Damien Richard

Damien Richard
University College London | UCL · Institute of Child Health

PhD

About

36
Publications
8,098
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,827
Citations
Additional affiliations
August 2019 - August 2020
Cirad - La recherche agronomique pour le développement
Position
  • PostDoc Position
September 2020 - present
University College London
Position
  • PostDoc Position
November 2015 - November 2019
Cirad - La recherche agronomique pour le développement
Position
  • PhD Student

Publications

Publications (36)
Article
Full-text available
Streptococcus mitis is a leading cause of infective endocarditis (IE). However, our understanding of the genomic epidemiology and pathogenicity of IE-associated S. mitis is hampered by low IE incidence. Here we use whole genome sequencing of 129 S. mitis bloodstream infection (BSI) isolates collected between 2001–2016 from clinically diagnosed IE c...
Preprint
Full-text available
Streptococcus mitis is a leading cause of infective endocarditis (IE). However, our understanding of the genomic epidemiology and pathogenicity of IE-associated S. mitis is hampered by low IE incidence. Here we use whole genome sequencing of 217 S. mitis bloodstream infection (BSI) isolates collected between 2001–2016 from clinically diagnosed IE c...
Article
Bacterial adaptation is facilitated by the presence of mobile genetic elements (MGEs) and horizontal gene transfer (HGT) of genes, such as those coding for virulence factors or resistance to antimicrobial compounds. A hybrid assembly of Nanopore MinIon long read and Illumina short read data was produced from a copper-resistant Xanthomonas campestri...
Article
Full-text available
There has been limited characterisation of bat-borne coronaviruses in Europe. Here, we screened for coronaviruses in 48 faecal samples from 16 of the 17 bat species breeding in the UK, collected through a bat rehabilitation and conservationist network. We recovered nine complete genomes, including two novel coronavirus species, across six bat speci...
Preprint
Full-text available
While the COVID-19 pandemic, caused by SARS-CoV-2, has renewed genomic surveillance efforts in wildlife, there has been limited characterisation of bat-borne coronaviruses in Europe. We collected 48 faecal samples from all but one of the 17 bat species breeding in the UK, through an extensive network of bat rehabilitators and conservationists, and...
Article
Full-text available
Background. Urinary tract infections (UTIs) are prevalent in renal transplant (RTX) recipients and associated with worse outcomes. Early detection by sensitive diagnostic tests and appropriate treatment strategies in this cohort is therefore crucial, but evidence has shown that current methods may miss genuine infections. Research has shed light on...
Article
Full-text available
Streptococcus mitis is a common oral commensal and an opportunistic pathogen that causes bacteremia and infective endocarditis; however, the species has received little attention compared to other pathogenic streptococcal species. Effective and easy-to-use molecular typing tools are essential for understanding bacterial population diversity and bio...
Article
Full-text available
SARS-CoV-2, the agent of the COVID-19 pandemic, emerged in late 2019 in China, and rapidly spread throughout the world to reach all continents. As the virus expanded in its novel human host, viral lineages diversified through the accumulation of around two mutations a month on average. Different viral lineages have replaced each other since the sta...
Article
Full-text available
SARS-CoV-2, the causative agent of the COVID-19 pandemic, can infect a wide range of mammals. Since its spread in humans, secondary host jumps of SARS-CoV-2 from humans to multiple domestic and wild populations of mammals have been documented. Understanding the extent of adaptation to these animal hosts is critical for assessing the threat that the...
Article
Full-text available
Plasmids provide an efficient vehicle for gene sharing among bacterial populations, playing a key role in bacterial evolution. Network approaches are particularly suitable to represent multipartite relationships and are useful tools to characterize plasmid‐mediated gene sharing events. The Lysobacteraceae bacterial family gathers plant commensal, p...
Preprint
Full-text available
SARS-CoV-2, the agent of the COVID-19 pandemic, can infect a wide range of mammals. Since its spread in humans, secondary host jumps of SARS-CoV-2 from humans to a variety of domestic and wild populations of mammals have been documented. The evolution of SARS-CoV-2 in different host species is of fundamental interest while also providing indication...
Article
Full-text available
Over the past decade, ancient genomics has been used in the study of various pathogens. In this context, herbarium specimens provide a precious source of dated and preserved DNA material, enabling a better understanding of plant disease emergences and pathogen evolutionary history. We report here the first historical genome of a crop bacterial path...
Article
Full-text available
The scale of the international efforts to sequence SARS-CoV-2 genomes is unprecedented. Early availability of genomes allowed rapid characterisation of the virus, thus kickstarting many highly successful vaccine development programmes. Worldwide genomic resources have provided a good understanding of the pandemic, supported close monitoring of the...
Article
Full-text available
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the novel coronavirus responsible for the COVID-19 pandemic, continues to cause a significant public-health burden and disruption globally. Genomic epidemiology approaches point to most countries in the world having experienced many independent introductions of SARS-CoV-2 during the earl...
Preprint
Full-text available
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in late 2019 and spread globally to cause the COVID-19 pandemic. Despite the constant accumulation of genetic variation in the SARS-CoV-2 population, there was little evidence for the emergence of significantly more transmissible lineages in the first half of 2020. Starting around...
Article
Full-text available
A thorough knowledge of genotypic and phenotypic variations (e.g., virulence, resistance to antimicrobial compounds) in bacteria causing plant disease outbreaks is key for optimizing disease surveillance and management. Using a comprehensive strain collection, tandem repeat-based genotyping techniques and pathogenicity assays, we characterized the...
Article
Full-text available
High-quality Illumina assemblies were produced from 284 Xanthomonas citri pv. citri pathotype A strains mostly originating from the Southwest Indian Ocean region, a subset of which was also sequenced using MinION technology. Some strains hosted chromosomally encoded transcription activator-like effector (TALE) genes, an atypical feature for this ba...
Preprint
Full-text available
The COVID-19 pandemic has led to an unprecedented global sequencing effort of its viral agent SARS-CoV-2. The first whole genome assembly of SARS-CoV-2 was published on January 5 2020. Since then, over 150,000 high-quality SARS-CoV-2 genomes have been made available. This large genomic resource has allowed tracing of the emergence and spread of mut...
Article
Full-text available
Horizontal gene transfer is of major evolutionary importance as it allows for the redistribution of phenotypically important genes among lineages. Such genes with essential functions include those involved in resistance to antimicrobial compounds and virulence factors in pathogenic bacteria. Understanding gene turnover at microevolutionary scales i...
Article
Full-text available
COVID-19 is caused by the coronavirus SARS-CoV-2, which jumped into the human population in late 2019 from a currently uncharacterised animal reservoir. Due to this recent association with humans, SARS-CoV-2 may not yet be fully adapted to its human host. This has led to speculations that SARS-CoV-2 may be evolving towards higher transmissibility....
Preprint
Full-text available
Severe acute respiratory coronavirus 2 (SARS-CoV-2), the agent of the ongoing COVID-19 pandemic, jumped into humans from an unknown animal reservoir in late 2019. In line with other coronaviruses, SARS-CoV-2 has the potential to infect a broad range of hosts. SARS-CoV-2 genomes have now been isolated from cats, dogs, lions, tigers and minks. SARS-C...
Preprint
Full-text available
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the novel coronavirus responsible for the COVID-19 pandemic, continues to cause significant public health burden and disruption globally. Genomic epidemiology approaches point to most countries in the world having experienced many independent introductions of SARS-CoV-2 during the early...
Preprint
Full-text available
The reconstruction of the evolutionary histories of pathogen populations in space and time has greatly improved our understanding of their epidemiology. However, analyses are usually restricted to the non-recombining genomic regions and, thus, fail to inform on the dynamics of the accessory genome. Yet, horizontal gene transfer is of striking impor...
Preprint
Full-text available
The COVID-19 pandemic is caused by the coronavirus SARS-CoV-2, which jumped into the human population in late 2019 from a currently uncharacterised reservoir. Due to this extremely recent association with humans, SARS-CoV-2 may not yet be fully adapted to its human host. This has led to speculations that some lineages of SARS-CoV-2 may be evolving...
Article
Full-text available
SARS-CoV-2 is a SARS-like coronavirus of likely zoonotic origin first identified in December 2019 in Wuhan, the capital of China's Hubei province. The virus has since spread globally, resulting in the currently ongoing COVID-19 pandemic. The first whole genome sequence was published on January 52,020, and thousands of genomes have been sequenced si...
Article
Full-text available
Although some plant pathogenic bacteria represent a significant threat to agriculture, the determinants of their ecological success and evolutionary potential are still poorly understood. Refining our understanding of bacterial strain circulation at small spatial scales and the biological significance and evolutionary consequences of co-infections...
Thesis
Full-text available
Le cuivre, souvent utilisé pour gérer les bactérioses en agriculture, est largement utilisé dans la lutte contre Xanthomonas citri pv. citri (Xcc), agent responsable du chancre asiatique des agrumes. La récente détection d’un phénotype résistant au cuivre (CuR) chez Xcc dans deux territoires ultramarins français a motivé une étude génomique qui a r...
Article
Full-text available
The gammaproteobacterium Xanthomonas citri pv . citri causes Asiatic citrus canker. Pathotype A strains have a broad host range, which includes most commercial citrus species, and they cause important economic losses worldwide. Control often relies on frequent copper sprays. We present here the complete genomes of six X. citri pv . citri copper-res...
Article
Full-text available
Xanthomonas vesicatoria , Xanthomonas euvesicatoria , and Xanthomonas gardneri cause bacterial spot disease. Copper has been applied since the 1920s as part of integrated management programs. The first copper-resistant strains were reported some decades later. Here, we fully sequenced six Xanthomonas strains pathogenic to tomato and/or pepper and h...
Article
Full-text available
Copper-based antimicrobial compounds are widely used to control plant bacterial pathogens. Pathogens have adapted in response to this selective pressure. Xanthomonas citri pv. citri, a major citrus pathogen causing Asiatic citrus canker, was first reported to carry plasmid-encoded copper resistance in Argentina. This phenotype was conferred by the...
Article
Full-text available
The Stenotrophomonas genus shows great adaptive potential including resistance to multiple antimicrobials, opportunistic pathogenicity, and production of numerous secondary metabolites. Using long-read technology, we report the sequence of a plant-associated Stenotrophomonas strain originating from the citrus phyllosphere that displays a copper res...
Article
Full-text available
Xanthomonas citri pv. citri causes Asiatic citrus canker (ACC), which induces erumpent, callus-like lesions on all aerial organs, and consequently defoliation, premature fruit drop, and twig dieback under high inoculum pressure. Present in most tropical and subtropical citrus producing regions, the disease can lead to important decreases in yield a...
Article
Asiatic canker, caused by Xanthomonas citri pv. citri, is a major threat to worldwide citriculture. Three pathotypes differing in host range and hypersensitive reactions toward citrus species have been defined. Whereas pathotypes Aw and A* have a restricted host range, X. citri pv. citri pathotype A infects a broader range including most commercial...
Poster
Full-text available
Xanthomonas citri pv. citri causes Asiatic citrus canker. It has a broad host range including most commercial citrus species and causes important economic losses worldwide. We reported in 2015 its emergence in the French island of Martinique. Interestingly, all the strains from this location display a copper-resistant phenotype.
Article
Full-text available
Next-generation sequencing allows access to a large quantity of genomic data. In plants, several studies used whole chloroplast genome sequences for inferring phylogeography or phylogeny. Even though the chloroplast is a haploid organelle, NGS plastome data identified a nonnegligible number of intra-individual polymorphic SNPs. Such observations co...

Network

Cited By