
Damien FaivreAtomic Energy and Alternative Energies Commission | CEA · BIAM
Damien Faivre
Dr.
About
200
Publications
34,446
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
6,295
Citations
Citations since 2017
Introduction
see:
http://biam.cea.fr/drf/biam/english/Pages/laboratories/lbc.aspx
to learn more about my research
Additional affiliations
Education
October 2001 - September 2004
Denis Diderot
Field of study
Publications
Publications (200)
Magnetite nanoparticles possess numerous fundamental, biomedical, and industrial applications, many of which depend on tuning the magnetic properties. This is often achieved by the incorporation of trace and minor elements into the magnetite lattice. Such incorporation was shown to depend strongly on the magnetite formation pathway (i.e., abiotic v...
Adding biomolecules to living organisms and cells is the basis for creating living materials or biohybrids for robotic systems. Bioorthogonal chemistry allows covalently modifying biomolecules with functional groups not natively present under biological conditions and is therefore applicable to microorganisms and cells. Click chemistry is a biortho...
We present a spectrophotometer (optical density meter) combined with electromagnets dedicated to the analysis of suspensions of magnetotactic bacteria. The instrument can also be applied to suspensions of other magnetic cells and magnetic particles. We have ensured that our system, called MagOD, can be easily reproduced by providing the source of t...
Metal sulfides are a common group of extracellular bacterial biominerals. However, only a few cases of intracellular biomineralization are reported in this group, mostly limited to greigite (Fe3S4) in magnetotactic bacteria. Here, a previously unknown periplasmic biomineralization of copper sulfide produced by the magnetotactic bacterium Desulfampl...
Swimming microorganisms often experience complex environments in their natural habitat. The same is true for microswimmers in envisioned biomedical applications. The simple aqueous conditions typically studied in the lab differ strongly from those found in these environments and often exclude the effects of small volume confinement or the influence...
Metal sulfides are a common group of extracellular bacterial biominerals. Only few cases of intracellular biomineralization have been reported in this group, mostly limited to greigite (Fe3S4) in magnetotactic bacteria. Here, we report the intracellular but periplasmic biomineralization of copper sulfide by the magnetotactic bacterium Desulfamplus...
Metal sulfides are a common group of extracellular bacterial biominerals. Only few cases of intracellular biomineralization have been reported in this group, mostly limited to greigite (Fe3S4) in magnetotactic bacteria. Here, we report the intracellular but periplasmic biomineralization of copper sulfide by the magnetotactic bacterium Desulfamplus...
Magnetotactic bacteria (MTB) sequester iron from the environment to biomineralize magnetite or greigite nanoparticles in magnetosome organelles, though the necessity of intracellular iron storage for the formation process is still in question. Understanding the role of iron storage would make clear the contribution of MTB in geochemical iron cyclin...
Magnetite-binding proteins are in high demand for the functionalization of magnetic nanoparticles. Binding analysis of six previously uncharacterized proteins from the magnetotactic Deltaproteobacterium Desulfamplus magnetovallimortis BW-1 identified two new magnetite-binding...
Since the emergence of life on Earth, microorganisms have contributed to biogeochemical cycles. Sulfate‐reducing bacteria are an example of widespread microorganisms that participate in the metal and sulfur cycles by biomineralization of biogenic metal sulfides. In this work, we review the microbial biomineralization of metal sulfide particles and...
Magnetite nanoparticles possess numerous fundamental, biomedical and industrial applications, many of which depend on tuning the magnetic properties. This is often achieved by the incorporation of trace and minor elements into the magnetite lattice. Such incorporation was shown to depend strongly on the magnetite formation pathway (i.e., abiotic vs...
Magnetite nanoparticles possess numerous fundamental, biomedical and industrial applications, many of which depend on tuning the magnetic properties. This is often achieved by the incorporation of trace and minor elements into the magnetite lattice. Such incorporation was shown to depend strongly on the magnetite formation pathway (i.e., abiotic vs...
Crystal formation via amorphous precursors is a long-sought-after gateway to engineer nanoparticles with well-controlled size and morphology. Biomineralizing organisms, like magnetotactic bacteria, follow such a nonclassical crystallization pathway to produce magnetite nanoparticles with sophistication unmatched by synthetic efforts at ambient cond...
Micro- and nanomotors have seen substantial progress in recent years for biomedical applications. However, three grand challenges remain: (i) high velocities to overcome the blood flow, (ii) spatially selective control to enable complex navigation, and (iii) integration of a medical, tomographic real-time imaging method to acquire feedback informat...
Magnetic chains are of fundamental and technological interest. However, 1D assemblies of magnetic nanoparticles are only metastable such that their controlled organization requires the use of templates. Bacteriophages are human‐inoffensive viruses with a filamentous morphology that have been shown to exhibit great potential in materials research. H...
Microswimmers are smart devices with potential applications in medicine and biotechnology at the micrometer-scale. Magnetic micropropellers with their remote control via rotating magnetic fields are especially auspicious. Helicoidal propellers with a linear velocity–frequency dependence emerged as the standard propulsion mechanism over the last dec...
p>This report demonstrates how scanning X-ray fluorescence microscopy (SXFM) and nanoscale X-ray absorption near-edge structure (nano-XANES) can spatially and chemically identify intracellular iron species at the single-cell level, creating an opportunity to examine the role of iron storage in magnetite biomineralization. Fe K-edge nano-XANES measu...
Swimming microorganisms often experience complex environments in their natural habitat. The same is true for microswimmers in envisioned biomedical applications. The simple aqueous conditions typically studied in the lab differ strongly from those found in these environments and often exclude the effects of small volume confinement or the influence...
In recent years, magnetism has gained an enormous amount of interest among researchers for actuating different sizes and types of bio/soft robots, which can be via an electromagnetic‐coil system, or a system of moving permanent magnets. Different actuation strategies are used in robots with magnetic actuation having a number of advantages in possib...
The swimming of bacteria provides insight into propulsion and steering under the conditions of low-Reynolds number hydrodynamics. Here we address the magnetically steered swimming of magnetotactic bacteria. We use Stokesian dynamics simulations to study the swimming of single-flagellated magnetotactic bacteria (MTB) in an external magnetic field. O...
Background
Magnetosome formation in the alphaproteobacterium Magnetospirillum gryphiswaldense is controlled by more than 30 known mam and mms genes clustered within a large genomic region, the ‘magnetosome island’ (MAI), which also harbors numerous mobile genetic elements, repeats, and genetic junk. Because of the inherent genetic instability of th...
Iron oxide nanoparticles are a promising platform for biomedical applications, both in terms of diagnostics and therapeutics. In addition, arginine-rich polypeptides are known to penetrate across cell membranes. Here, we thus introduce a system based on magnetite nanoparticles and the polypeptide poly-l-arginine (polyR-Fe3O4). We show that the hybr...
Biominerals are composite materials with inorganic and organic components. The latter provide insights into how organisms control mineralization and, if derived from micro-/nannofossils, into past climates. Many calcifying organisms cannot be cultured or are extinct, the only material available for their study are therefore complex environmental sa...
Magnetic microswimmers are promising devices for biomedical and environmental applications. Bacterium flagella‐inspired magnetic microhelices with perpendicular magnetizations are currently considered standard for propulsion at low Reynolds numbers because of their well‐understood dynamics and controllability. Deviations from this system have recen...
Crystallization from solution is commonly described by classical nucleation theory, although this ignores that crystals often form via disordered nanostructures. As an alternative, the classical theory remains widely used in a “multi-step” variant, where the intermediate nanostructures merely introduce additional thermodynamic parameters. But this...
Bacteria propel and change direction by rotating long, helical filaments, called flagella. The number of flagella, their arrangement on the cell body and their sense of rotation hypothetically determine the locomotion characteristics of a species. The movement of the most rapid microorganisms has in particular remained unexplored because of additio...
Protein interaction and protein imaging strongly benefit from the advancements in time-resolved and superresolution fluorescence microscopic techniques. However, the techniques were typically applied separately and ex vivo because of technical challenges and the absence of suitable fluorescent protein pairs. Here, we show correlative in vivo fluore...
The movement of microswimmers is often described by active Brownian particle models. Here we introduce a variant of these models with several internal states of the swimmer to describe stochastic strategies for directional swimming such as run and tumble or run and reverse that are used by microorganisms for chemotaxis. The model includes a mechani...
Inspired by chains of ferrimagnetic nanocrystals (NCs) in magnetotactic bacteria (MTB), the synthesis and detailed characterization of ferrimagnetic magnetite NC chain‐like assemblies is reported. An easy green synthesis route in a thermoreversible gelatin hydrogel matrix is used. The structure of these magnetite chains prepared with and without ge...
Inspired by chains of ferrimagnetic nanocrystals (NCs) in magnetotactic bacteria (MTB), the synthesis and detailed characterization of ferrimagnetic magnetite NC chain-like assemblies is reported. An easy green synthesis route in a thermoreversible gelatin hydrogel matrix is used. The structure of these magnetite chains prepared with and without ge...
Protein-surface interactions play a pivotal role in processes as diverse as biomineralization, biofouling and the cellular response to medical implants. In biomineralization processes, biomacromolecules control mineral deposition and architecture via complex and often unknown mechanisms. For studying these mechanisms, the formation of magnetite nan...
Spin wave logic circuits using quantum oscillations of spins (magnons) as carriers of information have been proposed for next generation computing with reduced energy demands and the benefit of easy parallelization. Current realizations of magnonic devices have micrometer sized patterns. Here we demonstrate the feasibility of biogenic nanoparticle...
Control over particle size, size distribution, and col- loidal stability are central aims in producing functional nanoma- terials. Recently, biomimetic approaches have been successfully used to enhance control over properties in the synthesis of those materials. Magnetotactic bacteria produce protein stabilized magnetite away from its thermodynamic...
Here, the authors identify a mutualistic symbiosis between a non-motile, magnetic deltaproteobacterium and a protist, resulting in eukaryotic magnetoreception in marine anoxic sediments.
Magnetic iron oxide nanoparticles, magnetite/maghemite, have been identified in human tissues, including the brain, meninges, heart, liver, and spleen. As these nanoparticles may play a role in the pathogenesis of neurodegenerative diseases, a pilot study explored the occurrence of these particles in the cervical (neck) skin of 10 patients with Par...
Bacteria propel and change direction by rotating long, helical filaments, called flagella. The number of flagella, their arrangement on the cell body and their sense of rotation hypothetically determine the locomotion characteristics of a species. The movement of the most rapid microorganisms has in particular remained unexplored because of additio...
Synthetic microswimmers mimicking biological movements at the microscale have been developed in recent years. Actuating helical magnetic materials with a homogeneous rotating magnetic field is one of the most widespread techniques for propulsion at the microscale, partly because the actuation strategy revolves around a simple linear relationship be...
Magnetotactic bacteria (MTB) are a heterogeneous group of Gram-negative prokaryotes, which all produce special magnetic organelles called magnetosomes. The magnetosome consists of a magnetic nanoparticle, either magnetite (Fe3O4) or greigite (Fe3S4), embedded in a membrane, which renders the systems colloidaly stable, a desirable property for biote...
Nature has taken millennia to come up with unique solutions for providing materials with properties tailored toward versatile demands, making use of the very limited resources available in natural environments. Today, these biomaterials can be used as inspiration by combining and 'remixing' the concepts that nature displays to create new bioinspire...
The movement of microorganisms is not only an essential aspect of life, it also serves as a fruitful model for the development of synthetic microswimmers or microrobots with potential applications in environmental and medical fields. Here, we review the field of the magnetic microswimmers, which as indicated by the adjective, represents a dedicated...
Significance
Coccolithophores are abundant unicellular marine algae that produce calcified scales via a controlled intracellular process. Understanding the cellular controls over the calcification process is a pressing need to predict the influence of changing oceanic conditions on these major contributors to global marine calcification and carbon...
The world's major source of iron ore is hosted in Precambrian banded iron formations. These chemical (meta-) sedimentary rocks are composed of alternating laminae of iron oxide minerals and chert. Despite the economic significance of high-grade iron ore deposits, controversy persists after decades of research on how banded iron formations became up...
The field of synthetic microswimmers, micro-robots moving in aqueous environments, has evolved significantly in the last years. Micro-robots actuated and steered by external magnetic fields are of particular interest because of the biocompatibility of this energy source and the possibility of remote control, features suited for biomedical applicati...
Synthetic microswimmers mimicking biological movements at the microscale have been developed in recent years. Actuating helical magnetic materials with a homogeneous rotating magnetic field is one of the most widespread techniques for propulsion at the microscale, partly because the actuation strategy revolves around a simple linear relationship be...
Many motile microorganisms swim and navigate in chemically and mechanically complex environments. These organisms can be functionalized and directly used for applications (biohybrid approach), but also inspire designs for fully synthetic microbots. The most promising designs of biohybrids and bioinspired microswimmers include one or several magneti...
Magnetotactic bacteria orient in magnetic fields with the help of their magnetosome chain, a linear structure of membrane enclosed magnetic nanoparticles (magnetosomes) anchored to a cytoskeletal filament. Here, we use simulations to study the assembly and the stability of magnetosome chains. We introduce a computational model describing the attach...
Dataset of raw data for figures of the paper.
(TXT)
Critical angle for rupture.
In section 1.2, we obtained the critical angle of the external field where Ebinding > Eelasticity and as a result, the linker of the particle to the filament breaks. In this appendix, we look at this critical angle in more detail. To that end, we compare the energy of one unbinding particle in the bound and unbound confi...
The torque exerted by the external field pulls the linker of the particle to the filament with relaxed length l0 to the length l.
(EPS)
Biomineralization is the process of mineral formation by organisms and involves the uptake of ions from the environment in order to produce minerals, with the process generally being mediated by proteins. Most proteins that are involved in mineral interactions are predicted to contain disordered regions containing large numbers of negatively charge...
Magnetite is a ubiquitous iron oxide mineral found in Earth and planetary settings where its magnetic properties are, e.g., used to reconstruct past climates. Magnetite can also be biomineralized, i.e., formed by organisms such as magnetotactic bacteria or some mollusks (chitons), where the mineral is used either for its magnetic properties as comp...
Biofilm colonies are typically resistant to general antibiotic treatment and require targeted methods for their removal. One of these methods include the use of nanoparticles as carriers for antibiotic delivery, where they randomly circulate in fluid until they make contact with the infected areas. However, the required proximity of the particles t...
Magnetotactic bacteria form assemblies of magnetic nanoparticles called magnetosomes. These magnetosomes are typically arranged in chains, but other forms of assemblies such as clusters can be observed in some species and genetic mutants. As such, the bacteria have developed as a model for the understanding of how organization of particles can infl...
Magnetotactic bacteria moving on circular orbits form hydrodynamically bound states. When close to a surface and with the tilting of the field in a direction close to the perpendicular to this surface these swarms move perpendicularly to the tilting angle. We describe quantitatively this motion by a continuum model with couple stress arising from t...
Many organisms form minerals from precursor phases that crystallize under strict biological control. The dynamic intracellular processes of formation, transport, and deposition of these precursor phases are challenging to identify. An unusual situation is recently revealed for the calcifying alga Emiliania huxleyi, as the cells contain a compartmen...
The formation of intricately shaped crystalline minerals by organisms is orchestrated by specialized biomacromolecules. The macromolecules associated with coccoliths, nanometer-sized calcite crystal arrays produced by marine microalgae, can form a distinct calcium-rich phase via macromolecular recognition. Here, we show that this calcium-rich phase...
Teeth are designed to deliver high forces while withstanding the generated stresses. Aside from isolated mineral-free exception (e.g., marine polychaetes and squids), minerals are thought to be indispensable for tooth-hardening and durability. Here, the unmineralized teeth of the giant keyhole limpet (Megathura crenulata) are shown to attain a stif...
Magnetite nanoparticles exhibit magnetic properties that are size and organization dependent and, for applications that rely on their magnetic state, they usually have to be monodisperse. Forming such particles, however, has remained a challenge. Here, we synthesize 40 nm particles of magnetite in the presence of polyarginine and show that they are...