Dalia Gordon

Dalia Gordon
Weizmann Institute of Science | weizmann · Department of Biological Chemistry

Dr.

About

159
Publications
13,326
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
6,144
Citations
Additional affiliations
September 2014 - present
Weizmann Institute of Science
Position
  • Consultant
July 1999 - February 2012
Tel Aviv University
Position
  • Tel-Aviv University

Publications

Publications (159)
Article
Scorpion α-toxins bind at the pharmacologically-defined site-3 on the sodium channel and inhibit channel inactivation by preventing the outward movement of the voltage sensor in domain IV (IVS4), whereas scorpion β-toxins bind at site-4 on the sodium channel and enhance channel activation by trapping the voltage sensor of domain II (IIS4) in its ou...
Article
Full-text available
Nucleolin is a multifunctional RNA Binding Protein (RBP) with diverse subcellular localizations, including the nucleolus in all eukaryotic cells, the plasma membrane in tumor cells, and the axon in neurons. Here we show that the glycine arginine rich (GAR) domain of nucleolin drives subcellular localization via protein-protein interactions with a k...
Article
Full-text available
The interaction of insect-selective scorpion depressant β-toxins (LqhIT2 and Lqh-dprIT3 from Leiurus quinquestriatus hebraeus) with the Blattella germanica sodium channel, BgNav1-1a, was investigated using site-directed mutagenesis, electrophysiological analyses, and structural modeling. Focusing on the pharmacologically-defined binding site-4 of s...
Article
Many venomous organisms carry in their arsenal short polypeptides that block K⁺ channels in a highly selective manner. These toxins may compete with the permeating ions directly via a “plug” mechanism or indirectly via a “pore-collapse” mechanism. An alternative “lid” mechanism was proposed but remained poorly defined. Here we study the Drosophila...
Article
Full-text available
Animal venoms are considered as a promising source of new drugs. Sea anemones release polypeptides that affect electrical activity of neurons of their prey. Voltage dependent sodium (Nav) channels are the common targets of Av1, Av2, and Av3 toxins from Anemonia viridis and CgNa from Condylactis gigantea. The toxins bind to the extracellular side of...
Article
Full-text available
How is neuropathic pain regulated in peripheral sensory neurons? Importins are key regulators of nucleocytoplasmic transport. In this study, we found that importin α3 (also known as karyopherin subunit alpha 4) can control pain responsiveness in peripheral sensory neurons in mice. Importin α3 knockout or sensory neuron-specific knockdown in mice re...
Preprint
Full-text available
Many venomous organisms carry in their arsenal short peptides that block K ⁺ channels in a highly selective manner. These toxins may compete with the permeating ions directly via a "plug" mechanism or indirectly via a "pore-collapse" mechanism. An alternative "lid" mechanism was proposed, but remains poorly defined. Here we study the block of the D...
Article
Full-text available
Voltage-dependent potassium channels (K v s) gate in response to changes in electrical membrane potential by coupling a voltage-sensing module with a K ⁺ -selective pore. Animal toxins targeting K v s are classified as pore blockers, which physically plug the ion conduction pathway, or as gating modifiers, which disrupt voltage sensor movements. A...
Preprint
Full-text available
Voltage dependent potassium channels (K v s) gate in response to changes in electrical membrane potential by coupling a voltage-sensing module with a K ⁺ - selective pore. Animal toxins targeting K v s are classified to "pore-blockers" that physically plug the ion conduction pathway and "gating modifiers" that disrupt voltage sensor movements. A th...
Chapter
Full-text available
Scorpion alpha and beta toxins interact with voltage-gated sodium channels (Navs) at two pharmacologically distinct sites. Alpha toxins bind at receptor site 3 and inhibit channel inactivation, whereas beta toxins bind at receptor site 4 and shift the voltage-dependent activation toward more hyperpolarizing potentials. The two toxin classes are sub...
Article
Full-text available
Av3 is a peptide neurotoxin from the sea anemone Anemonia viridis that shows specificity for arthropod voltage-gated sodium channels (Navs). Interestingly, Av3 competes with a scorpion a-toxin on binding to insect Navs and similarly inhibits the inactivation process, and thus has been classified as 'receptor site-3 toxin', although the two peptides...
Article
Full-text available
Tetrodotoxin-sensitive persistent sodium currents, INaP, that activate at subthreshold voltages, have been detected in numerous vertebrate and invertebrate neurons. These currents are believed to be critical for regulating neuronal excitability. However, the molecular mechanism underlying INaP is controversial. In this study, we identified an INaP...
Article
Full-text available
The scorpion α-toxins Lqh II, Lqh III, and LqhαIT from Leiurus quinquestriatus hebraeus are representatives of typical α-toxins, specific for either mammals (Lqh II) or insects (LqhαIT), and α-like toxins (Lqh III) which act on both mammals and insects. For a comparative study of the effects of these toxins on mammalian sodium channels we stably ex...
Article
AbstractTetrodotoxin-sensitive persistent sodium currents, INaP, that activate at subthreshold voltages, have been detected in numerous vertebrate and invertebrate neurons. These currents are believed to be critical for regulating neuronal excitability. However, the molecular mechanism underlying INaP is controversial. In this study, we identified...
Article
Full-text available
The position of the voltage-sensing transmembrane segment, S4, in voltage-gated ion channels as a function of voltage remains incompletely elucidated. Site-3 toxins bind primarily to the extracellular loops connecting transmembrane helical segments S1-S2 and S3-S4 in Domain 4 (D4) and S5-S6 in Domain 1 (D1) and slow fast-inactivation of voltage-gat...
Chapter
Full-text available
Scorpion alpha and beta toxins interact with voltage-gated sodium channels (Navs) at two pharmacologically distinct sites. Alpha toxins bind at receptor site 3 and inhibit channel inactivation, whereas beta toxins bind at receptor site 4 and shift the voltage-dependent activation toward more hyperpolarizing potentials. The two toxin classes are sub...
Article
Full-text available
Ion selectivity of metazoan voltage-gated Na(+) channels is critical for neuronal signaling and has long been attributed to a ring of four conserved amino acids that constitute the ion selectivity filter (SF) at the channel pore. Yet, in addition to channels with a preference for Ca(2+) ions, the expression and characterization of Na(+) channel hom...
Article
Full-text available
Activation of voltage-gated sodium (Na(v)) channels initiates and propagates action potentials in electrically excitable cells. β-Scorpion toxins, including toxin IV from Centruroides suffusus suffusus (CssIV), enhance activation of Na(V) channels. CssIV stabilizes the voltage sensor in domain II in its activated state via a voltage-sensor trapping...
Article
Activation of voltage-gated sodium (Nav) channels initiates and propagates action potentials in electrically excitable cells. The -scorpion toxin CssIV traps a voltage-sensor of Nav channels in its activated state via a voltage-sensor trapping mechanism and thus shifts their voltage dependence of activation to more negative membrane potentials. The...
Article
Full-text available
Jellyfish, hydras, corals and sea anemones (phylum Cnidaria) are known for their venomous stinging cells, nematocytes, used for prey and defence. Here we show, however, that the potent Type I neurotoxin of the sea anemone Nematostella vectensis, Nv1, is confined to ectodermal gland cells rather than nematocytes. We demonstrate massive Nv1 secretion...
Article
Full-text available
The α-scorpions toxins bind to the resting state of Na(+) channels and inhibit fast inactivation by interaction with a receptor site formed by domains I and IV. Mutants T1560A, F1610A, and E1613A in domain IV had lower affinities for Leiurus quinquestriatus hebraeus toxin II (LqhII), and mutant E1613R had ~73-fold lower affinity. Toxin dissociation...
Article
Full-text available
Neurotoxin receptor site-3 at voltage-gated Na(+) channels is recognized by various peptide toxin inhibitors of channel inactivation. Despite extensive studies of the effects of these toxins, their mode of interaction with the channel remained to be described at the molecular level. To identify channel constituents that interact with the toxins, we...
Article
Full-text available
Voltage-gated sodium (Na(v)) channels are the molecular targets of β-scorpion toxins, which shift the voltage dependence of activation to more negative membrane potentials by a voltage sensor-trapping mechanism. Molecular determinants of β-scorpion toxin (CssIV) binding and action on rat brain sodium channels are located in the S1-S2 (IIS1-S2) and...
Article
Full-text available
Scorpion β-toxins bind to the extracellular regions of the voltage-sensing module of domain II and to the pore module of domain III in voltage-gated sodium channels and enhance channel activation by trapping and stabilizing the voltage sensor of domain II in its activated state. We investigated the interaction of a highly potent insect-selective sc...
Article
Full-text available
Scorpion β-toxin 4 from Centruroides suffusus suffusus (Css4) enhances the activation of voltage-gated sodium channels through a voltage sensor trapping mechanism by binding the activated state of the voltage sensor in domain II and stabilizing it in its activated conformation. Here we describe the antagonist and partial agonist properties of a mut...
Article
Voltage-gated sodium channels are molecular targets of β-scorpion toxins, which enhance excitability by shifting the voltage dependence of activation to more negative potentials. These effects result from a voltage sensor trapping mechanism, in which toxins trap the voltage sensor in its activated conformation. Determinants of β-scorpion toxin (Css...
Article
Full-text available
The venom of sea anemones is rich in low molecular weight proteinaceous neurotoxins that vary greatly in structure, site of action, and phyletic (insect, crustacean or vertebrate) preference. This toxic versatility likely contributes to the ability of these sessile animals to inhabit marine environments co-habited by a variety of mobile predators....
Article
Full-text available
Alpha-neurotoxins target voltage-gated sodium channels (Navs) and constitute an important component in the venom of Buthidae scorpions. These toxins are short polypeptides highly conserved in sequence and three-dimensional structure, and yet they differ greatly in activity and preference for insect and various mammalian Navs. Despite extensive stud...
Article
Full-text available
Sea anemones are sessile predators that use a variety of toxins to paralyze prey and foe. Among these toxins, Types I, II and III are short peptides that affect voltage-gated sodium channels. Anemonia viridis is the only sea anemone species that produces both Types I and III neurotoxin. Although the two toxin types are unrelated in sequence and thr...
Article
Full-text available
Several peptide families, including insect antimicrobial peptides, plant protease inhibitors, and ion channel gating modifiers, as well as blockers from scorpions, bear a common CSalphabeta scaffold. The high structural similarity between two peptides containing this scaffold, drosomycin and a truncated scorpion beta-toxin, has prompted us to exami...
Article
Full-text available
The scorpion α-toxin Lqh2 (from Leiurus quinquestriatus hebraeus) is active at various mammalian voltage-gated sodium channels (Navs) and is inactive at insect Navs. To resolve the molecular basis of this preference we used the following strategy: 1) Lqh2 was expressed in recombinant form and key residues important for activity at the rat brain cha...
Article
Full-text available
Abstract A new toxin, LqhαlT, which causes a unique mode of paralysis in blowfly larvae, was purified from the venom of the scorpion Leiurus quinquestriatus hebraeus, and its structural and pharmacological properties were compared to those of three other groups of neurotoxins found in Buthinae scorpion venoms. Like the excitatory and depressant ins...
Article
Full-text available
Sea anemones use an arsenal of peptide neurotoxins accumulated in special stinging cells (nematocytes) for defense and predation. Intriguingly, genomic analysis of Nematostella vectensis revealed only a single toxin, Nv1 (N. vectensis toxin 1), encoded by multiple extremely conserved genes. We examined the toxic potential of Nv1 and whether it is p...
Article
Full-text available
The bioactive surface of scorpion beta-toxins that interact with receptor site-4 at voltage-gated sodium channels is constituted of residues of the conserved betaalphabetabeta core and the C-tail. In an attempt to evaluate the extent by which residues of the toxin core contribute to bioactivity, the anti-insect and anti-mammalian beta-toxins Bj-xtr...
Article
Voltage-gated sodium channels (Navs) are large transmembrane proteins that initiate action potential in electrically excitable cells. This central role in the nervous system has made them a primary target for a large number of neurotoxins. Scorpion alpha-neurotoxins bind to Navs with high affinity and slow their inactivation, causing a prolonged ac...
Article
Full-text available
Among scorpion beta- and alpha-toxins that modify the activation and inactivation of voltage-gated sodium channels (Na(v)s), depressant beta-toxins have traditionally been classified as anti-insect selective on the basis of toxicity assays and lack of binding and effect on mammalian Na(v)s. Here we show that the depressant beta-toxins LqhIT2 and Lq...
Article
Full-text available
Gating modifiers of voltage-gated sodium channels (Navs) are important tools in neuroscience research and may have therapeutic potential in medicinal disorders. Analysis of the bioactive surface of the scorpion β-toxin Css4 (from Centruroides suffusus suffusus) toward rat brain (rNav1.2a) and skeletal muscle (rNav1.4) channels using binding studies...
Article
Full-text available
Av3 is a short peptide toxin from the sea anemone Anemonia viridis shown to be active on crustaceans and inactive on mammals. It inhibits inactivation of Na(v)s (voltage-gated Na+ channels) like the structurally dissimilar scorpion alpha-toxins and type I sea anemone toxins that bind to receptor site-3. To examine the potency and mode of interactio...
Article
The affinity of scorpion alpha-toxins for various voltage-gated sodium channels (Na(v)s) differs considerably despite similar structures and activities. It has been proposed that key bioactive residues of the five-residue-turn (residues 8-12) and the C-tail form the NC domain, whose topology is dictated by a cis or trans peptide-bond conformation b...