At the end of

the experiment Bob’s half of the entangled pair is in state jcCl,
while the state of Eve’s particle was affected by the quantum measure-

ment and is no longer jcCl. The change of state of Bob’s particle does

not occur instantaneously, Alice must use a classical communication

channel to transmit the results of her measurement to Bob.
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or

jjl ¼
1ffiffiffi
2
p

� ��
a0j000lþ a0j011lþ a1j100lþ a1j111l

�
: ð49Þ

Alice applies a CNOT to the pair; she uses Eve’s qubit as a

control and her own as a target. She applies the GCNOT � I

transformation to the state jjl.

jkl ¼ ðGCNOT � IÞðjjlÞ ð50Þ

GCNOT ¼

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

0
BB@

1
CCA and I ¼

1 0

0 1

� �
: ð51Þ

Thus:

jkl ¼
1ffiffiffi
2
p

� ��
a0j000lþ a0j011lþ a1j101l

þ a1j110l
�
: ð52Þ

Then Alice measures the first qubit (Eve’s qubit) and leaves

the second (the one entangled with Bob’s qubit) untouched:

jzl ¼ ðH � I � IÞjkl: ð53Þ

Thus:

jzl ¼
1

2

h
j00lða0j0lþ a1j1lÞ þ j01lða0j1lÞ

þ a1j0lÞ þ j10lða0j0l� a1j1lÞ þ j11lða0j1l� a1j0lÞ
i
:

ð54Þ

From this expression, it follows that when Alice performs a

joint measurement of her two qubits, she gets one of the

four equally probable results j00l or j01l or j10l or j11l. As

we already know, this measurement forces the pair of qubits

to one of the four basis states, and transforms quantum infor-

mation into classical one. Then, she sends Bob the result of her

measurement, 00, 01, 10 or 11, over a classical communication

channel. At the same time, the measurement performed by

Alice forces the qubit in Bob’s possession to change to one

of four states:

(1) jh00l ¼ a0j0l þ a1j1l when the result is 00.

(2) jh01l ¼ a0j1l þ a1j0l when the result is 01.

(3) jh10l ¼ a0j0l 2 a1j1l when the result is 10.

(4) jh11l ¼ a0j1l 2 a1j0l when the result is 11.

The density operator of state jzl is:

rCðzÞ ¼
X4

i¼1

piri ¼
1

4
ðr0 þ r1 þ r2 þ r3Þ

¼
1

4
j00lk00j½ða0j0lþ a1j1lÞða�0k0j þ a�1k1jÞ�
	
þj01lk01j½ða0j1lþ a1j0lÞða�0k1j þ a�1k0jÞ�
þj10lk10j½ða0j0l� a1j1lÞða�0k0j � a�1k1jÞ�
þj11lk11j½ða0j1l� a1j0lÞða�0k1j � a�1k0jÞ�



:

ð55Þ

Bob’s qubit is the second of the pair and the reduced density

operator of Bob’s qubit is:

rB ¼ TrA rCðzÞ� ¼
1

4
½ða0j0lþ a1j1lÞða�0k0j

�

þa�1k1jÞ þ ða0j1lþ a1j0lÞða�0k1j þ a�1k0jÞ
þða0j0l� a1j1lÞða�0k0j � a�1k1jÞ

þða0j1l� a1j0lÞða�0k0j � a�1k1jÞ
�
:

ð56Þ

Then,

rB ¼
1

4

h
j0lk0j2ðja0j

2 þ ja1j
2Þ

þ j1lk1j2ðja0j
2 þ ja1j

2Þ

i ð57Þ

But we know that ja0j
2
þ ja1j

2 ¼ 1 thus:

rB ¼
j0lk0j þ j1lk1j

2
¼

1

2

1 0

0 1

� �
¼

1

2
I: ð58Þ

This confirms that the state of Bob’s qubit after Alice’s

measurement, but before Bob has learned the measurement

result, is I/2 and it is independent upon the state of ‘particle

3’, as stated earlier.

Note that Bob’s qubit is in a mixed state. Indeed:

Tr
I

2

� �2
" #

¼
1

2
, 1: ð59Þ

This is a remarkable result, the state of the pair ‘particle 1’ and

‘particle 2’ is a pure state, it is known exactly, while state of

‘particle 2’ is a mixed state.

Needless to say that the teleportation gedanken experiment

described in this section does not violate the ‘no-cloning

theorem.’ The state of ‘particle 3’ has not been cloned, it

has been altered in the measurement process and as a result
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of teleportation ‘particle 2’ acquires the original state of

‘particle 3.’

A demonstration of quantum teleportation was carried out

in 1997 at the University of Rome by Francesco de Martini

based upon an idea of Sandu Popescu and at about the same

time at Innsbruck by Anton Zeilinger. In both experiments,

the quantum state was teleported a few meters.

The experiment of de Martini is illustrated in Fig. 9 [28]. In

this experiment, the information is double encoded into a

single photon instead of two. The source generates two para-

metric downconverted8 photons with opposite polarization,

‘photon 1’, with horizontal polarization, h, for Alice and

‘photon 2’, with vertical polarization, v, for Bob. The polari-
zation entanglement of the two photons sent to Alice and
Bob is converted into an entanglement of the paths followed
by the two photons. A calcite crystal performs this conversion.

If ‘photon 1’ travels to Alice via path A then ‘photon 2’

travels to Bob via path C; if ‘photon 1’ travels via path B,

then ‘photon 2’ travels via path D. Eve encodes her message

in the polarization of the photon sent to Alice, ‘photon 1.’

Alice measures the polarization of the photon she receives

from the source and sends the classical result to Bob. Finally,

Bob performs the measurement suggested by Alice’s result

and he gets a photon with the polarization imposed by Eve.

In this experiment, the polarizer forces a certain polarization

on ‘photon 1’ and because of the anti-correlation of ‘photon 1’

and ‘photon 2’ the latter is forced to an opposite polarization.

9. SUMMARY

In this paper, we overview quantum parallelism and quantum

communication using entangled particles. In recent years,

quantum computing and communication devices have been

built. A 7 (seven) qubit liquid NMR quantum computer

able to factor the integer 15 was built in late 1990s [29]. In

February 2007, a Canadian company, D-Wave, demonstrated

a 16 qubit quantum computer based on superconducting elec-

tronics and they announce plans to build a 1024 qubit quantum

computer by the end of 2008. Also, applications of quantum

cryptography seem ready for commercialization. In 2003, a

successful quantum key distribution experiment over a dis-

tance of some 100 km has been announced.

Building quantum computing and communication devices

faces tremendous technological and theoretical challenges.

As Winston Churchill once said ‘Success is the ability to go

from failure to failure with no loss of enthusiasm.’
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