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Abstract

Purpose –The purpose of this paper is to briefly summarize and review the theories and methods of complex
structures’ dynamic reliability. Complex structures are usually assembled from multiple components and
subjected to time-varying loads of aerodynamic, structural, thermal and other physical fields; its reliability
analysis is of great significance to ensure the safe operation of large-scale equipment such as aviation and
machinery.
Design/methodology/approach – In this paper for the single-objective dynamic reliability analysis of
complex structures, the calculation can be categorized into Monte Carlo (MC), outcrossing rate, envelope
functions and extreme value methods. The series-parallel and expansion methods, multi-extremum surrogate
models and decomposed-coordinated surrogate models are summarized for the multiobjective dynamic
reliability analysis of complex structures.
Findings –The numerical complex compound function and turbine blisk are used as examples to illustrate the
performance of single-objective and multiobjective dynamic reliability analysis methods. Then the future
development direction of dynamic reliability analysis of complex structures is prospected.
Originality/value – The paper provides a useful reference for further theoretical research and engineering
application.

Keywords Structural dynamic reliability analysis, Single-objective, Multi-objective, Surrogate model

Paper type Literature review

1. Introduction
Large-scale equipment such as aviation, machinery is usually assembled by multiple
structures, and which overall reliability level is determined by the reliability of these
structures (Meng et al., 2020). To ensure the safe and economic operation of large-scale
equipment, it is necessary to carry out a structural reliability analysis (Kim and Kang, 2013;
Bagheri et al., 2020). The interaction of multiphysical loads (e.g. flow field, thermal field,
structural field and so forth) is often involved during the operation process of structures, and
these loads have dynamic characteristics and uncertainty (Gao et al., 2020a, b; Zhu et al.,
2021a, b). The static reliability analysis is difficult to reflect the dynamic relationship between
output response and input parameters. To ensure the accuracy of reliability analysis,
dynamic reliability analysis is the focus and hotspot in the field of structural reliability
analysis (Nahal and Khelif, 2020; Zhi et al., 2019).

The structural dynamic reliability analysis is a multidisciplinary and multiobjective
problem, which has been widely concerned by many scholars (Wang et al., 2009; Zhang et al.,
2020a, b; Shi et al., 2017). In recent years, lots of research and practical application have been
carried out (Jiang et al., 2020; Zafar and Wang, 2020). In general, the research of structural
dynamic reliability analysis includes single-objective and multiobjective dynamic reliability
analysis. Single-objective dynamic reliability analysis is aimed at single component failure in
structure, such as deformation, stress and strain. The research methods involved mainly
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include Monte Carlo (MC), outcrossing rate, envelope function and extreme value method.
Multiobjective dynamic reliability analysis is based on single-objective dynamic reliability
analysis, which refers to the same failure of multicomponents, multifailures of the same
component, etc. The research methods of multiobjective dynamic reliability analysis mainly
involve the series-parallel and expansion methods, multi-extremum surrogate model method
and decomposed-coordinated surrogate model method.

The purpose of this paper is to study themethods of structural dynamic reliability analysis.
Among them, the advantages and disadvantages of the existing theories and methods are
analyzed. The structural dynamic reliability analysis development trend is summarized, which
provides a reference for the development of structural reliability analysis theory.

In the remaining chapters, Section 2 reviews and summarizes the single-objective dynamic
reliability analysis of structure. The multiobjective structural dynamic reliability analysis is
analyzed and summarized in Section 3. In Section 4, the case studies and development
prospects of structural dynamic reliability analysis are predicted. Some conclusions are
summarized in Section 5.

2. Dynamic reliability analysis of single-objective structure
Structural dynamic reliability is the possibility that the structure can complete the
predetermined function in the prescribed time and under the prescribed condition when the
load and material characteristics change with time (Xue and Yang, 1995). The structural
dynamic function G can be expressed as

G ¼ gðx; tÞ (1)

where g(∙) represents the limit state function; x 5 (x1, x2, . . ., xn)
T denotes n-dimensional

random input variable; xi, i5 1, 2, . . ., n is the geometric dimensions, material properties and
loading conditions of the structure; t is the time variable.

In the dynamic reliability analysis problem, the dynamic reliability can be expressed as

Rðt0; tsÞ ¼ Pfgðx; tÞ > 0; ∀t ∈ ½t0; ts�g (2)

where P($) is the probability operation, ∀ denotes any time t.
The dynamic failure probability Pf(t0, ts) can be expressed as

Pf ðt0; tsÞ ¼ Pfgðx; tÞ≤ 0; ∃t ∈ ½t0; ts�g (3)

where ∃ represents the existence time t.
In this section, the dynamic reliability analysis methods of the single-objective structure

are described, including MC, outcrossing rate, envelope function and extremum methods.

2.1 Monte Carlo
The MC theory is based on Chebyshev’s theorem of large numbers and Bernoulli’s law of
large numbers (Aslett et al., 2017). The sample mean converges to the parent mean and the
frequency of the event converges to the probability of the event (Naess et al., 2009; Cardoso
et al., 2008). The problem of structural reliability analysis based on the MCmethod is usually
transformed into a probability model, and a large number of numerical simulations are
carried out. Then the reliability analysis of the structure is approximately realized by the
occurrence probability of events.

In the dynamic reliability analysis of structural single-failure mode based on the MC
method, whether the fixed value x* of the input variable x is safe or not in the time interval
[t0, ts], just determine if there is a time t for the g(x*, t) to be less than or equal to 0 (Takeshi,
2013). If ∃ t ∈ ½t0; ts�, make gðx * ; tÞ≤ 0, then the structure corresponding to x* is the failure
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within the time interval [t0, ts]. Conversely, the structure is safe. The dynamic reliability solves
steps by the MC method can be described as follows.

(1) The sample matrix S of the random input variable of N 3 n is generated from the
probability density function (PDF) fX(x), i.e.

s ¼

2
6664
x11 x12 � � � x1n
x12 x22 � � � x2n

..

. ..
.

1 ..
.

xN1 xN2 � � � xNn

3
7775 ¼

2
6664
x1

x2

..

.

xN

3
7775 (4)

(2) The time t is uniformly discretized for Nt times in the [t0, ts], and the discrete-time
vector T is obtained. T can be express

T ¼

2
6664

tð1Þ

tð2Þ

..

.

tðNtÞ

3
7775 (5)

(3) The matrix B(i)(i 5 1,2,. . ., N) is obtained, which is composed of the i rows of the S
matrix and vector T, i.e.

B ðiÞ ¼

2
66666664

B
ðiÞ
1

B
ðiÞ
2

..

.

B
ðiÞ
Nt

3
77777775
¼

2
6664
x i tð1Þ

x i tð2Þ

..

. ..
.

x i tðNtÞ

3
7775 (6)

(4) Substituting each row of matrixB(i) into the limit state function, if ∃t ∈T; gðB ðiÞÞ≤ 0,
the failure domain indicator function is IFðx iÞ ¼ 1. Otherwise, IFðx iÞ ¼ 0.

(5) The dynamic failure probability is calculated by the following formula

bPf ðt0; tsÞ ¼
PN
i¼1

IFðx iÞ
N

(7)

The MC method and its extension have been widely used in structural dynamic reliability
analysis. Marseguerra et al. (1998) described someMC simulations for the dynamic reliability
problem. Gonzalez-Fernandez and da Silva (2011) combined theMC simulationwith the cross-
entropy method for dynamic reliability analysis. Aabadi (2019) used the MC technique to
analyze the reliability of steel moment frames.Wang et al. (2021a, b) introduced the multilevel
MC to dynamic reliability analysis, which reduces the computational complexity of MC
simulation. Luo et al. (2022) explored the enhancedMC simulation for improving accurate and
efficient structural reliability analysis.

The MC method obtains robust reliability results, which can be solved by generating a
large number of simulation samples. However, the calculation burden is large for the
structural reliability problemwith low failure probability, which leads to the low efficiency
of reliability analysis (Gaspar et al., 2014; Sun et al., 2017). To improve the analysis
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efficiency and reduce the computational burden, many scholars have improved MC
methods, such as importance sampling, subset simulation, linear sampling, directional
sampling and other improvedmethods have been proposed. These methods can be applied
not only to static reliability analysis but also to dynamic reliability analysis. To speed up
the convergence speed of reliability, the importance sampling method transfers the
sampling center to the design point, whichmakes more samples fall into the failure domain
(Melchers, 1989). At the time t, the failure probability of the structure is given by

Pf

�
t; t

�
¼ P

n
Gt ≤ 0

o
¼ P

n
g
�
x
�
t
�
; t
�
≤ 0

o
¼

Z
G
t
≤0

fX ðxÞdx
(8)

where Gt represents the limit state function of structural dynamics at the time t; fX(x)
indicates the PDF.

Compared with the samples for the PDF values in the failure domain, the sample for the
largest PDF value in the failure domain is obtained, which is used to approximate the most
probable point (MPP) (Zhu et al., 2020a, b). The MPP obtained by the PDF is displayed in
Figure 1.

In Figure 1, the blue face denotes the limit state surface, while the green points represent
the samples in the failure domain. The red point is the MPP, while x1, x2 and x3 denote the
components of x. The β-spherical importance sampling is developed to ensure the calculation
accuracy and improve the calculation efficiency (Harbitz, 1986; Yao et al., 2019). In the
standard normal space, the samples of β hypersphere with the radius of reliability degree are
located in the safe domain. The efficiency of beta-spherical importance sampling is improved
by avoiding the limit state function calculation of safety samples in the β hypersphere.
Taking two-dimensional variables as an example, the schematic diagram of the β
hypersphere at the time t is shown in Figure 2.

In Figure 2, the green area represents the safety domain Gt > 0, the pink area represents
the failure domainGt < 0, the red line is the boundaryGt ¼ 0, the white area is a hypersphere
with the radius β and M is the MPP.

Figure 1.
MPP obtained using
the PDF
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Grooteman (2008) presented the adaptive radial-based importance sampling method,
which gives an efficient adaptive method to determine the radius of the β hypersphere. The
optimal hypersphere radius is determined by a step-by-step iterative search, which
maximizes the efficiency of the β-spherical importance sampling. Taking the two-
dimensional variable of U-space as an example, the adaptive radial-based importance
sampling method at the time t is shown in Figure 3.

In Figure 3, β0 is the initial hypersphere radius, βi and βi�1 are the iterative processes of
hypersphere radius until the optimal hypersphere radius βopt is obtained.

To improve the applicability of the MC method for high dimensional and small failure
probability reliability analysis, the efficiency of reliability analysis is improved in the subset
simulationmethod (Au and Beck, 2001; Au, 2005). Linear sampling is applied to the reliability
analysis of high dimensional small failure probability events, which also improved the
efficiency of reliability analysis (Schueller et al., 2004; De Angelis et al., 2015; Papaioannou
and Straub, 2021). The directional sampling method reduced the input variables dimension
and improved the reliability analysis efficiency for structural reliability analysis problems
with high nonlinearity and dimension (Nie and Ellingwood, 2000; Grooteman, 2011;
Shayanfar et al., 2018). Furthermore, some other important sampling methods have also
achieved good results (Savage and Son, 2011; Singh et al., 2011).

In addition, some scholars have made important contributions to the nonprobabilistic
structural dynamic reliability analysis. Li et al. (2018) presented the nonrandom vibration

Figure 2.
The schematic

diagram of β-spherical
importance sampling

Figure 3.
The schematic

diagram of adaptive
radial-based

importance sampling
method
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analysis method to calculate the elastic beams dynamic displacement response bounds based
on the interval process model. Jiang et al. (2019a, b) have made significant improvements to
the interval process model and the nonrandom vibration analysis method, improving its
applicability in the engineering field. Ni et al. (2020) developed a novel expansion method for
the interval process model by reference to the Karhunen-Lo�eve (K-L) expansion for stochastic
process and random field models. The dynamic reliability analysis method based on
stochastic process discretization and its improved method is explored by Jiang et al. (2014a,
b, 2018).

The MC method can obtain robust reliability analysis results, which are often used as a
reference standard to evaluate the calculation accuracy of other methods. But theMCmethod
is not suitable for implicit function in engineering, especially when solving by the time-
consuming finite element method, large-scale numerical simulation may not be affordable.

2.2 Outcrossing rate
Rice (1944) proposed the well-known first-passage formula for the first time, which lays a
theoretical foundation for the research of outcrossing rate method in dynamic reliability. The
Markov process is applied to the computation of first-passage probability by Siegert (1951).
Wang et al. and Yu et al. described the basic theory of outcrossing rate method and proposed
an improved algorithm for reliability analysis (Wang et al., 2017, 2019a, b).

According to the above literature description, the failure probability in the time domain
[t0, ts] can be defined as

Pf ðt0; tsÞ ¼ P
�fgðxðt0Þ; t0Þ≤ 0g∪�Nþðt0; tsÞ> 0

��
(9)

where Nþ(t0, ts) represents the number of g(x(t0), t0) crossings from the safety state to failure
state in the time domain [t0, ts].

The classical bounds of Pf (t0, ts) are as follows (Yu et al., 2020)

max
t0≤t≤ts

Pf ðt; tÞ≤Pf ðt0; tsÞ≤Pf ðt0; t0Þ þ P
�
Nþðt0; tsÞ> 0

�
(10)

The outcrossing rate vþ(t) can be expressed as

vþðtÞ ¼ lim
Δt→0;Δt>0

P
�
Nþðt; t þ ΔtÞ ¼ 1

�
Δt

(11)

whereNþ(t, tþΔt) is the number of crossing times from the safe state to the failure state in the
time domain [t, t þ Δt] for the structural system.

The P{ Nþ(τ, τ þ Δτ)5 1} denotes the probability of structural system crossing from the
safety state to failure state in the domain [t0, ts], i.e. the outcrossing rate vþ(t) is

vþðtÞ ¼ lim
Δt→0;Δt>0

PfgðxðtÞ; tÞ> 0 \ gðxðt þ ΔtÞ; t þ ΔtÞ≤ 0g
Δt

(12)

For the calculation of vþ(t), Coleman (1959) derived the first-passage probability method
based on the Poisson process. Crandall et al. (1966) used the numerical simulation method to
solve the first-passage problem, which widens the application range of the outcrossing rate
model. Iyengar (1973) introduced the stationary and nonstationary processes into first-
passage probability for dynamic reliability analysis. The higher-order threshold crossings
are used by Engelund et al. (1995) to introduce approximations of first-passage times for
differentiable processes. Schall et al. (1991), Melchers and Beck (2018) and Rackwitz (1998),
performed the dynamic reliability analysis for the structural load time-dependent reliability
problems by the outcrossing rate method. Hagen and Tvedt (1992) developed a method for
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calculating the outcrossing rate of a parallel system. The PHI2 method is presented by
Andrieu-Renaud et al. (2004), which calculated the outcrossing rates by the first-order
reliability method (FORM), and the calculation of time-varying reliability is simplified (Zhu
et al., 2022).

The geometry explanation for solving outcrossing rates based on the first order second
moment (FOSM) as shown in Figure 3.

As illustrated in Figure 4, β(t) and β(tþΔt) represent the reliability indexes of t and tþΔt
at two arbitrary times, respectively. ρ is the correlation coefficient (Andrieu-Renaud et al.,
2004). The formula for calculating the outcrossing rate by the PHI2 method is

vþðtÞ ¼ Φ2½βðtÞ;�βðt þ ΔtÞ; ρðt; t þ ΔtÞ�
Δt

(13)

where Ф2 denotes the binormal cumulative distribution function.
The PHI2 method has high calculation efficiency for outcrossing rate calculation, but the

improper selection ofΔt can affect the calculation results accuracy of outcrossing rate. Sudret
(2008) proposed the improved PHI2 method realized the analytic solution of outcrossing rate,
which has higher accuracy than the PHI12 method. Singh et al. (2011) introduced an
important sampling technique to calculate the outcrossing rate for dynamic reliability
analysis. Mejri et al. (2011) discussed the application of outcrossing rate in nonlinear systems.
Hu andDu (2012) performed a time-dependent reliability analysis for the hydrokinetic turbine
blade by employing the upcrossing rate method. Hu and Du (2013a, b) studied the time-
dependent reliability analysis with joint upcrossing rate method, and the FOSM is used to
derive the upcrossing rate, which shows good accuracy when the probability of failure is
small and the dependency between failures is strong. Yan et al. (2017) discussed the
application of FORM combined with outcrossing rate in ship structure reliability evaluation.
Zhao et al. (2021) improved the solution method for outcrossing rate and avoided using a
numerical scheme to calculate the outcrossing rate. Qian et al. (2020) provided a modified
outcrossing rate method for time-dependent reliability analysis by avoiding assumptions in
Rice’s formula to improve computational accuracy. The applications of outcrossing rate
method in nonprobabilistic dynamic reliability analysis are discussed (Jiang et al., 2014a, b,
2017a, b). Outcrossing rate method currently has obtained a series of theoretical
achievements and has been successfully applied to varieties of industrial departments
(Soltanian et al., 2018; Jia and Moan, 2009; Barbato and Conte, 2011).

Figure 4.
Geometry explanation
for solving outcrossing
rates based on FOSM
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2.3 Envelope functions
The envelope functions can transform a large number of constraints into a single or few
constraints. Du et al. introduced the envelope surface of the failure probability maximum point
on the failure boundary to approximate the failure domain, which transformed the structural
dynamic reliability problem into the static reliability at the expansion point (Du, 2014). The
steps of solving dynamic reliability by envelope function method can be described as

(1) The first-order Taylor expansion of limit state function g(x,t) at themean point can be
obtained

gðx; tÞ≈ a0ðtÞ þ aðtÞTðx � μÞ (14)

where μ ¼ ðμ1; μ2; � � � μnÞT, a0ðtÞ ¼ gðμ; tÞ, aðtÞ ¼
�
vgðx;tÞ
vx1

���μ; � � � ; vgðx;tÞ
vxn

jμ
�T

,

x ¼ ðx1; x2; � � � ; xnÞT, x − μ ¼ ðx1 − μ1; � � � ; xn − μÞT.
To simplify the calculation, the random input variable x is transformed into the standard

normal variable u, i.e.

u ¼ ðu1; . . . ; unÞT ¼
�
x1 � u1

δ1
; . . . ;

xn � un

δn

�T

(15)

where σi (i5 1, 2, . . ., n) is the standard deviation of xi, then formula (16) can be expressed as

gðx; tÞ≈Lðu; tÞ ¼ b0ðtÞ þ bðtÞTu (16)

where b0ðtÞ and bðtÞT can be denoted as

b0ðtÞ ¼ a0ðtÞ
bðtÞ ¼ ðb1ðtÞ; . . . ; bnðtÞÞT ¼ ða1ðtÞδ1; . . . ; anðtÞδnÞT (17)

The envelope function of L(u,t) can be obtained by

Lðu; tÞ ¼ b0ðtÞ þ bðtÞTu ¼ 0

L0ðu; tÞ ¼ b00ðtÞ þ b0ðtÞTu ¼ 0

9=
; (18)

in which b0ðtÞ and b0ðtÞ represent the partial derivatives of b0ðtÞ and bðtÞ for parameter t,
respectively.

(2) Assuming that u* is the extension point on the envelope function, then u* is on the
linear function L(U, t) 5 0 and has the maximum probability density on the failure
boundary, i.e. the point closest to the origin on L(U, t) 5 0 is u*. Therefore, u* and
L(U, t) 5 0 are perpendicular to each other. In the two-dimensional state space, the
estimated envelope and real envelope are shown in Figure 5.

In Figure 5, the security domain and the failure domain are shown in green and pink,
respectively. The vertical feet of u* and L(U, t) 5 0 are denoted by A and B. The estimated
envelope surface is composed of multiple L(U, t) 5 0 lines, and the purple line is the real
envelope surface.

Then u* can be described as

u * ¼ −b0ðtÞbðtÞ
bðtÞTbðtÞ (19)
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And because u* satisfies L0ðu; tÞ ¼ 0, i.e.

b00ðtÞ � b0ðtÞb
0ðtÞTbðtÞ

bðtÞTbðtÞ ¼ 0 (20)

A set of solutions of the parameter t as tþi ¼ ði ¼ 1; 2; � � � ; pþÞ can be obtained by solving
formula (20). The two endpoints t0 and ts of the time interval are also considered, i.e. p5 pþ 2,
ti ∈ ðt0; ts; tþ1 ; � � � ; tþpþÞði ¼ 1; 2; � � � ; pþÞ. Then the true failure envelope surface can be

approximated by ∪p
i¼1 Lðu; tiÞ ¼ 0, as shown in Figure 5. The dynamic failure domain

F ¼ fgðx; tÞ≤ 0; ∃t ∈ ½t0; ts�g can be replaced by the failure domain f∪p
i¼1 Lðu; tiÞ≤ 0g,

which is composed of the failure envelope surface.

(3) The failure probability can be calculated as

Pf ðt0; tsÞ ¼ Pfgðx; tÞ≤ 0; ∃t ∈ ½t0; ts�g ¼ P

	
∪
q

i¼1
Lðu; tiÞ≤ 0




¼ 1� P

	
\q
i¼1

Lðu; tiÞ > 0




¼ 1�
Z þ∞

0

� � �
Z þ∞

0

1

ð2πÞq=2jΣLj1=2
exp

	
−
1

2
ðx � μLÞTðΣLÞ−1ðx � μLÞ



dx

(21)

where the mean value is μL ¼ ðμLiÞi¼1;2;...;p ¼ ðb0ðtiÞÞi¼1;2;...;p, ΣL ¼ ðδLiδLjÞi;j¼1;2;...;p ¼
ðbðtiÞTbðtjÞÞi;j¼1;2;...;p denotes the covariance matrix; μLi and δLi (i 5 1, 2, . . ., p) are the

mean and standard deviation of Li.
In recent years, some scholars have explored the application of envelope function method

in structural dynamic reliability analysis. Wang et al. (2019a, b) proposed the general
framework and correspondingmethods based on envelope function and vine-copula function,
which extends the distribution type of envelope function to general distribution. Zhang and
Du (2015) combined the envelope function method and hybrid dimension reduction method is
used for interval reliability analysis with clearances. The envelope function method
combined with the first-order approximation of the motion error function is developed for
efficiently estimating the time-variant global reliability sensitivity (Wei et al., 2016, 2017).
Zhang et al. (2020a, b) introduced a new envelope function method for the time-dependent

Figure 5.
Relationship between

estimated envelope and
real envelope
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mechanism reliability and sensitivity analysis with imprecise probability distributions,
which has achieved better results.

In the envelope function method, the dynamic limit state function is expanded linearly at
the random variables mean point, and the approximate envelope is formed by the piecewise
linear hyperplane of the expanded point. Then the dynamic reliability problem is transformed
into a static reliability problem, which improves the efficiency of dynamic failure probability
calculation. Because the dynamic limit state function is expanded linearly at themean point of
random variables, this method is only suitable for problems with low nonlinearity or small
variation coefficients.

2.4 Extreme value method
By analyzing and solving the minimum value of the dynamic limit state function in the time
interval, the extreme valuemethod transforms the structural dynamic reliability problem into
a static reliability analysis problem. When the input variable x is a fixed value x*, the
dynamic limit state function g(x*,t) is the function of the parameter t, which extreme value and
endpoints on the time interval [t0, ts] are shown in Figure 6.

In Figure 6, A and B are the extreme value points, and C and D are the endpoints values.
The minimum value of g (x*, t) in the time interval [t0, ts] is

min
t∈½t0 ;ts�

gðx; tÞ ¼ min
�
g
�
x * ; t0

�
; g
�
x * ; tA

�
; g
�
x * ; tB

�
; g
�
x * ; ts

��
(22)

The dynamic failure probability Pf(t0, ts) can be denoted as

Pf ðt0; tsÞ ¼ P

	
min
t∈½t0 ;ts�

g
�
x * ; t

�
≤ 0



(23)

Then the problem of dynamic reliability analysis is transformed into static reliability analysis
by analyzing the minimum value of g(x*,t) in the time interval [t0, ts]. The estimated value of
the dynamic failure probability bPf ðt0; tsÞ is obtained by judging the relationship between the
extreme value of input variable xi(i 5 1, 2,. . .,n) and 0, i.e.

P
_

f ðt0; tsÞ ¼
Pn
i¼1

IF

�
min
t∈½t0 ;ts�

gðx i; tÞ
�

n
(24)

Figure 6.
Extreme value and
endpoints of g (x, t)
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in which IF(∙∙) is the failure domain indication function corresponding to xi, if

min
t∈½t0;ts�

gðx i; tÞ≤ 0, then IF

�
min
t∈½t0 ;ts�

gðx i; tÞ
�

¼ 1, otherwise, IF

�
min
t∈½t0 ;ts�

gðx i; tÞ
�

¼ 0.

Many scholars have explored the application of extremum value and its extensionmethod
in structural dynamic reliability analysis and obtained many research results. The
application of extreme value method is discussed in nonlinear structures with uncertain
parameters (Radhika et al., 2008; Chen and Li, 2007). Zhang et al. (2021a, b) studied an efficient
method for nonlinear structures dynamic reliability analysis by the linear moments. To
efficiently obtain the extreme value distribution, Hu and Du (2013a, b) employed a saddle
point approximation to estimate the distributions of the extreme value. Yu et al. (2018) used
the extreme value moment method and the improved maximum entropy method to
approximate the PDFs of responses. To improve the efficiency of extremum method, Meng
et al. (2021) developed a semi-analytical extreme value method for improving the
computational efficiency of extreme value methods.

Many scholars combined the surrogate model with the extreme value method and
proposed the extreme value surrogate model method to reduce the amount of calculation. The
schematic diagram of the principle is shown in Figure 7.

From Figure 7, the extreme value of the output response (e.g. stress, deformation, strain
and so forth) is determined bymultiple dynamic deterministic analyses based on the material
property, structure loads and dimensions, and the samples of input variables and output
responses are obtained. Then the limit state function is approximated by the response surface
method (RSM) (Lu et al., 2020; Zhang et al., 2017; Kaymaz andMcMahon, 2005), support vector
regression (SVM) (Feng et al., 2019; Chen et al., 2022; Hariri-Ardebili and Pourkamali-Anaraki,
2018; Keshtegar et al., 2021), artificial neural network (ANN) (Li et al., 2021; Cherid et al., 2021;
Peng et al., 2019) and Kriging (Teng et al., 2022; Zhang et al., 2021a, b; Jiang et al., 2019a, b)
surrogate model, and the reliability is analyzed by combining the allowable value.

Zhang and Bai (2012) presented the extremum RSM used for the reliability analysis of a
two-link flexible robot manipulator. As the core of aircraft operation safety, the aero-engine
turbine is often regarded as a typical case of reliability analysis (Niu et al., 2021; Zhu et al.,
2018). Similarly, the extremumRSM is applied to the reliability analysis of aero-engine casing

Figure 7.
Schematic diagram of

the extreme value
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and bladed disks (Bai and Bai, 2014). The application of extremum RSM and support vector
machine are explored in the nonlinear dynamic reliability analysis of turbine disk-radial
deformation (Fei et al., 2015a, b). The neural network method is combined with extremum
RSM to analyze the structural dynamic reliability (Song et al., 2017, 2018). Zhao et al. (2020)
extended the application of extremum neural networks in dynamic reliability analysis of
flexible mechanisms. Lu et al. (2018a, b) developed the Kriging with extremum RSM for
structural dynamic reliability. In the process of approaching the limit state function, the least-
squares are usually used tomodel, which cannot make use of the known samples information
effectively, and affects the precision of modeling and simulation. Then, the modified Kriging-
based moving extremum framework based on extremum response surface is proposed for
structural dynamic reliability analysis, which combined the moving modeling method with
the surrogate model to improve the modeling and analysis accuracy of structural reliability
(Lu et al., 2021).

In addition, some scholars have studied the approximation method of extreme value
function because getting the extreme value is time-consuming by multiple dynamic
deterministic analyses. Wang and Wang (2013) proposed the nested extreme response
surface (NERS) to handle the time dependency issue in the dynamic reliability analysis, the
extreme value of the limit state function can be obtained by employing the Kriging model.
The efficient global optimization (EGO) technique is integrated with the NERS approach to
extract the extreme time responses of the limit state function for any given system design
(Wang and Wang, 2012). Wang and Chen (2017) developed the adaptive extreme response
surfaces that can handle both random variables and random processes as input uncertainty
by introducing the gaussian process. A mixed EGO method is proposed to improve the
efficiency of building such a surrogate model of the extreme response (Hu and Du, 2015). In
the above double-loop procedure, it is necessary to use the extremum of inner loop to build the
surrogate model in outer loop, and the optimization process of getting the extremum in inner
loop will reduce the computational efficiency. Hu et al. presented a single-loop Kriging
surrogate modeling method for dynamic reliability analysis to improve the efficiency of
dynamic reliability analysis, which removes the optimization process of the inner loop and
generates the random variables and time samples in the single-loop (Hu et al., 2021; Hu and
Mahadevan, 2016). Fang et al. (2018) and Jiang et al. (2017a, b) studied the dynamic reliability-
based design optimization problems, and the computational cost is effectively reduced.

The extreme value method transforms the dynamic reliability analysis to the static by
finding the dynamic limit state function minimum value in the time interval, which reduces
the calculation burden in the dynamic reliability analysis. To further improve computational
efficiency, the combination of extreme value and surrogate model method has become a
research hotspot. However, the extreme value method based on the surrogate model is still in
the development stage from the perspective of ensuring model credibility.

3. Dynamic reliability analysis of multiobjective structure
The dynamic reliability analysis of multiobjective structure is developed from the dynamic
reliability analysis of a single objective structure. This section mainly reviews and
summarizes the series-parallel and expansion method, multi-extremum surrogate model
method and decomposed-coordinated surrogate model method.

3.1 Series-parallel and expansion methods
The relationship of multiple failure modes of structures includes series, parallel and
compound. The failure modes of series connection and parallel connection are taken as
examples, as shown in Figures 8 and 9. The reliability analysis general method for structural
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multifailure modes is to establish the limit state function of each failure mode separately and
to carry out reliability analysis. Then the reliability of the structure is obtained by the
relationship analysis of multiple failure modes.

From Figure 8, we can see that the failure probability with multiple parallel failure modes
can be expressed as

Pfparellel ¼ P

	
\k
i¼1

giðxÞ < 0



¼ P

	
max

k

i¼1
giðxÞ < 0



(25)

where k indicates the number of failuremodes; gi(x) is the limit state function corresponding to
the ith failure mode. It is worth noting that the structure is a failure when all parallel
modes fail.

In Figure 9, the failure probability with multiple series failure modes can be described as

PfSeries ¼ P

	
∪
k

i¼1
giðxÞ < 0



¼ P

	
min
k

i¼1
giðxÞ < 0



(26)

The structure is in the failure state when a mode fails. Conversely, the structure is in a safe
state if all modes do not fail.

Many studies of the series-parallel and expansion methods are investigated by scholars.
Savari et al. (2021) used the first passage probability method for composite repaired pipes
multiple failure modes probability analysis. The joint upcrossing rates method is applied to
calculate the multifailure probability of composite hydrokinetic turbine blades (Hu et al.,
2013). Hagen and Tvedt (1991) combined outcrossing rate method and combinations of
bivariate responses to multiobjective dynamic reliability, especially for Gaussian and non-
Gaussian vector processes. The joint first-passage probability method is presented based on
the conditional distribution analysis (Song and Der Kiureghian, 2006). Jiang et al. (2017a)
extended the application of outcrossing rate model in multiobjective failures. For application
in general problems with random variables, stationary and nonstationary stochastic
processes, Hu et al. (2018) developed an improved upcrossing rate method. The MC and
envelope function methods are rarely used in multifailure modes, and the representative
results are as follows. Qian et al. (2021a, b) explored a new multiobjective dynamic reliability
method based on the multiple-response Gaussian process and subset simulation, which is
used to solve a small failure probability problem. Wu et al. (2021) developed a new dynamic
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reliability method based on the envelope method and second-order reliability method, which
is used for series failure modes.

Many scholars have carried out more research on the application of extreme value
methods in multifailure modes. Li et al. (2007) elaborated the equivalent extreme-value event
approach to evaluate the structural system reliability. This method can convert complex
random processes into a series of random events. The PDF of the random events equivalent
extreme value is calculated by the probability density evolution method, and integrates the
PDF in the time domain to obtain reliability. To avoid the correlation information problem,
Wang et al. (2021a, b) proposed the generalized equivalent extreme-value event for the
reliability problem of multicomponent simultaneous failure. Qian et al. (2021a, b) developed a
single-loop strategy based on the multiple response Gaussian process and the Krigingmodel,
which improved the efficiency of multifailures reliability analysis. In addition, some scholars
have explored a new idea of using the maximum entropymethod to solve multifailure modes.
For example, Yu et al. (2018) combined the extreme value moment method and improved
maximum entropy method is used to multifailure modes dynamic reliability assessment.

3.2 Multi-extremum surrogate model method
Some scholars put forward the multi-extremum surrogate model method for multiobjective
dynamic reliability analysis. The extremum response surface is established for each failure
mode, which combines extreme values with the surrogate model. Then the structural
dynamic reliability analysis of multiple failure modes is realized according to the relationship
between failure modes. The RSM in surrogate model is taken as an example, the multi-
extremum RSM is illustrated in Figure 10.

In Figure 10, for the k failure modes of the research object, k extremum response surface
models are established by using the extreme value method and RSM respectively, and the
limit state function of k failure modes is determined. Then the linkage sampling technology is
used to analyze the multifailure modes reliability at the same time, and the reliability of each
failure mode is obtained. The structural reliability is calculated with the relation of several
failure modes, to improve the efficiency of reliability analysis.

Zhang et al. (2016) studied the advanced multiple RSM by integrating particle swarm
optimization, ANN and multiple response surface theory, which is verified by the reliability
analyses of turbine blisk multifailure modes (e.g. deformation, stress, strain and so forth).
Subsequently, the multi-extremum surrogate model method is developed based on the
quadratic polynomial function to evaluate the reliability of an aero-engine turbine blisk with

Figure 10.
Schematic diagram of
multiple
extremum RSM

IJSI



two components (Zhang et al., 2018). The fuzzy multi-extremum surrogate model method is
presented to deal with the reliability analysis of turbine bladed disks under multifailure
modes (Zhang et al., 2019a, b). Lu et al. (2018a, b) extended the multi-extremum surrogate
model method for the nonlinear transient structural reliability analysis with multifailure
modes and two-way fluid-thermal-solid coupling. Qi et al. (2020) used the multiple response
surface and coupled thermal-structural finite element model for the reusable rocket engine
dynamic reliability calculation under multifailure modes.

3.3 Decomposed-coordinated surrogate model method
The decomposed-coordinated surrogate model method is to introduce the decomposed-
coordinated strategy into the extreme value surrogate model for realizing multiobjective
structural dynamic reliability analysis.

Multiple components of the structure are decomposed into single-component based on a
decomposed-coordinated strategy, and the mathematical models of each component are
establishedwith the extreme value surrogate model. Subsequently, the relationship between the
total output response and the input variables is coordinated based on the relationship among
each component output response. Then the overall mathematical model of output response is
established, and the limit state function is determined by the allowable value for the dynamic
reliability analysis. The principle of decomposed-coordinated strategy is shown in Figure 11.

From Figure 11, four layers of the structure are taken as the research objects (structure
layer, first substructure, second substructure layer and variable layer) to illustrate the
decomposed-coordinated strategy. The output response relationship between the structure
layer and the first substructure layer is expressed by f ($); f (m) ($) denotes the output response
relationship between the mth first substructure layer and nth second substructure layer;
f (mn)($) represents the output response relationship between the nth second substructure
layer of the mth first substructure layer and the variable layer.

The structure layer function is given by:

Y ¼ f
�
yð1Þ; yð2Þ; :::; yðmÞ� (27)

wherem is the number of output responses in the first substructure layer; and y(i)(i5 1, 2, . . .,
m) is the decomposed subfunctions of the ith first substructure layer. This is represented by:

yðiÞ ¼ f ðiÞ
�
yði1Þ; yði2Þ; :::; yðinÞ

�
(28)
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In which n is the number of output responses in the second substructure layer; and y(i j)

(j5 1,2, . . .,m) indicates the decomposed subfunctions of the jth second substructure layer in
the ith first substructure layer. This is represented by:

yði jÞ ¼ f ði jÞ�xði jÞ� (29)

where x(i j) is the jth decomposed subfunction in the second substructure layer of the ith first
substructure layer.

Many scholars have carried out a lot of research on the decomposed-coordinated surrogate
model method. Bai and Fei (2013) proposed a distributed collaborative RSM based on the
quadratic response surface function to improve the accuracy and efficiency of dynamic
assembly relationship reliability analysis. Fei and Bai (2014) discussed a decomposed-
coordinated probabilistic design method-based support vector machine of regression for the
probabilistic design of aero-engine high-pressure turbine blade-tip radial running clearance.
Gao et al. (2020a, b) employed the decomposed-coordinated Kriging method to evaluate the
probability of turbine blades. Zhang et al. (2019a, b) applied the decomposed-coordinated
extremum neural network method to address dynamic uncertain loads in time-dependent
reliability problems. Later, to further improve the decomposed-coordinated surrogate model
method in dynamic reliability evaluation, Lu et al. (2019) adopted an improved decomposed-
coordinated Kriging modeling strategy to evaluate the dynamic probabilistic analysis of
multicomponent structures, by integrating decomposed-coordinated strategy, extremumRSM,
genetic algorithm and Kriging surrogate model. Teng et al. (2021) developed the novel Kriging-
based decomposed-coordinated approach for the reliability analysis of assembled structures,
by introducing the Kriging model and important sampling-based Markov chain technique.
Meng et al. (2019) studied collaborative design and optimization with the surrogate model for
turbine blade reliability analysis. Fei et al. (2019) presented the Decomposed-coordinated
surrogate model method (DCSMM) based on the mixture of quadratic polynomial and Kriging
for the structural reliability analysis, which is demonstrated the effectiveness of turbine blisk
with multifailure modes dynamic reliability analysis.

4. Case studies and further research of the structural dynamic reliability
analysis
In this section, the numerical example and high-pressure turbine blisk with single-failure
(deformation failure) and multifailure modes (deformation failure, stress failure and stain
failure) are used to illustrate the performance of the above dynamic reliability analysis
methods. Then the development trend of structural dynamic reliability analysis technology is
combed based on the preliminary research and tracking of relevant literature.

4.1 Case studies
4.1.1 Numerical example. The numerical example is used to analyze the precision and
efficiency of MC, outcrossing rate, envelope function and extreme value method. The
dynamic limit state function can be expressed as

gðx; tÞ ¼ x21x2 � 5x1t þ ðx2 þ 1Þt2 � 20 (30)

where t denotes a time variable, and the time domain is [0, 5]; The input variables x1 and x2
obey normal distribution, i.e. x1∼N(3.5,0.3

2) and x2∼N(3.5,0.3
2). The dynamic limit state

function is solved by the MC, outcrossing rate, envelope function and extreme value method,
respectively. The solution conditions of each method are as follows.
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(1) MC method: 32,768 samples of input variables are extracted by the Sobol sequence,
and the time domain is discretized into 1,001 equidistant time points.

(2) Outcrossing ratemethod: assuming that the crossing times obey Poisson distribution,
the crossing rate of dynamic limit state function is calculated byAdvanced first-order
second moment (AFOSM).

(3) Envelope function method: the solution of dynamic failure probability is transformed
into the union of failure domains that a set of linear limit state functions subject to
normal distribution.

(4) Extreme value method: the dynamic limit state function output response is converted
into the extreme value of time domain [0, 5], and 32,768 samples of input variables are
taken.

The dynamic reliability analysis results of four single-objective methods are listed in Table 1.
In the case of retaining four decimal places, the dynamic reliability analysis results from

four single-objective methods are listed in Table 1.
As shown in Table 1, taking MC as a reference, the calculation efficiency of envelope

function (69) is higher than that of outcrossing rate (459), extreme value (163,833) and MC
method (32,800,768); The precision of extreme value (100%) is higher than that of envelope
function (99.88%) and outcrossing rate (97.60%).

4.1.2 Turbine blisk dynamic reliability analysis. To further explore the performance of
extreme value surrogate model, multi-extremum surrogate model, decomposed-coordinated
surrogate model methods and the dynamic reliability analysis of an aero-engine high-
pressure turbine blisk deformation, stress and stain are taken as the case studies.

To reduce the computational burden, the tenons, pin holes and cooling holes of blisk are
ignored, and the simplified 1/46 blisk is selected as the research object with fluid-structural
interaction. The three-dimensional (3-D) model, finite element model and finite volume (FV)
model are shown in Figure 12.

The material of turbine blisk is the nickel-based superalloy GH4133, which elastic
modulus, Poisson ratio and density are 1.61 3 1011 Pa, 0.3224, and 8.56 3 103 kg/m3,
respectively (Lu et al., 2018a, b). The input variables contain density, inlet pressure
(23 106 Pa), outlet pressure (5.883 105 Pa), inlet velocity and angular speed (Fei et al., 2022).
The inlet velocity and angular speed are regarded as changes in the time domain [0, 215 s],
which can be seen in Figure 13.

The maximum deformation, stress and stain is obtained in the climb phase, and the time
domain is [165s, 200s] (Lattime and Steinetz, 2004). Combined with the idea of extreme value
method, t 5 180s is selected for turbine blisk dynamic reliability analysis. The input variables
obey normal distribution, which distribution characteristics are shown inTable 2 (Fei et al., 2019).

(1) Turbine blisk deformation failure

The deformation of turbine blisk is shown in Figure 14 when the time point is 180s.
The 200 input samples are extracted by the Latin hypercube method according to the

distribution of input variables, and the corresponding output responses are determined by

Methods Failure probability Reliability Precision Number of model calls

MC 0.1845 0.8155 – 32,800,768
Outcrossing rate 0.1649 0.8351 97.60% 459
Envelope function 0.1855 0.8145 99.88% 69
Extreme value 0.1845 0.8155 100% 163,833

Table 1.
Dynamic reliability

analysis results of the
numerical example
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dynamic deterministic analysis and extreme value method. Then 100 samples are used as
training samples to establish RSM, SVM, ANN and Kriging models, and the remaining 100
samples are used as testing samples to verify the precision and efficiency of the established
model. The modeling properties of these methods are evaluated by absolute error (Ea_error)
and average absolute error (Eaa_error), which are displayed in Table 3 and Figure 15.

Parameter Mean Standard deviation

v, m/s 160 3.2
pin, Pa 2 000 000 60 000
pout, Pa 588 000 17 600
ρ, kg/m3 8 560 171.2
ω, rad/s 1 168 23.36

(a) (b) (c)

Figure 13.
Dynamic curves of
angular speed and inlet
velocity within
[0 s, 215 s]

Table 2.
Distribution features of
input variables

Figure 12.
3D/FE/FV models of
turbine blisk
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As illustrated in Table 3 and Figure 15, the descending order of average relative error is
SVM (2.599 3 10�3m), RSM (0.823 3 10�3m), ANN (0.609 3 10�3m) and Kriging (0.558 3
10�3m); Compared with RSM and SVM, the Kriging and ANN have less relative error
fluctuation and better robustness. It is important to note that the SVM hyperparameter
greatly affects the prediction precision.

The simulation performance of four extreme value surrogatemodels is compared based on
the dynamic reliability degree of turbine blisk. All computations are completed on the

Methods Eaa_error, 3 10�3m

RSM 0.823
SVM 2.599
ANN 0.609
Kriging 0.558

Figure 14.
Distribution of the

deformation of
turbine blisk

Table 3.
Average absolute

errors and prediction
precision of surrogate

models

Figure 15.
Absolute errors of
surrogate models
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computer with Advanced Micro Devices (AMD) Ryzen 74800H of 2.9 GHz central processing
unit (CPU) and 16 GB random accessmemory (RAM). The simulation efficiency and precision
are shown in Tables 4 and 5.

As illustrated in Table 4, the extreme value surrogatemodel methods have less calculation
time compared with direct simulation. This is because extreme value surrogate model
methods reduce the process of deterministic analysis of finite element (FE) model. Among the
extreme value surrogate model methods, ANN and SVMare better than the RSM andKriging
in computing time. As shown in Table 5, the direct simulation is used as a reference standard
to explain the precision of extreme value surrogate model methods. The simulation precision
of Kriging and ANN are higher than RSM and SVM. When the simulation times are 53 104,
the simulations precision of Kriging, ANN, SVM and RSM are 99.98, 99.97, 99.93 and 99.96%,
respectively.

(2) Turbine blisk multifailure modes

The deformation, strain and stress are involved in turbine bliskmultifailure modes, which are
shown in Figures 14 and 16, respectively at 180s.

The 100 training samples and 100 testing samples of multiple failure modes are obtained
by the Latin hypercube sampling and dynamic deterministic analysis. To study the
performance of themulti-extremum surrogatemodelmethod, the training samples are used to
establish multi-extremum RSM (MERSM), multi-extremum SVM (MESVM), multi-extremum
ANN (MEANN) and multi-extremum Kriging (MEKriging), respectively, and the testing
samples are used to verify the precision and efficiency of the established model. The
simulation efficiency and precision of four multi-extremum surrogate models are shown in
Tables 6 and 7.

The results are tabulated in Table 6, the simulation time of multi-extremum surrogate
model method ismuch less than that of direct simulation, which effectiveness ismore obvious
with the increase in simulation times. The simulation time of MEANN and MESVM is less
than that of MERSM and MEKriging, which have relatively high simulation efficiency. As
shown in Table 7, the MEKriging and MEANN are close to the analysis results of MC and
better than the precision of MERSM and MESVM.

Methods
Sampling number

102 103 5 3 103 104

Direct simulation 90,765s 915,680s 4,613,960s –
RSM 1.45s 1.58s 1.65s 1.89s
SVM 0.42s 0.53s 0.58s 0.65s
ANN 0.26s 0.33s 0.41s 0.57s
Kriging 1.38s 1.42s 1.77s 1.89s

Sampling number
Reliability degree Precision/%

MC RSM SVM ANN Kriging RSM SVM ANN Kriging

100 0.99 1 1 1 1 98.99 98.99 98.99 98.99
1,000 0.998 0.999 0.996 0.997 0.997 99.90 99.80 99.99 99.99
5,000 0.9982 0.9986 0.9989 0.9985 0.9980 99.96 99.93 99.97 99.98
10,000 – 0.9987 0.9980 0.9986 0.9984 – – –

Table 4.
Simulation efficiency
with three surrogate
models

Table 5.
Simulation precision
with the three
surrogate models
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According to the mean and standard deviation of deformation, stress and strain of
multifailure modes, the corresponding PDF can be formed. Then the comprehensive
reliability of multifailure modes is calculated, it is worth noting that only the series
relationship ofmultiple failuremodes is considered. The turbine blisk deformation, stress and
strain (i.e. decomposed surrogate model input samples) are obtained by deterministic
analysis of the input samples (i.e. decomposed surrogate model output samples and
coordinated surrogate model input samples). The comprehensive reliability (i.e. coordinated
surrogate model output samples) can be taken by PDF and allowable value (Fei et al., 2019).
Therefore, the decomposed-coordinated surrogate model can be established. The
decomposed-coordinated RSM (DC-RSM), decomposed-coordinated SVM (DC-SVM),
decomposed-coordinated ANN (DC-ANN) and decomposed-coordinated Kriging (DC-
Kriging) are established with 100 training samples. The 100 testing samples are used to
illustrate the absolute error, average absolute error and simulation efficiency of the
established model, which are displayed in Figure 17 and Table 8.

Methods
Sampling number

102 103 5 3 103 104

Direct simulation 272,456s 2,752,345s 138,678,943s –
MERSM 1.56s 1.72s 1.85s 1.98s
MESVM 0.68s 0.74s 0.88s 0.97s
MEANN 0.51s 0.65s 0.71s 0.78s
MEKriging 1.62s 1.86s 1.95s 2.32s

(a) (b)

Sampling
number

Reliability degree Precision/%
MC MERSM MESVM MEANN MEKriging MERSM MSVM MEANN MEKriging

100 0.97 0.96 0.98 0.97 0.97 98.97 98.97 100 100
1,000 0.996 0.993 0.992 0.994 0.997 99.70 99.60 99.98 99.99
10,000 – 0.9972 0.9969 0.9976 0.9977 – – –

Table 6.
Simulation efficiency

with four multi-
extremum surrogate

models

Figure 16.
Distribution of the
strain and stress of

turbine blisk

Table 7.
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As can be seen from Figure 17, the test values of DC-Kriging are close to the real values by
direct simulation calculation. In addition, the absolute error curves of DC-Kriging are less
volatile than those of DC-RSM, DC-SVM and DC-ANN for different testing samples.
Therefore, DC-Kriging has better robustness and economy inmodeling. As shown in Table 8,
the average absolute error of DC-Kriging (0.0032) is less than that of DC-RSM (0.0413), DC-
SVM (0.0335) and DC-ANN (0.0078). The simulation efficiency of decomposed-coordinated
surrogate models is much higher than that of the direct simulation method, in which the
simulation efficiency advantage of DC-ANN is more obvious than that of DC-SVM, DC-
Kriging and DC-RSM.

4.2 Further research on structural dynamic reliability analysis
To ensure the safety of large equipment and measure its safe operation probability, the
structural dynamic reliability analysis is of great significance. The development trend of
structural dynamic reliability analysis technology is combed based on the preliminary
research and tracking of relevant literature.

4.2.1 Single-objective structure. The MC method is often used as an effective means to
verify the accuracy of other methods. Reducing the reduction of MC calculation and

Methods Eaa_error Times

Direct simulation – 272,456s
DC-RSM 0.0413 0.42s
DC-SVM 0.0335 0.56s
DC-ANN 0.0078 0.24s
DC-Kriging 0.0032 0.45s

Figure 17.
Absolute errors of
decomposed-
coordinated surrogate
models

Table 8.
Simulation efficiency
with four decomposed-
coordinated surrogate
models
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improving the calculation efficiency is still the research focus, especially for high-dimensional
small probability events. The correlation of crossing events and the applicability of crossing
rate method in various distribution types are follow-up research important directions for the
crossing ratemethod. The application of envelope function in input variables large variability
or limit state function high nonlinearity is the next research focus, for instance, increasing
more expansion points. The efficiency of structural dynamic reliability analysis is improved
by combining extreme value method and surrogate model. However, how to obtain effective
samples beneficial to modeling and dealing with the highly nonlinear relationship between
variables effectively is an important research hotspot, which realizes the high-precision
reliability analysis of structure single-failure mode. For example, the moving modeling
technology and intelligent algorithm are used to establish models with higher accuracy and
efficiency.

4.2.2Multiobjective structure. In recent years, with the development of structural dynamic
reliability analysis, the method and theory of structures multiobjective dynamic reliability
analysis involving multiple components and multiple failures are developing. But most
scholars mainly focus on the multicomponent single-failure mode and single-component
multifailure mode. The coupling between multiple parameters and the correlation between
multiobjective are weakened by establishing multiple limit function models. Therefore, it is
an important development direction that further explores the application of the multi-
extremum surrogate model method and decomposed-coordinated strategy to realize
multiobjective integrated reliability analysis of multicomponents with multifailures.

5. Conclusions
In this paper, the development status of structural dynamic reliability analysis is studied, and
some main conclusions are summarized as follows:

(1) The reliability analysis methods of single-objective structure application scenarios
are analyzed and summarized: the MCmethod is mainly used as a reference standard
to evaluate the calculation accuracy of other methods; The outcrossing rate method
can estimate outcrossing rate efficiently with the FOSM, which is not suitable for the
highly nonlinear limit state function; The envelope function method is suitable for
reliability analysis with low nonlinearity or the small coefficient of variation; The
combination of extreme value method and surrogate model is suitable for almost all
dynamic reliability analysis, which greatly improves the efficiency of dynamic
reliability analysis and reduces the calculation cost of dynamic reliability analysis.

(2) The reliability analysis methods of multiobjective structure application scopes are
summarized as follows: the series-parallel and expansion method is applied to the
situation with the requirements for calculation efficiency is not high, and can also be
used as a reference standard for othermethods; Themulti-extremum surrogatemodel
method can carry out the collaborative modeling of single-component multifailure
modes to realize the structural dynamic reliability analysis; The decomposed-
coordinated surrogate model method can quickly realize the highly nonlinear
structural dynamic reliability analysis multifailure modes.

(3) Combining moving modeling, intelligent algorithm and other technologies to obtain
efficient modeling samples, and establish an approximation function model with
higher efficiency and accuracy is an important research direction for single-objective
structure dynamic reliability analysis. The multiobjective integrated dynamic
reliability analysis of multicomponent with multifailure modes needs to be further
studied by combining with the multi-extremum surrogate model method and
decomposed-coordinated strategy.
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