D. Borka

D. Borka
Vinča Institute of Nuclear Sciences | VIN · Department of Physics

PhD

About

115
Publications
8,752
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,282
Citations
Additional affiliations
January 2011 - present
Vinča Institute of Nuclear Sciences
Position
  • staff
January 2007 - October 2007
University of Waterloo
Position
  • postdoctoral felow

Publications

Publications (115)
Preprint
We estimate the parameters of Hybrid Palatini gravity model with the Schwarzschild precession of S-stars, specifically of S2, S38 and S55 stars. We also take into account case of bulk mass distribution near Galactic Center. We assume that the Schwarzschild orbital precession of mentioned S-stars is the same like in General Relativity (GR) in all st...
Article
Full-text available
We estimate the parameters of the Hybrid Palatini gravity model with the Schwarzschild precession of S-stars, specifically of the S2, S38 and S55 stars. We also take into account the case of bulk mass distribution near the Galactic Center. We assume that the Schwarzschild orbital precession of mentioned S-stars is the same as in General Relativity...
Preprint
After giving a short overview of previous results on constraining of Extended Gravity (EG) by stellar orbits, we discuss the Schwarzschild orbital precession of S2 star assuming the congruence with predictions of General Relativity (GR). At the moment, the S2 star trajectory is remarkably fitted with the first post-Newtonian (pN) approximation of G...
Preprint
We use the Fundamental Plane of Elliptical Galaxies to constrain the so-called Hybrid Gravity, a modified theory of gravity where General Relativity is improved by further degrees of freedom of metric-affine Palatini formalism of $f(\cal R)$ gravity. Because the Fundamental Plane is connected to the global properties of elliptical galaxies, it is p...
Preprint
Full-text available
In this study we investigate possible applications of observed S2 orbit around Galactic Center for constraining the Yukawa gravity at scales in the range between several tens and several thousands astronomical units (AU) to obtain graviton mass constraints. In our model we suppose that bulk distribution of matter (includes stellar cluster, interste...
Article
In this study we investigate possible applications of observed S2 orbit around Galactic Center for constraining the Yukawa gravity at scales in the range between several tens and several thousands astronomical units (AU) to obtain graviton mass constraints. In our model we suppose that bulk distribution of matter (includes stellar cluster, interste...
Article
We use the Fundamental Plane of Elliptical Galaxies to constrain the so-called Hybrid Gravity, a modified theory of gravity where General Relativity is improved by further degrees of freedom of metric-affine Palatini formalism of f(R) gravity. Because the Fundamental Plane is connected to the global properties of elliptical galaxies, it is possible...
Article
Subject of this study is a theoretical investigation of the channeling of high energy protons with the radially deformed triple-wall carbon nanotubes (TWNTs). Specifically, we chose a proton energy of 1 GeV and perfect and the radially deformed TWNTs (15, 0)@(10, 0)@(5, 0) of radial strengths η=0.1,0.2 and 0.3. We presented the channeling potential...
Preprint
We show that fundamental plane of elliptical galaxies can be used to obtain observational constraints on metric theories of gravity. Being it connected to global properties of ellipticals, it can fix parameters of modified gravity. Specifically, we use fundamental plane to constrain modified theories of gravity with Yukawa-like corrections which co...
Article
We show that fundamental plane of elliptical galaxies can be used to obtain observational constraints on metric theories of gravity. Being it connected to global properties of ellipticals, it can fix parameters of modified gravity. Specifically, we use fundamental plane to constrain modified theories of gravity with Yukawa-like corrections which co...
Article
In this work we used the observed additional perihelion precession in the Solar System, obtained from the observations of planets and spacecrafts, to study the possible existence of Yukawa correction term to the Newtonian gravitational potential. Our study was motivated by previous analyses which indicated the possible discrepancies from Newtonian...
Preprint
Full-text available
Here we study the potential observational signatures of supermassive black hole binaries (SMBHBs) in the Fe K$\alpha$ line profiles emitted from the accretion disks around their components. We simulated the Fe K$\alpha$ line emission from the relativistic accretion disks using ray tracing method in Kerr metric. The obtained profiles from the SMBHBs...
Article
Full-text available
In this study we presented a theoretical investigation of the channeling of high energy protons with the radial deformed (10, 0)@(5, 0) double-wall carbon nanotubes (DWNTs). Proton energy is varied from 0.1 to 10 GeV. The channeling potential within the deformed DWNTs is presented. A Monte Carlo (MC) simulation is used to obtain spatial and angular...
Preprint
Full-text available
The aim of our investigation is to derive a particular theory among the class of scalar-tensor(ST) theories of gravity, and then to test it by studying kinematics and dynamics of S-stars around supermassive black hole (BH) at Galactic Center (GC). We also discuss the Newtonian limit of this class of ST theories of gravity, as well as its parameters...
Article
Nonlocal theories of gravity have recently drawn a lot of attention because they can suitably represent the behavior of gravitational interaction in the ultraviolet regime. Furthermore, at infrared scales, they give rise to notable cosmological effects which could be important to describe the dark energy behavior. In particular, exponential forms o...
Conference Paper
The simplest form of the Hyperfine Interaction (HFI) of quarks is a color-spin interaction, sometimes called Fermi-Breit (FB) HFI. For conventional hadrons, this HFI for quark-antiquark (qq̄) pairs is twice as strong as the same HFI for quark-quark (qq or q̄q̄) pairs, but this difference is absorbed into the different HFI constants for mesons and b...
Article
Full-text available
The aim of our investigation is to derive a particular theory among the class of scalar-tensor(ST) theories of gravity, and then to test it by studying kinematics and dynamics of S-stars around a supermassive black hole (BH) at Galactic Center (GC). We also discuss the Newtonian limit of this class of ST theories of gravity, as well as its paramete...
Article
Full-text available
The global properties of elliptical galaxies are connected through the so-called fundamental plane of ellipticals, which is an empirical relation between their parameters: effective radius, central velocity dispersion and mean surface brightness within the effective radius. We investigated the relation between the parameters of the fundamental plan...
Preprint
Full-text available
The global properties of elliptical galaxies are connected through the so-called fundamental plane of ellipticals, which is an empirical relation between their parameters: effective radius, central velocity dispersion and mean surface brightness within the effective radius. We investigated the relation between the parameters of the fundamental plan...
Preprint
Full-text available
Non-local theories of gravity have recently gained a lot of interest because they can suitably represent the behavior of gravitational interaction in the ultraviolet regime. Furthermore, at infrared scales, they give rise to notable cosmological effects which could be important to describe the dark energy behavior. In particular, exponential forms...
Article
The backscattered electron spectra from graphite sample were studied both experimentally and theoretically at impact energies between 500 and 5000 eV. The angle of the incident electron beam was 50° and the detection angle was 0° with respect to the surface normal, respectively. Monte Carlo (MC) simulations were performed based on the Classical Tra...
Article
Full-text available
We demonstrate that the existence of a Noether symmetry in f ( R ) theories of gravity gives rise to an additional gravitational radius, besides the standard Schwarzschild one, determining the dynamics at galactic scales. By this feature, it is possible to explain the baryonic Tully-Fisher relation and the rotation curve of gas-rich galaxies withou...
Article
Full-text available
Recently, the LIGO-Virgo collaboration discovered gravitational waves and in their first publication on the subject the authors also presented a graviton mass constraint as $m_g < 1.2 \times 10^{-22}$ eV Abbott et al. (2016). In the paper we analyze a potential to reduce upper bounds for graviton mass with future observational data on trajectories...
Article
The role of f(R) gravity, as well as the other modifications of standard Einstein’s gravity, is to explain the accelerated expansion, structure formation of the Universe, and some other phenomena at extragalactic scales (such as e.g. flat rotation curves of spiral galaxies) without adding unknown forms of dark energy or dark matter. In f(R) model,...
Article
Full-text available
An experimental detection of graviton is extremely hard problem, however, there are different ways to evaluate a graviton mass if it is non-vanishing. Theories of massive gravity or theories with non-vanishing graviton mass initially have a number of pathologies such as discontinuities, ghosts etc. In last years theorists found ways to overcome wea...
Article
We present an analytical modeling of the electron energy loss (EEL) spectroscopy data for free-standing graphene obtained by scanning transmission electron microscope. The probability density for energy loss of fast electrons traversing graphene under normal incidence is evaluated using an optical approximation based on the conductivity of graphene...
Article
Full-text available
We perform classical transport simulations to model the transmission of electrons through metallic capillaries. Excellent agreement between measured and simulated energy spectra of transmitted electrons is found.
Article
Full-text available
We use radio-continuum all-sky surveys at 1420 and 408 MHz with the aim to investigate properties of the Galactic radio source Lupus Loop. The survey data at 1435 MHz, with the linear polarization of the southern sky, is also used. We calculate properties of this supernova remnant: the brightness temperature, surface brightness and radio spectral i...
Article
We demonstrate that the existence of a Noether symmetry in $f(R)$ theories of gravity gives rise to a further gravitational radius, besides the standard Schwarzschild one, determining the dynamics at galactic scales. By this feature, it is possible to explain the baryonic Tully-Fisher relation and the rotation curve of gas-rich galaxies without the...
Article
We use the dielectric response formalism to explore the wake effect due to excitation of the sheet plasmons in graphene and in a two-dimensional (2D) electron gas with a parabolic energy band, caused by an externally moving charged particle. Using the random phase approximation to obtain the relevant polarisation functions, we have found similariti...
Article
Full-text available
One could use trajectories of test particles to evaluate a gravitational potential. In particular, in the case of the Galactic Center one could use photon trajectories to analyze a shadow structure. Another way is to use bright stars near the Galactic Center to evaluate a gravitational potential and constrain parameters of a model for the Galactic...
Article
Full-text available
In February 2016 the LIGO & VIRGO collaboration reported the discovery of gravitational waves in merging black holes, therefore, the team confirmed GR predictions about an existence of black holes and gravitational waves in the strong gravitational field limit. Moreover, in their papers the joint LIGO & VIRGO team presented an upper limit on gravit...
Article
Full-text available
Scientists worked in Saint-Petersburg (Petrograd, Leningrad) played the extremely important role in creation of scientific school and development of general rela-tivity in Russia. Very recently LIGO collaboration discovered gravitational waves [1] predicted 100 years ago by A. Einstein. In the papers reporting about this discovery , the joint LIGO...
Article
Full-text available
The fundamental plane (FP) of galaxies can be recovered in the framework of $f(R)$ gravity avoiding the issues related to dark matter to fit the observations. In particular, the power-law version $f(R)\propto R^n$, resulting from the existence of Noether symmetries for $f(R)$, is sufficient to implement the approach. In fact, relations between the...
Conference Paper
In this paper we investigate possibility of carbon nanotubes characterization by differentiation in spatial and angular distribution fingerprints obtained by fast ions channeling. We analyze straight single walled carbon nanotubes (SWNTs) interacting with fast ion beams. We calculate the image potential for protons moving through the four types of...
Article
Recently LIGO collaboration discovered gravitational waves \cite{Abbott_16} predicted 100 years ago by A. Einstein. Moreover, in the key paper reporting about the discovery, the joint LIGO \& VIRGO team presented an upper limit on graviton mass such as $m_g < 1.2 \times 10^{-22} eV$ (Abbott et al. (LIGO collaboration) PRL 116 (2016) 061102). Since...
Article
We investigate the interactions of charged particles with straight and bent single-walled carbon nanotubes (SWNTs) under channeling conditions in the presence of dynamic polarization of the valence electrons in carbon. This polarization is described by a cylindrical, two-fluid hydrodynamic model with the parameters taken from the recent modelling o...
Article
We consider possible signatures for the so called hybrid gravity within the Galactic Central Parsec. This modified theory of gravity consists of a superposition of the metric Einstein–Hilbert Lagrangian with an f(R) term constructed à la Palatini and can be easily reduced to an equivalent scalar–tensor theory. Such an approach is introduced in orde...
Article
Full-text available
Here we present a short overview and main results of our investigations of several effects which can induce shifts in the broad Fe K$\alpha$ line emitted from relativistic accretion disks around single and binary supermassive black holes. We used numerical simulations based on ray-tracing method in the Kerr metric to study the role of classical Dop...
Article
Full-text available
In this work we study the transmission of charged particles through a single cylindrically shaped metallic capillary of microscopic dimensions with a large aspect ratio. We used electrons as projectiles. Our results suggest the existence of guiding of the electron beam by a metallic capillary.
Article
Full-text available
We present Monte Carlo simulation of low energy electrons backscattered from iron (Fe) surface. We take into account both elastic and inelastic collisions during the simulation. In our simulations the primary electron energy is 150 eV and the incidence angle of the electron beam with respect to the surface is varied between 1° and 90 °. The backsca...
Article
Full-text available
We use the dielectric response formalism to show how an incident charged particle may be used to probe the hybridization taking place between the Dirac plasmon in graphene and the surface optical phonon modes in a SiO2 substrate. Strong effects of this hybridization are found in the wake pattern in the induced potential, as well as in the stopping...
Book
Full-text available
This book addresses the latest advances in general relativity research, including the classical world and spinor formalisms; keys to understanding gravity; the continuum mechanics of space-time; new evidences on matter without energy-stress tensor; a new approach to study gravitational stability of the solutions to the Einstein equations; Mond theo...
Chapter
Full-text available
In this chapter we investigate the possibility to provide theoretical explanation for the observed deviations of S2 star orbit around the Galactic Center using gravitational potentials derived from extended gravity models, but in absence of dark matter. Extended Theories of Gravity are alternative theories of gravitational interaction developed fro...
Article
Full-text available
We study the wake effect in a supported graphene layer induced by external charged particles moving parallel to it by using the dynamic polarization function of graphene within the random phase approximation for its π electrons described as Dirac's fermions. We explore the effects of a substrate assuming that graphene is supported by an insulating...
Article
We apply color-spin and flavor-spin quark-quark interactions to the meson and baryon constituent quarks, and calculate constituent quark masses, as well as the coupling constants of these interactions. The main goal of this manuscript was to determine constituent quark masses from light and open bottom hadron masses, using the fitting method we hav...
Article
We investigate the possibility to explain theoretically the observed deviations of S2 star orbit around the Galactic Centre using gravitational potentials derived from modified gravity models in absence of dark matter. To this aim, an analytic fourth-order theory of gravity, non-minimally coupled with a massive scalar field is considered. Specifica...
Article
Here we investigate possible applications of observed stellar orbits around Galactic Center for constraining the R$^n$ gravity at Galactic scales. For that purpose, we simulated orbits of S2-like stars around the massive black hole at Galactic Center, and study the constraints on the R$^n$ gravity which could be obtained by the present and next gen...
Article
Full-text available
We consider possible signatures for Yukawa gravity within the Galactic Central Parsec, based on our analysis of the S2 star orbital precession around the massive compact dark object at the Galactic Centre, and on the comparisons between the simulated orbits in Yukawa gravity and two independent sets of observations. Our simulations resulted in stro...
Article
We used a model of a relativistic accretion disk around a supermassive black hole (SMBH), based on ray-tracing method in the Kerr metric, to study the variations of the composite Fe K$\alpha$ line emitted from two accretion disks around SMBHs in a binary system. We assumed that the orbit of such a binary is approximately Keplerian, and simulated th...
Article
One of the most intriguing scenarios proposed to explain how active galactic nuclei are triggered involves the existence of a supermassive binary black hole system in their cores. Here we present an observational evidence for the first spectroscopically resolved sub-parsec orbit of a such system in the core of Seyfert galaxy NGC 4151. Using a metho...
Article
Full-text available
We use the dielectric response formalism within random phase approximation for graphene's π-electron bands to study polarization of doped, single-layer graphene in the presence of a moving dipole and a pair of comoving ions, as well as to study the electrostatic part of the long-range interaction in the coadsorption of two ions and two dipoles on g...
Conference Paper
Full-text available
In this paper we study some possible observational signatures of Rn gravity at Galactic scales. We make comparison between the theoretical results and observations. For that purpose, we performed computer simulations in Rn gravity potential (modifications of the Newton’s gravity law) and analyzed the obtained trajectories of S2 star around Galactic...
Article
We study some possible observational signatures of $R^n$ gravity at Galactic scales and how these signatures could be used for constraining this type of $f(R)$ gravity. For that purpose, we performed two-body simulations in $R^n$ gravity potential and analyzed the obtained trajectories of S2-like stars around Galactic center, as well as resulting p...
Article
Full-text available
We use observations of the continuum radio emission at 1420, 820, 408, 34.5 and 22 MHz to estimate the mean brightness temperatures of the HB 21 supernova remnant (SNR) at five frequencies. We also present mean spectral index of HB 21. The spectra of HB 21 are estimated from mean temperatures versus frequency plots for 1420, 820, 408, 34.5 and 22 M...
Article
In this paper we present the main results of our investigation of the $cq \bar{q} \bar{q}$ single-charm scalar tetraquarks and their SU(3)$_\mathrm{F}$ representations: $\bar{15}_S$, $\bar{3}_S$, $6_A$ and $\bar{3}_A$. We use the Fermi-Breit interaction Hamiltonian with SU(3) flavor symmetry breaking to determine the masses of the single-charm tetr...