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ABSTRACT

We address the problem of evaluating the power spectrum of the velocity field of the ICM using
only information on the plasma density fluctuations, which can be measured today by Chandra and
XMM-Newton observatories. We argue that for relaxed clusters there is a linear relation between the
rms density and velocity fluctuations across a range of scales, from the largest ones, where motions
are dominated by buoyancy, down to small, turbulent scales: (δρk/ρ)2 = η2

1(V1,k/cs)
2, where δρk/ρ

is the spectral amplitude of the density perturbations at wave number k, V 2
1,k = V 2

k /3 is the mean
square component of the velocity field, cs is the sound speed, and η1 is a dimensionless constant of
order unity. Using cosmological simulations of relaxed galaxy clusters, we calibrate this relation and
find η1 ≈ 1± 0.3. We argue that this value is set at large scales by buoyancy physics, while at small
scales the density and velocity power spectra are proportional because the former are a passive scalar
advected by the latter. This opens an interesting possibility to use gas density power spectra as a
proxy for the velocity power spectra in relaxed clusters, across a wide range of scales.
Subject headings: galaxies: clusters: intracluster medium—hydrodynamics—methods: analytical—

methods: numerical—plasmas—turbulence

1. INTRODUCTION

Spectacular data accumulated by X-ray observatories
on the nearest X-ray brightest clusters of galaxies allow
us to probe inhomogeneities in the intracluster medium
(ICM) over a broad range of spatial scales. These clusters
typically show ∼ 5 − 10% density fluctuations on scales
from a few tens to a few hundred kpc (Churazov et al.
2012; Sanders & Fabian 2012, see also Schuecker et al.
2004 for earlier work). At the same time, the dynamics
of the ICM remain largely unknown. For relaxed clus-
ters, numerical simulations predict predominantly sub-
sonic motions of the ICM on scales from ∼Mpc down
to a few tens of kpc with approximately Kolmogorov
power spectra (PS) of the velocity field (see, e.g., Nor-
man & Bryan 1999; Dolag et al. 2005; Nagai et al. 2007b;
Iapichino et al. 2011; Vazza et al. 2011).

The relatively low energy resolution (∼ 130− 150 eV)
of current X-ray CCD-type detectors precludes accurate
measurements of gas velocities (see, e.g., Zhuravleva et
al. 2013b; Tamura et al. 2014). The gain in resolution
can be achieved in cool cores of clusters by using grating
spectrometers. Such observations provide mostly upper
limits on the gas velocities ∼ a few hundred km/s (e.g.,
Werner et al. 2009; Sanders & Fabian 2013; Churazov et
al. 2004). One can also use Faraday Rotation measure-
ments to probe the ICM turbulence indirectly (e.g., Vogt
& Enßlin 2003).

The future Japanese-US X-ray observatory Astro-H
(see Takahashi et al. 2010, launch in 2015) should pro-
vide high-resolution (∼ 4−7 eV) X-ray spectra, allowing
one for the first time to measure gas velocities directly.
However, it will not be trivial to extract the PS of the
velocity field (see methods developed in Zhuravleva et al.
2012). The full power of the methods can only be used
once the next generation of X-ray observatories, such as
SMART-X1 and Athena+2, are operating.

In the meantime, are there ways to probe the veloc-
ity PS with existing and near-term data? In this Letter,
we argue that, for subsonic motions in relaxed clusters,
there is a linear relation between the PS of density fluc-
tuations derived from X-ray images, and the velocity PS.
Using analytical description of a passive scalar advected
by fluid motions in stratified medium, we show that the
linearity holds from large scales, where motions are dom-
inated by buoyancy, down to small, turbulent scales,
with the same coefficient of proportionality. In turbu-
lent regime linear dependence was found in simulations
of massive cluster with solenoidal forcing in Gaspari &
Churazov (2013). It is interesting that similar situations
arise in the context of solar wind, Earth atmosphere, and
the ISM (see, e.g. Armstrong et al. 1995).

1 http://smart-x.cfa.harvard.edu/index.html
2 http://athena2.irap.omp.eu/

ar
X

iv
:1

40
4.

53
06

v1
  [

as
tr

o-
ph

.H
E

] 
 2

1 
A

pr
 2

01
4



2 Zhuravleva et al.

Churazov et al. (2012) list the following contributions
to measured density variations in clusters: (1) perturba-
tions of the gravitational potential; (2) deviations from
the oversimplified model profiles; (3) entropy fluctua-
tions caused by infalling low-entropy gas or by gas advec-
tion; (4) pressure variations associated with gas motions
and sound waves; (5) metallicity variations; (6) the pres-
ence of non-thermal and spatially variable components.
Cosmological simulations of relaxed clusters (Section 3),
which include effects (1)–(4), illustrate that predicted
linearity holds approximately in the case of natural cos-
mological driving. In the companion paper (Gaspari et
al., 2014, hereafter G14), high-resolution simulations in
a static gravitational potential with solenoidal forcing of
turbulence are used to investigate items (3) and (4) and
the role of isotropic thermal conduction.

2. VELOCITY FIELD AND DENSITY FLUCTUATIONS

Let us consider slow, subsonic gas motions in a cluster
potential. Two different regimes can be distinguished:
(i) a large-scale limit, where the dynamics are governed
by buoyancy and (ii) a turbulent regime at small scales,
where the eddy turnover time is shorter than the charac-
teristic buoyancy time scale. Below, we argue that there
is a linear relation with the same constant of propor-
tionality between the amplitudes of the gas density and
velocity fluctuations in both regimes.

2.1. Buoyancy-dominated regime (large scales)

Assuming that the ICM can be described by standard
hydrodynamics (or magnetohydrodynamics), the entropy
s = P/ργ (where P is pressure, ρ density and γ = 5/3
the adiabatic index) satisfies

∂s

∂t
+ V · ∇s = 0, (1)

where V is the flow velocity and we have neglected
any heat fluxes, heating or cooling of the ICM. In a
static equilibrium, the entropy has a radial profile s0(r)
(a stratified atmosphere in a gravitational well). As
the ICM is turbulent, this profile will be perturbed
on scales that are smaller than the scale height Hs =
(d ln s0/dr)

−1 — and if we assume that the ICM motions

are subsonic, V � cs =
√
γP0/ρ0, these perturbations

will be small: s = s0 + δs, δs/s0 � 1. They satisfy(
∂

∂t
+ V · ∇

)
δs

s0
= − Vr

Hs
, (2)

where Vr is the radial velocity perturbation.
If all perturbations, including V/cs, were infinitesimal,

the restoring buoyancy force on a gas element displaced
in the radial direction would result in oscillatory motions
— gravity waves, or g-modes. Their frequency is

ω =
k⊥
k
N, N =

√
g

γHs
=

cs

γ
√
HsHp

, (3)

where k is the wave number of the oscillations, k⊥ its
projection perpendicular to the radial direction, N is the
Brunt-Väisälä frequency, g is the acceleration of grav-
ity, Hp = (d lnP0/dr)

−1 is the pressure scale height,3

3 In an isothermal cluster, Hp/Hs = γ − 1 = 2/3. In simulated

and the last equality follows from the hydrostatic force
balance, dP0/dr = ρ0g. The density perturbations asso-
ciated with these motions are(

δρ

ρ

)2

=

(
1

γ

δs

s

)2

=

(
Vr

γωHs

)2

=
Hp

Hs

k2

k2
⊥

(
Vr
cs

)2

,

(4)
which follows from equation (2) if the advection term is
neglected; we have suppressed 0’s in the subscripts of
equilibrium quantities. The relationship between δρ/ρ
and δs/s is a consequence of local pressure balance
(δP/P � δρ/ρ), which holds for subsonic motions.

In reality, perturbations are not infinitesimal and the
question is to what extent the linear relationship between
density and velocity survives in the strongly nonlinear
regime, when the advection term in equation (2) is not
negligible. The argument that this relationship does sur-
vive depends somewhat nontrivially on the strength of
the ICM turbulence at the outer (energy-injection) scale.
The key parameter is the Froude number,

Fr =
Vrms

L⊥N
= Ma

γ
√
HsHp

L⊥
, (5)

the ratio of the nonlinear decorrelation and linear Brunt-
Väisälä frequencies at the outer scale (Vrms is the rms
velocity of the turbulent motions, Ma = Vrms/cs is the
Mach number and L⊥ is the outer scale perpendicular to
the radial direction).

If Fr � 1, the turbulence will tend to a stratified,
anisotropic regime, in which k⊥ � k ≈ kr and the
gravity-wave frequency ω = Nk⊥/k � N stays com-
parable to the nonlinear decorrelation rate k⊥V⊥ (a
type of “critically balanced” state; see Lindborg 2006;
Nazarenko & Schekochihin 2011). In this regime, buoy-
ancy remains important scale by scale (k by k) as the
energy cascades to smaller scales (larger k), the relation-
ship (4) is approximately satisfied, and the typical ve-
locity of the motions is dominated by the perpendicular
velocity: V ∼ V⊥ ∼ (kr/k⊥)Vr � Vr (by incompressibil-
ity). Therefore, we deduce, at each k,(

δρk
ρ

)2

= η2

(
Vk
cs

)2

, (6)

where η is a scale-independent dimensional constant of
order unity. Here δρk and Vk are some suitably defined
fluctuation amplitudes at scale k−1 (see Section 3.2),
rather than Fourier components, they are related to the
3D spectrum Ek by |Vk|2 ∼ kEk.

For this kind of turbulence, it is possible to show
(see Lindborg 2006; Nazarenko & Schekochihin 2011,
and references therein) that the energy spectrum of the
perpendicular motions (and, therefore, of the density
perturbations) is Kolmogorov in the perpendicular di-

rection, Ek ∼ ε2/3k
−5/3
⊥ , where ε is the energy flux,

and much steeper in the radial direction, Ek ∼ N2k−3
r

(Dewan 1997; Billant & Chomaz 2001), but that as
the turbulent cascade proceeds to smaller scales, tur-
bulence becomes less anisotropic, eventually reaching
isotropy (k⊥ ∼ kr, V⊥ ∼ Vr) at the so-called Ozmi-

clusters (Section 3) typical values of Hp and Hs are ∼ 200 − 300
kpc at distance 100 kpc from the center.



Relation between gas density and velocity power spectra 3

dov scale, k ∼ kO = N3/2ε−1/2, where the perpen-
dicular and radial spectra meet and the “local” Froude
number is VkOkO/N ∼ 1 (Ozmidov 1992; for the lat-
est numerical results, see Augier et al. 2012). Beyond
this scale (k > kO), the stratified cascade turns into the
usual isotropic Kolmogorov cascade, in which k⊥ ∼ kr,
Vr ∼ V⊥, Ek ∼ ε2/3k−5/3, the nonlinear decorrelation
rate becomes dominant compared to the linear gravity-
wave frequency ω ∼ N — and the relation (6) continues
to be satisfied, but for reasons unrelated to the buoyancy
physics and considered in Section 2.2.

If Fr ∼ 1 at the outer scale, the turbulence can be as-
sumed isotropic, with k⊥ ∼ kr ∼ k and Vr ∼ V⊥ ∼ Vrms

already at kL⊥ ∼ 1, and so the relation (6) is satisfied at
the outer scale. Again, it will continue to be satisfied at
kL > 1, as we are about to explain. This is probably the
more common situation: in relaxed clusters (see Table

1), Fr ∼ 0.3 (L⊥/300 kpc)
−1 ∼ 0.3− 1.

Thus, in the entire interval of scales where buoyancy
matters (which may or may not extend beyond the outer
scale, depending on the value of Fr), one can expect a
linear relation between the velocity and the density per-
turbation with a coefficient of order unity, equation (6).

2.2. Turbulent regime (small scales)

Consider now the limit of small scales, k > kO. At
these scales (the “inertial range”), the nonlinear decor-
relation (eddy turnover) rate becomes increasingly (with
k) greater than the Brunt-Väisälä frequency. This means
that the right-hand side of equation (2) can be neglected
and so the entropy fluctuations are a passive scalar field.
Since δρ/ρ = −(1/γ)δs/s, so are the density fluctuations.

A scaling theory for such passive fluctuations in the
inertial range can be constructed along the lines of the
Obukhov–Corrsin theory (Obukhov 1949; Corrsin 1951).
The total variance of δρ/ρ is conserved, and so there
should be a constant flux ερ of it towards smaller scales:(

δρk
ρ

)2

∼ ερτk
c2s

, (7)

where ερ is the scalar dissipation rate, τk is the typical
“cascade time” and c2s appears in the right-hand side sim-
ply to ensure convenient normalization of the flux ερ to
energy units. Similarly, for the turbulent motions them-
selves,

V 2
k ∼ εV τk, (8)

where εV is the flux of the kinetic energy and τk is the
same cascade time as in equation (7) because both δρ/ρ
and V are mixed by the same velocity field. From equa-
tion (8), τk ∼ V 2

k /ε and, therefore, from equation (7),(
δρk
ρ

)2

∼ ερ
εV

(
Vk
cs

)2

. (9)

Thus, the spectrum of the passive scalar follows the spec-
trum of the velocity field in the inertial range. The con-
stant of proportionality in equation (9), ερ/εV , depends
on how much scalar variance, compared to kinetic energy,
arrives into the inertial range from the larger, buoyancy-
dominated scales. Therefore, the relationship (9) should
be matched with (6): ερ/εV ∼ η2.

TABLE 1
Sample of simulated galaxy clusters

ClusterID r500c, kpc M500c, 1014·M� Ma

CL149 814.4 1.83 0.48
CL21 1215.2 6.08 0.21
CL223 824 1.9 0.29
CL25 1095.8 4.46 0.32
CL27 1154.5 5.21 0.23
CL42 1297.7 7.4 0.27

Note. — Mach number Ma = Vrms/cs is calculated as the RMS
of the velocity in the central 500 kpc after subtracting the mean
velocity in this region.

Note that these conclusions are independent of what
precisely the spectrum of the turbulence is because the
argument above was based only on the assumption that
the cascade times are the same for the passive scalar
and for the turbulence that advects it. This is reas-
suring because ICM turbulence is certainly not a sim-
ple hydrodynamic Kolmogorov turbulence of an iner-
tial fluid. At the very least, it is magnetohydrody-
namic, as clusters are known to host dynamically sig-
nificant magnetic fields (see e.g., Schekochihin & Cowley
2006; Enßlin & Vogt 2006, and references therein). Since
β = 8πP/B2 ∼ 102 � 1, these fields do not significantly
modify buoyancy physics at large scales.4 In the inertial
range, the turbulence may be MHD rather than hydro-
dynamic, but density fluctuations continue to behave as
a passive scalar in Alfvénic MHD and even kinetic tur-
bulence (Schekochihin & Cowley 2007; Schekochihin et
al. 2009) and so the above argument continues to hold.5

Thus, the conclusion from this section is that the re-
lation (6) holds with the same proportionality constant
both at scales where buoyancy physics matters and at
those where it does not and independently of whether Fr
is small or order unity (i.e., independently of how vigor-
ous the turbulence is and of whether it is isotropic Kol-
mogorov turbulence or anisotropic stratified one). Below,
we verify these arguments using a sample of cosmological
hydrodynamic simulations of galaxy clusters.

3. CALIBRATION WITH COSMOLOGICAL SIMULATIONS

3.1. Simulations and sample of galaxy clusters

We use high-resolution cosmological simulations of
galaxy clusters in a flat ΛCDM model with WMAP five-
year cosmological parameters: Ωm = 1 − ΩΛ = 0.27,
Ωb = 0.0469, h = 0.7 and σ8 = 0.82. The simulations are
performed using the Adaptive Refinement Tree (ART)
N -body+gas-dynamics code (Kravtsov 1999; Kravtsov
et al. 2002; Rudd et al. 2008), which is an Eulerian
code that uses adaptive refinement in space and time
and non-adaptive refinement in mass (Klypin et al. 2001)
to achieve the dynamic ranges necessary to resolve the
cores of halos formed in self-consistent cosmological sim-

4 At least not on the qualitative level. Strictly speaking, one
ought to worry about the instabilities caused by anistropic heat
fluxes (see, e.g., Balbus 2000; Kunz 2011; Quataert 2008, and ref-
erences therein).

5 Matters may become more complicated at scales below the
collisional mean free path, where density fluctuations are subject
to collisionless damping (Schekochihin et al. 2009), but such small
scales are unlikely to be observable in the near future.



4 Zhuravleva et al.

Fig. 1.— X-ray surface brightness (2×2 Mpc) of simulated cluster
CL21 (inset), and its radial profile (main plot, red points). Black
curve: best-fitting β model. Vertical dash lines: the fitting interval.

ulations. Details of the zoom-in simulations used here
can be found in Nelson et al. (2014, Section 3.1).

Our sample includes 6 relaxed clusters at z = 0. Their
X-ray morphology exhibits spherical or elliptical symme-
try with no filamentary or clumpy substructures within
r500c (see Nagai et al. 2007a). We analyze non-radiative
(NR) runs only, because these involve physical processes
directly relevant to those discussed in Section 2.

We analyze fluctuations in the central ∼ 500 kpc
(radius) region. The gas motions are subsonic with
Ma ∼ 0.2 − 0.5 (Table 1). X-ray images of the NR re-
laxed clusters do not show any prominent subhaloes or
clumpy structures within ∼ 500 kpc (Fig. 1, inset). Only
cluster CL25 has a small subhalo, which we remove from
the analysis. Subhaloes/clumps, which are present in 3D
data and are not visible in projection, only slightly af-
fect our results. E.g., for cluster CL149 the exclusion of
clumps with δρ/ρ > 1 removes ∼1.8% of the volume and
changes the total rms of δρ/ρ by ∼10%. The changes in
Ma are less than 1%.

3.2. Power spectra of density and velocity fluctuations

For each cluster in our sample, we calculated the
3D emissivity-weighted electron density as ne,X =

ne
√

Λ(T ), where Λ(T ) is the gas emissivity (Sutherland
& Dopita 1993), and three components of the normalized
velocity field, Vx,y,z/cs. Projecting the squared density
along one of the directions, the X-ray surface brightness

(SB), IX(x, y) ∝
∫
n2
e,X(x, y, z)dz, is obtained. We cal-

culate the spherically-symmetric radial profile of the SB,
and approximate it with a β model (Fig. 1). Dividing the
density by the corresponding 3D β model and subtract-
ing unity, the 3D density fluctuations δρ/ρ are obtained.
The center of each cluster is chosen as the peak of the gas
density within the central ∼ 50 kpc region and confirmed
by the visual inspection.

We then use the modified ∆−variance method
(Arévalo et al. 2012) to calculate P3D(k), the PS of
the 3D density fluctuations and velocity. These spec-
tra are converted to fluctuations amplitudes Ak =√

4πP3D(k)k3. Fig. 2 shows an example of such am-
plitudes of the density fluctuations δρk/ρ and of rms

Fig. 2.— Amplitudes of density and velocity fluctuations (top
panel) and their ratio (bottom panel) for CL21 cluster. A conven-
tion k = 1/λ without a factor 2π is used throughout. The ratio is
consistent with unity with a scatter < 10% (gray shaded region)
at scales ∼ 30 − 300 kpc (vertical dotted lines), which are least
affected by numerical artifacts (see Section 3.2).

Fig. 3.— Sample-averaged ratio of the amplitudes of density and
velocity fluctuations. Shaded region: scatter over the sample. Solid
curves and shadows: the range of scales least affected by numerical
artifacts (see Section 3.2). The ratio is η1 = 1 ± 0.3 at scales
∼ 30 − 300 kpc−1.

velocity component V1,k =
√

(V 2
x,k + V 2

y,k + V 2
z,k)/3 for

cluster CL21. These amplitudes follow each other over a
broad range of scales. Their ratio η1 = (δρk/ρ)/(V1,k/cs)
is close to unity with ∼ 10% deviations.

Even though the relationship (6) is found to hold over
a broad range of scales, the amplitudes at the smallest
and the largest scales are affected by several artifacts. At
k & 4 · 10−2 kpc−1, the limit of numerical resolution is
reached. At the largest scales, the amplitude is (a) sensi-
tive to the underlying model used to correct for the global
structure of the cluster; (b) affected by uncertainties due
to stochastic nature of perturbations. The sensitivity
to (a) is estimated by experimenting with different un-
derlying models (e.g., non-spherical β models, averaged
profiles). In order to evaluate the uncertainties (b), we
experimented with multiple realizations of a Gaussian
field that had a PS similar to that of density/velocity
fluctuations in simulated clusters. As expected there are
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large variations at k ∼ 1/L, where L = 1000 kpc is the
size of the box. At k ≥ 3/L ∼ 3 · 10−3 kpc−1 the varia-
tions drop down to ∼ 5− 10%.

The ratio η1 of the amplitudes of density and velocity
fluctuations averaged over a sample of relaxed clusters is
shown in Fig. 3. It is consistent with η1 = 1 at scales
∼ 30− 300 kpc, with a relatively modest scatter .30%.
There are many possible reasons for this scatter. In par-
ticular, the presence of individual subhaloes, the choice
of the cluster center and the underlying model, effects
of AMR resolution and of finite Ma (see G14) can all
contribute to variations at this level.

In order to assess the effects of the AMR resolution
on our results, we resimulated one cluster, varying the
maximum refinement levels from 6 to 9 (the default one
is 8). In the lowest-resolution runs, both density and ve-
locity fluctuations are suppressed compared to the high-
resolution runs at all scales, except for the largest ∼ 300
kpc. The amplitudes of density fluctuations in simula-
tions with the refinement levels 8 and 9 globally follow
each other at scales ∼ 50-300 kpc. However, at some
scales, deviations are up to a factor 1.3. The velocity
amplitudes are the same at scales ∼ 300 − 100 kpc and
differ by a factor 1.5 at ∼ 50 kpc. Despite individual PS
varying with the AMR resolution, the ratio of density
and velocity fluctuations in all runs is still close to unity,
with the scatter up to 25% at scales ∼ 50− 300 kpc.

4. CONCLUSIONS

In this Letter, we have addressed the problem of con-
straining the gas velocity PS in relaxed galaxy clusters
using the observed density fluctuations. We argue that

• the rms of density and velocity fluctuations are lin-
early related across a broad range of scales in both
buoyancy-dominated and turbulent regimes;

• the constant of proportionality between them is set
at large scales by gravity-wave physics and remains
approximately the same in the non-linear turbulent
regime;

• cosmological simulations of relaxed clusters give a

proportionality coefficient η1 ∼ 1±0.3 between the
amplitude of the density fluctuations and the rms
component of the flow velocity;

It is an interesting conclusion that, if the energy-
injection scales are large enough (e.g., ∼ 102 kpc
for merger-driven turbulence), stratification leads to
anisotropy (V⊥ � Vr, k⊥ � kr), whereas turbulence
driven at small scales (e.g., ∼ 10 kpc, as in the AGN-
driven case) will be isotropic—these are the Fr� 1 and
Fr ∼ 1 cases discussed in Section 2.1. Indeed, in cosmo-
logical simulations, where turbulence is primarily driven
by mergers, we see perpendicular velocities slightly larger
than the radial ones in the central 500 kpc.

Admittedly, our simulations suffer from insufficient dy-
namic range and do not include all relevant physical
processes. For instance, thermal conduction could erase
some of the temperature/density fluctuations and break
the relation (6). Some of these effects are considered
in the companion paper (G14), where a series of high-
resolution hydrodynamic simulations is carried out, with
varying Ma and isotropic conductivity.

It should be possible to verify the relation (6) using fu-
ture direct velocity measurements with Astro-H (combin-
ing with current observations). Strong deviations from
η ∼ 1 would suggest interesting microphysics or the dom-
inance of other sources of density fluctuations.

In conclusion we have shown that the analysis of SB
fluctuations in X-ray images offers a novel way to es-
timate the velocity PS in relaxed galaxy clusters. In
general, proportionality between the density and veloc-
ity amplitudes for subsonic motions is probably a generic
feature of small perturbations in stratified atmospheres.
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port by NSF grant AST-1009811, NASA ATP grant
NNX11AE07G, NASA Chandra grants GO213004B and
TM4-15007X, the Research Corporation, and by the fa-
cilities and staff of the Yale University Faculty of Arts
and Sciences High Performance Computing Center.
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