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Abstract. For an atomic domain R , we define the elasticity of R as p(R) =

sup{/n/« | xi •■■Xm — y\ •••>'«> for X,, ys e R irreducibles} and let Ir(x)

and LR(x) denote, respectively, the inf and sup of the lengths of factoriza-

tions of a nonzero nonunit x € R into the product of irreducible elements.

We answer affirmatively two rationality conjectures about factorizations. First,

we show that p(R) is rational when R is a Krull domain with finite divisor

class group. Secondly, we show that when R is a Krull domain, the two limits

'«(■*")/" and Ln(x")/n , as n goes to infinity, are positive rational numbers.

These answer, respectively, conjectures of D. D. Anderson and D. F. Anderson,

and D. F. Anderson and P. Pruis. (The second question has also been solved

by A. Geroldinger and F. Halter-Koch.)

Introduction

If R is a UFD, then any two factorizations of a nonzero nonunit of R into

the product of irreducible elements have the same length. Of course, this need

not be true for an arbitrary atomic domain (an integral domain is atomic if each

nonzero nonunit is a product of irreducible elements (atoms)). Following Zaks

[15], we define an atomic domain R to be a half-factorial domain (HFD) if

whenever X\ ■ • ■ xm = y\ ■ • ■ y„ with each x,, y,- G R irreducible, then m = n .
In order to measure how far an atomic domain R is from being a HFD, we de-

fine the elasticity of R as p(R) = sup{w/« | Xi • • -xm = y\ • • -y„, for x,, y; G

R irreducibles}. Thus 1 < p(R) < oo and p(R) = 1 if and only if R is a
HFD. This concept was introduced by Valenza [14], who studied p(R) for R

the ring of integers in an algebraic number field. In an earlier paper, StefFan

[13] studied p(R) (without this notation) for a Dedekind domain R with fi-

nite divisor class group. Recently p(R) has been studied in more detail in [1,
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5]. In [1, Theorem 3.2] it is shown that for any real number r > 1 or r = oo,

there is a Dedekind domain R with torsion divisor class group C\(R) such that

p(R) = r. Moreover, if r is rational, then R may be chosen so that Cl(i?) is

finite (this is also proved in [5]). This motivated the following question in [1]:

if R is a Krull domain with Cl(i?) finite, is p(R) rational, and moreover, does

p(R) - m/n , where X\ • • • xm = y\ • • • yn for some irreducibles x,, y, G R?

In §1 we prove a general result (Theorem 4) about when certain quotients

of real-valued functions on an additive submonoid of Z+ obtain their maxi-

mum and minimum values. In the second section, Theorem 4 is then applied

to answer two rationality conjectures about factorizations in Krull domains.

Theorem 10 answers affirmatively the above question about the rationality of

p(R) in somewhat more generality. As an added bonus, Theorem 13 answers

(part of) a conjecture of Anderson and Pruis [4] about the asymptotic behav-

ior of length functions on integral domains; this conjecture has also recently

been solved by Geroldinger and Halter-Koch [8]. The moral here is that certain

finiteness conditions imply the rationality of factorization invariants.

For a nonzero nonunit x in an atomic domain R, let

Ir{x) = inf{n \ x = X\ ■ ■ ■ xn with each x, G R irreducible},

Lr(x) = sup{« | x = Xi •• • x„ with each x, G R irreducible},

and

pR(x) = LR(x)/lR(x).

In [4] it is shown that the two limits 1r(x) and LR(x) of lR(xn)/n and

LR(xn)/n, respectively, as n goes to infinity always exist (LR(x) maybe oo).

Moreover, for any 0<a<l</?<oo, there is an integral domain R and an

irreducible x £ R such that lR(x) = a and LR(x) = f$ . It was also conjectured

that both limits are positive rational numbers when R is either a Krull domain
or a Noetherian domain. In [8] this conjecture is shown to be true for Krull

domains and several classes of Noetherian domains, but an example is given of

a Noetherian domain R with lR(x) - 0 for an irreducible x £ R.

Factorization theory can be studied at several levels of generality; much of

it can be abstracted to semigroups, as in [8, 9, 11, 12]. As our main interest

is for integral domains, we will take the middle of the road and work with

semigroups only when the added generality substantially simplifies the problem.

Throughout, R will always be an integral domain with group of units U(R)

and nonzero elements R*. Our notation and definitions will follow [7] for Krull

domains and [10] for semigroups. For R a Krull domain, X^(R) is its set of

height-one prime ideals and Div(i?) is its group of divisorial ideals under the

v-operation. Div(i?) is free abelian on X^(R). For an additive submonoid

T of a free abelian monoid 0 Z+ , < denotes the usual product order. As

usual, oo/a — a/0 = oo/O = oo for any real number a > 0. For a study of

several factorization properties weaker than unique factorization in an arbitrary

integral domain, see [2].

1. Max and MINS

In this section, T will be a commutative, cancellative monoid, written addi-

tively, with T* its subsemigroup of noninvertible elements (thus T* = T\{0}
when  r  is an additive submonoid of a free abelian monoid).    A function
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/ : T -> R+ is a semilength function on T if (1) f(x + y) = f(x) + f(y)
for all x, y G T and (2) f(x) > 0 for all x G T*. Given two semilength func-

tions / and g on T, define </>(/, g) = 0 : T* -» R+ by 0(x) = f(x)/g(x)
for all x G T*. Note that <f>(kx) = 0(x) for all integers k > 1. We define
L(T, 0) = sup{0(x) | x G T*} and l(T, 0) = inf{0(x) | x G T*}. Then

0 < L(r, 0) < oo and 0 < l(Y, 0) < oo. Note that if 0 = 0(g, /), then
0=1/0 and /(r, 0) = l/L(T, 0). We next give three elementary lemmas.

Lemma 1. Let a,   b,   c, and d  be positive real numbers.    Then  a/c <

(a + b)/(c + d) if and only if (a + b)/(c + d) < b/d.

Proof, a/c < (a + b)/(c + d) ■& ac + ad < ac + be ■&■ ad < be ■&■ ad + bd <
bc + bd & (a + b)/(c + d) <b/d .   □

Lemma 2. Let f and g be semilength functions on T and 0 = 4>(f, g). Let

x, y G T* such that y - x G T*. If 0(x) < 0(y) then (j>(y) < 0(y - x).

Proof. Because f(x)/g(x) = 0(x) < <j>(y) = f(y)/g(y) = [f(x) + f(y - x)} /

[g(x) + g(y - x)], we have 0(y) = f(y)/g(y) < f(y - x)/g(y - x) = 0(y - x)
by Lemma 1.   □

Lemma 3. Let T be an additive submonoid of a free abelian monoid and </> :

r* —> G be any function into a totally ordered abelian group G. Then there

is a function y/ : T* —> F* such that (1) ~y/(x) < x for all x G T* and (2)

if x, y £ T* with x < y then </>(x) < cj)(y/(y)). (Note that y/ need not be

uniquely determined.)

Proof. For x £ T*, x = {zgT* \ z < x) is finite. Thus we may choose

y/(x) = w £ x with 4>(w) maximum, i.e., <f>(z) < (f>(w) for all z £ x . Clearly

(1) and (2) hold.   □

For our main theorem, we specialize to Y an additive submonoid of Z^ for

some integer k > 1 and 0 = <p(f, g).

Theorem 4. Let Y be an additive submonoid of Z+, / and g be semilength
functions on Y, and 0 = 0(/, g). If y - x £ Y for all x, y £ Y with x <
y, then L(Y, 0) = 0(xn) and l(Y, 0) = 0(yo) for some xn, yo G Y*. Thus
L(Y, 0) and l(Y, 0) are each positive real numbers. If f and g are each

rational-valued, then L(Y, 0) and l(Y, 0) are each positive rational numbers.

Proof. We prove the theorem for L(Y, 0). Since l(Y, 0) = l/L(Y, 1/0),
the result follows for l(Y, 0) as well. Let y/ be the function from Lemma 3

applied to 0. Suppose that 0(x) < L(r, 0) for all x G Y*. Choose y\ £ Y*,
and let Xi = ^(yi). Suppose that y\, ... ,yn £Y* have been chosen so that

the x, = y/(yi) 's are incomparable and 0(xi) < • • • < 0(x„). Pick y„+i g Y*

with 0(y„+i) > 0(x„), and let x„+i = y/(yn+i). We claim that x„+i is not

comparable to any X\,... ,x„. If xn+\ < x, then xn+\ < x, = y/(yi) < y,.

Hence 0(x„+i) < 0(^(y,)) = 0(x,) by Lemma 3, a contradiction. On the other

hand, if x, < xn+\ then xn+\ - x, G Y* and 0(x,) < 0(x„+i). Thus 0(x„+i) <
0(x„+i —Xi) by Lemma 2. However, 0 < xn+\ -x, < xn+\ - y/(yn+\) < yn+\; so

0(x„+i-x,) < <t>{v(yn+i)) = 4>{xn+\) by Lemma 3 again, a contradiction. Hence

we can construct an infinite set {x„} of incomparable elements in Y c Z* , a

contradiction [6, Theorem 9.18].   □
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Remark 5. (a) We first show that Theorem 4 may fail if we do not assume that

y -x G T when x, y £Y with x < y . Let a, b £ [0, oo] with 0 < a < b < oo .

Then Y = {(m, n) G Z2+ | m, n > 1 and a < m/n < b) u {(0, 0)} is an

additive submonoid of 7?+ and f,g:Y —> R+ given by f(m, n) = m
and g(m,n) = n are semilength functions on Y. For 0 = <f>(f, g), we

have l(Y, 0) = a and L(Y, 0) = ft; however, a < 0(m, «) = m/n < b for
all (m, n) £ Y*. Note that there are integers m, n > 1 with (m + \, n),

(m, n) eT,but (m + I, n) - (m, n) = (1, 0) $T.
(b) In Theorem 4, it is also necessary to assume that Y is an additive sub-

monoid of a finitely generated free abelian monoid, rather than of just a free

abelian monoid (cf. the proof of [1, Theorem 3.2]).   □

2. Applications

In this section, we apply Theorem 4 to two rationality conjectures in factor-

ization theory. Here, H will always be a commutative, cancellative monoid,

written multiplicatively, with group of units U(H). We say that H is reduced if

U(H) = {1} . As in [12] a monoid H is atomic if each nonunit of H is a prod-

uct of irreducible elements. For an atomic monoid H, we define the elasticity

of H as p(H) = sup{m/n \ X\ • • -xm = y\ • • -y„, for x,, y, G H irreducibles} .

Then 1 < p(H) < oo. Many of the results of [1, 5] on p(R), for R an

atomic domain, also apply to p(H), for H an atomic monoid. In particular,

if f : H -* R+ is a semilength function on H, then p(H) < M*/m*, where

M* = sup{/(x) | x G H is irreducible, but not prime}, m* - inf{/(x) | x G

H is irreducible, but not prime} , and M* = m* = 1 if all irreducible elements

of H are prime (cf. [1, Theorem 2.1]).
Let R be an integral domain. Then //, = R*, H2 = R*/U(R), and 7/3 =

Prin(.R)+ = {xR | x G R*} are all multiplicative monoids and H2 w Ht, . Clearly

R is atomic «• H\ is atomic -» H2 is atomic «• Hj, is atomic. Moreover, if R

is atomic, then p(R) = p(H\) = p(H2) = p(H^). More generally, if H is any

monoid, then H is atomic if and only if the reduced monoid H = H/U(H) is

atomic, and in this case, p(H) = p(H). One can sometimes calculate p(H) by

relating H to a simpler atomic monoid. Our next result, whose simple proof

will be omitted, is sufficient for our purposes.

Lemma 6. Let d : H\ —> H2 be a homomorphism of atomic monoids.

(a) // d(x) is irreducible whenever x £ Hi  is irreducible, then p(H\) <

P(H2).
(b) If in addition H2 c H\ and d(x) = x for each x £ H2, then p(H\) -

p(H2).   D

Our next theorem, along with Theorem 12, are the two applications of The-

orem 4.

Theorem 7. Let H be an atomic monoid with only a finite number of nonas-

sociate irreducible elements. Then p(H) is rational. Moreover, p(H) = m/n,

where X\ ■ ■ ■ xm = y\ ■ ■ ■ y„ for some irreducibles x,, y, G H.

Proof. We may assume that H is reduced and z\, ... , zk are the irreducible

elements of H.   Then Y - {(a\, ... , ak , b\, ... , bk) £ 7?k \ z"1 • • • zakk =
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z i' "' zkk} *s an additive submonoid of 7?k , and /, g : Y —> R+ given by

/(ai,..., bk) = fli -I— + ak and g(ax,..., bk) = b\ + • • • + bk are semilength
functions on Y. Clearly Y and 0 = 0(/, g) satisfy the hypotheses of Theorem

4 and />(#) = L(Y, 0). Thus, />(#) = 0(xo) for some x0 G Y*, and the
theorem follows.   □

We next apply Theorem 7 to p(R), for R an atomic domain. As an imme-

diate corollary of Theorem 7, we have that p(R) is rational when R has only

a finite number of (nonassociate) irreducible elements. Such integral domains

are called Cohen-Kaplansky (CK) domains and have recently been studied ex-

tensively in [3]. We state this as (cf. [1, Corollary 2.13])

Corollary 8. Let R be a CK domain. Then p(R) is rational. Moreover,

p(R) = m/n, where X\---xm=y\---yn for some irreducibles x, ,yj £ R.   □

In order to prove similar results for more general atomic domains, certain

finiteness conditions are needed. For the Krull domain case, we will need

Lemma 9. Let R be a Krull domain and P\, ■■■ , P„ £ X^(R). Then {x £

R* | xi? = (P"' ■ ■ ■ P„")v for integers a, > 0} has only a finite number of nonas-

sociate irreducible elements.

Proof. Let T = {(a,,..., a„) e Z" \ (Pf1 ■•■/£")„ is principal} . If xi? =
(Pfl ■ ■ ■ Pn")v for (a\, ... ,a„) £ Y, then x is irreducible if (a\, ... , an) is

minimal in Y. Since Y has only a finite number of minimal elements, the

result follows.   □

We can now prove the conjecture on the rationality of p(R) stated in the

introduction.

Theorem 10. Let R be a Krull domain such that only a finite number of divisor

classes contain prime ideals. Then p(R) is rational. Moreover, p(R) = m/n,

where X\---xm — yi • • • y„ for some irreducibles x,, ys■ £ R. In particular, this

is the case if Cl(i?) is finite.

Proof. Suppose that {[P] | P £ X^(R)} c C\(R) is finite. Pick P,, •• • , Pn £

X^(R) such that for any Q £ X^(R), [Q] = [Pt] for a unique integer

1 < i < n. Let H be the subgroup of Div(i?) generated by P\, ... , P„ .
Define a : Div(i?) —» H by defining it on the basis elements by a(Q) = P,

if [Q] = [Pi] • Note that a restricts to a homomorphism from Prin(./?)+ to

H n Prin(/?)+ . Moreover, a(xR) is irreducible if and only if xR is irre-

ducible. Thus p(Prin(R)+) = p(Hr\Phn(R)+) by Lemma 6(b). By Lemma 9,
H n Prin(/?)+ has only a finite number of irreducible elements. Hence by The-

orem 7, p(R) = p(Prin(R)+) = p(H r\Prin(R)+) is rational and p(R) = pR(x)

for some nonunit x £ R*.   □

Remark 11. (a) Since {[P]\ P £ X^(R)} generates Cl(R), the hypotheses in

Theorem 10 force Cl(i?) to be finitely generated, and thus to be finite if C\(R)

is torsion.

(b) If {[P] | P £ X^(R)} is infinite, p(R) need not be rational or even

finite. Even if p(R) is rational, we may have pR(x) < p(R) for each nonunit

x £ R* (cf. the remarks after [1, Theorem 3.2]).

We next apply Theorem 4 to the asymptotic behavior of length functions.

Let H be an atomic monoid and x G H a nonunit.   As in [4, 8], we de-
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fine Ih{x) = inf{« | x = xi---x„ with x, G H irreducible} and LH(x) =
sup{n | x = X\ • • • xn with x, G H irreducible} . We then define

~Ih(x) = lim lH(xn)/n   and   LH(x) = lim LH(x")/n.
n—»oo «—>oc

Both limits always exist  (LH(x)  may be  oo), and furthermore,  7#(x) =

inf{m/n \ x" = x\---xm with x, e H irreducible} and LH(x) = sup{m/« |
x" = Xi • -xm with xi £ H irreducible} [4, Theorem 3; 8, Theorem 1]. We

can now use Theorem 4 to give a very elementary proof of the key result of

Geroldinger and Halter-Koch [8, Theorem 2].

Theorem 12. Let H be an atomic monoid and x £ H a nonunit such that

{y £ H | y | x" for some integer n > 1} has only a finite number of nonassociate

irreducible elements. Then 7//(x) and Lh(x) are each positive rational numbers.

Moreover, there are integers m, n > 1 so that 1h(x) = lH(xkm)/km and

Lh(x) = Ln(xkn)/kn for all integers k>\.

Proof. We may assume that H is reduced and that z\,..., zT are the irre-

ducible divisors of powers of x. Then Y = {(n\, ... , nr) £ 7J+ \ z"' • • • z"r =

xk for some integer k > 0}  is an additive submonoid of Z+, and f,g:

Y -> R+ given by f(n\,... ,nr) = ri\ +-V nr and g(n\,... ,nr) = k if

z"1 • • • z"r = x^ are semilength functions on Y. Clearly Y and 0 = cj>(f, g) sat-

isfy the hypotheses of Theorem 4, and LH(x) = L(Y, 0) and 7//(x) = l(Y, 0).
Hence L(Y, 0) = 0(xo) and l(Y, 0) = 0(yo) for some x0, yo G Y*. Note
that for any y G Y*, 0(y) = (j>(ky) for all integers k > 1. The result is now

clear.   D

By Lemma 9, the hypotheses of Theorem 12 hold for H = R* when R

is a Krull domain, and in this case, lR(x) = 1h(x) and LR(x) = LH(x) for
each nonunit x £ R*. Thus, as a corollary, we obtain the following result

of Geroldinger and Halter-Koch [8, Theorem 3], which answers part of the

conjecture of Anderson and Pruis [4]. (Note that in both Theorems 12 and 13

we may of course take m = n .)

Theorem 13. Let R be a Krull domain and x £ R* a nonunit. Then lR(x)

and LR(x) are each positive rational numbers. Moreover, there are integers

m, n > 1 so that lR(x) = lR(xkm)/km and LR(x) = LR(xkn)/kn for all

integers k > 1.   □

We end with an observation about the asymptotic behavior of the pR func-

tion. For any atomic domain R and x G R* a nonunit, we define pR(x) =

lim^oopR(x") (= LR(x)/lR(x) = sup{pR(xn) | n > 1 an integer}). By [4],

this limit always exists and 1 < pR(x) < oo. Moreover, for any y £ [1, oo],

there is an integral domain R and an irreducible x £ R with pR(x) = y. If R

is a Krull domain, then by Theorem 13, pR(x) is a positive rational number,

and moreover, there is an integer n > 1 such that pR(x) = LR(xk")/lR(xkn)

for all integers k > 1.
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