Cyrus ShahabiUniversity of Southern California | USC · Department of Computer Science
Cyrus Shahabi
PhD, MSc, BSc
About
645
Publications
91,631
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
20,996
Citations
Introduction
Publications
Publications (645)
Accurately modeling and analyzing time series data is crucial for downstream applications across various fields, including healthcare, finance, astronomy, and epidemiology. However, real-world time series often exhibit irregularities such as misaligned timestamps, missing entries, and variable sampling rates, complicating their analysis. Existing a...
Understanding human mobility behavior is crucial for numerous applications, including crowd management, location-based recommendations, and the estimation of pandemic spread. Machine learning models can predict the Points of Interest (POIs) that individuals are likely to visit in the future by analyzing their historical visit patterns. Previous stu...
Machine learning models have demonstrated substantial performance enhancements over non-learned alternatives in various fundamental data management operations, including indexing (locating items in an array), cardinality estimation (estimating the number of matching records in a database), and range-sum estimation (estimating aggregate attribute va...
Human mobility modeling from GPS-trajectories and synthetic trajectory generation are crucial for various applications, such as urban planning, disaster management and epidemiology. Both of these tasks often require filling gaps in a partially specified sequence of visits - a new problem that we call "controlled" synthetic trajectory generation. Ex...
The abundance of vehicle trajectory data offers a new opportunity to compute driving routes between origins and destinations. Current graph-based routing pipelines, while effective, involve substantial costs in constructing, maintaining, and updating road network graphs to reflect real-time conditions. In this study, we propose a new trajectory-bas...
Encoding geospatial data is crucial for enabling machine learning (ML) models to perform tasks that require spatial reasoning, such as identifying the topological relationships between two different geospatial objects. However, existing encoding methods are limited as they are typically customized to handle only specific types of spatial data, whic...
Simulating human mobility data is essential for various application domains, including transportation, urban planning, and epidemic control, since real data are often inaccessible to researchers due to expensive costs and privacy issues. Several existing deep generative solutions propose learning from real trajectories to generate synthetic ones. D...
Smart grids are a valuable data source to study consumer behavior and guide energy policy decisions. In particular, time-series of power consumption over geographical areas are essential in deciding the optimal placement of expensive resources (e.g., transformers, storage elements) and their activation schedules. However, publication of such data r...
Diagnosing epilepsy requires accurate seizure detection and classification, but traditional manual EEG signal analysis is resource-intensive. Meanwhile, automated algorithms often overlook EEG's geometric and semantic properties critical for interpreting brain activity. This paper introduces NeuroGNN, a dynamic Graph Neural Network (GNN) framework...
Mobility data captures the locations of moving objects such as humans, animals, and cars. With the availability of GPS-equipped mobile devices and other inexpensive location-tracking technologies, mobility data is collected ubiquitously. In recent years, the use of mobility data has demonstrated significant impact in various domains including traff...
Machine learning (ML) is playing an increasing role in decision-making tasks that directly affect individuals, e.g., loan approvals, or job applicant screening. Significant concerns arise that, without special provisions, individuals from under-privileged backgrounds may not get equitable access to services and opportunities. Existing research stud...
Researchers and practitioners working with spatial data often develop fundamental new techniques they would like to share with their community. These are not necessarily new research results, not yet in any textbook, but they are interesting, self-contained techniques for doing something useful in the domain of spatial data. We call these technique...
Real-world datasets are often incomplete due to data collection cost, privacy considerations or as a side effect of data integration/preparation. We focus on answering aggregate queries on such datasets, where data incompleteness causes the answers to be inaccurate. To address this problem, assuming typical relational data, existing work generates...
Privacy and fairness are two crucial pillars of responsible Artificial Intelligence (AI) and trustworthy Machine Learning (ML). Each objective has been independently studied in the literature with the aim of reducing utility loss in achieving them. Despite the significant interest attracted from both academia and industry, there remains an immediat...
Location-based alerts have gained increasing popularity in recent years, whether in the context of healthcare (e.g., COVID-19 contact tracing), marketing (e.g., location-based advertising), or public safety. However, serious privacy concerns arise when location data are used in clear in the process. Several solutions employ searchable encryption (S...
Forecasting the number of visits to Points-of-Interest (POI) in an urban area is critical for planning and decision-making for various application domains, from urban planning and transportation management to public health and social studies. Although this forecasting problem can be formulated as a multivariate time-series forecasting task, the cur...
Mobility data captures the locations of moving objects such as humans, animals, and cars. With the availability of GPS-equipped mobile devices and other inexpensive location-tracking technologies, mobility data is collected ubiquitously. In recent years, the use of mobility data has demonstrated significant impact in various domains including traff...
A fundamental problem in data management is to find the elements in an array that match a query. Recently, learned indexes are being extensively used to solve this problem, where they learn a model to predict the location of the items in the array. They are empirically shown to outperform non-learned methods (e.g., B-trees or binary search that ans...
Several "data-for-good" projects [1, 5, 12] initiated by major companies (e.g., Meta, Google) release to the public spatio-temporal datasets to benefit COVID-19 spread modeling [17, 47, 64] and understand human mobility [14, 24]. Most often, spatio-temporal data are provided in the form of snapshot high resolution population density information, wh...
Range aggregate queries (RAQs) are an integral part of many real-world applications, where, often, fast and approximate answers for the queries are desired. Recent work has studied answering RAQs using machine learning (ML) models, where a model of the data is learned to answer the queries. However, there is no theoretical understanding of why and...
Machine learning (ML) is playing an increasing role in decision-making tasks that directly affect individuals, e.g., loan approvals, or job applicant screening. Significant concerns arise that, without special provisions, individuals from under-privileged backgrounds may not get equitable access to services and opportunities. Existing research stud...
Location-based alerts have gained increasing popularity in recent years, whether in the context of healthcare (e.g., COVID-19 contact tracing), marketing (e.g., location-based advertising), or public safety. However, serious privacy concerns arise when location data are used in clear in the process. Several solutions employ Searchable Encryption (S...
The analysis of trajectory datasets has numerous applications ranging from urban planning to human mobility understanding, but to protect the privacy of individuals trajectory datasets are rarely released to researchers. And even when they are, they are limited in size and spatio-temporal coverage. To address these issues a number of methods for ge...
Fairness in data-driven decision-making studies scenarios where individuals from certain population segments may be unfairly treated when being considered for loan or job applications, access to public resources, or other types of services. In location-based applications, decisions are based on individual whereabouts, which often correlate with sen...
Range aggregate queries (RAQs) are an integral part of many real-world applications, where, often, fast and approximate answers for the queries are desired. Recent work has studied answering RAQs using machine learning (ML) models, where a model of the data is learned to answer the queries. However, there is no theoretical understanding of why and...
Mobile apps that use location data are pervasive, spanning domains such as transportation, urban planning and healthcare. Important use cases for location data rely on statistical queries, e.g., identifying hotspots where users work and travel. Such queries can be answered efficiently by building histograms. However, precise histograms can expose s...
Several companies (e.g., Meta, Google) have initiated "data-for-good" projects where aggregate location data are first sanitized and released publicly, which is useful to many applications in transportation, public health (e.g., COVID-19 spread) and urban planning. Differential privacy (DP) is the protection model of choice to ensure the privacy of...
The fight against the COVID-19 pandemic has highlighted the importance and benefits of recommending paths that reduce the exposure to and the spread of the SARS-CoV-2 coronavirus by avoiding crowded indoor or outdoor areas. Existing path discovery techniques are inadequate for coping with such dynamic and heterogeneous (indoor and outdoor) environm...
As countries look toward re-opening of economic activities amidst the ongoing COVID-19 pandemic, ensuring public health has been challenging. While contact tracing only aims to track past activities of infected users, one path to safe reopening is to develop reliable spatiotemporal risk scores to indicate the propensity of the disease. Existing wor...
The goal of the crime forecasting problem is to predict different types of crimes for each geographical region (like a neighborhood or censor tract) in the near future. Since nearby regions usually have similar socioeconomic characteristics which indicate similar crime patterns, recent state-of-the-art solutions constructed a distance-based region...
Accurately monitoring the number of individuals inside a building is vital to limiting COVID-19 transmission. Low adoption of contact tracing apps due to privacy concerns has increased pervasiveness of passive digital tracking alternatives. Large arrays of WiFi access points can conveniently track mobile devices on university and industry campuses....
Mobile apps and location-based services generate large amounts of location data. Location density information from such datasets benefits research on traffic optimization, context-aware notifications and public health (e.g., disease spread). To preserve individual privacy, one must sanitize location data, which is commonly done using differential p...
Learning low-dimensional representations of bipartite graphs enables e-commerce applications, such as recommendation, classification, and link prediction. A layerwise-trained bipartite graph neural network (L-BGNN) embedding method, which is unsupervised, efficient, and scalable, is proposed in this work. To aggregate the information across and wit...
Location data use has become pervasive in the last decade due to the advent of mobile apps, as well as novel areas such as smart health, smart cities, etc. At the same time, significant concerns have surfaced with respect to fairness in data processing. Individuals from certain population segments may be unfairly treated when being considered for l...
Conventional origin-destination (OD) matrices record the count of trips between pairs of start and end locations, and have been extensively used in transportation, traffic planning, etc. More recently, due to use case scenarios such as COVID-19 pandemic spread modeling, it is increasingly important to also record intermediate points along an indivi...
Various phenomena such as viruses, gossips, and physical objects (e.g., packages and marketing pamphlets) can be spread through physical contacts. The spread depends on how people move, i.e., their mobility patterns. In practice, mobility patterns of an entire population is never available, and we usually have access to location data of a subset of...
The Gaussian process is a powerful and flexible technique for interpolating spatiotemporal data, especially with its ability to capture complex trends and uncertainty from the input signal. This chapter describes Gaussian processes as an interpolation technique for geospatial trajectories. A Gaussian process models measurements of a trajectory as c...
The crime forecasting is an important problem as it greatly contributes to urban safety. Typically, the goal of the problem is to predict different types of crimes for each geographical region (like a neighborhood or censor tract) in the near future. Since nearby regions usually have similar socioeconomic characteristics which indicate similar crim...
Many domains including policymaking, urban design, and geospatial intelligence benefit from understanding people’s mobility behaviors (e.g., work commute, shopping), which can be achieved by clustering massive trajectories using the geo-context around the visiting locations (e.g., sequence of vectors, each describing the geographic environment near...
A trajectory, defined as a sequence of location measurements, contains valuable information about movements of an individual. Its value of information (VOI) may change depending on the specific application. However, in a variety of applications, knowing the intrinsic VOI of a trajectory is important to guide other subsequent tasks or decisions. Thi...
Federated learning enables multiple clients, such as mobile phones and organizations, to collaboratively learn a shared model for prediction while protecting local data privacy. However, most recent research and applications of federated learning assume that all clients have fully labeled data, which is impractical in real-world settings. In this w...
Adversarial data examples have drawn significant attention from the machine learning and security communities. A line of work on tackling adversarial examples is certified robustness via randomized smoothing that can provide a theoretical robustness guarantee. However, such a mechanism usually uses floating-point arithmetic for calculations in infe...
Mobile apps and location-based services generate large amounts of location data that can benefit research on traffic optimization, context-aware notifications and public health (e.g., spread of contagious diseases). To preserve individual privacy, one must first sanitize location data, which is commonly done using the powerful differential privacy...
Mobile apps that use location data are pervasive, spanning domains such as transportation, urban planning and healthcare. Important use cases for location data rely on statistical queries, e.g., identifying hotspots where users work and travel. Such queries can be answered efficiently by building histograms. However, precise histograms can expose s...
Range aggregate queries (RAQs) are an integral part of many real-world applications, where, often, fast and approximate answers for the queries are desired. Recent work has studied answering RAQs using machine learning models, where a model of the data is learned to answer the queries. However, such modelling choices fail to utilize any query speci...
Effectively and accurately forecasting the congestion in indoor spaces has become particularly important during the pandemic in order to reduce the risk of exposure to airborne viruses. However, there is a lack of readily available indoor congestion data to train such models. Therefore, in this demo paper we propose EPICGen , an experimental platfo...
Location data are widely used in mobile apps, ranging from location-based recommendations, to social media and navigation. A specific type of interaction is that of location-based alerts, where mobile users subscribe to a service provider (SP) in order to be notified when a certain event occurs nearby. Consider, for instance, the ongoing COVID-19 p...
Bike-sharing systems, where people rent bikes typically for last-mile commuting, have gained great popularity in recent years due to the rapid development of mobile networks. Station-based bike-sharing systems have been widely studied in both academia and industry, where problems like bike rental demand prediction and bike redistribution have been...
Mixed-type data that contains both categorical and numerical features is prevalent in many real-world applications. Clustering mixed-type data is challenging, especially because of the complex relationship between categorical and numerical features. Unfortunately, widely adopted encoding methods and existing representation learning algorithms fail...
A good representation of urban areas is of great importance in on-demand delivery services such as for ETA prediction. However, the existing representations learn either from sparse check-in histories or topological geometries, thus are either lacking coverage and violating the geographical law or ignoring contextual information from data. In this...
Crime prediction in urban areas can improve the allocation of resources (e.g., police patrols) towards a safer society. Recently, researchers have been using deep learning frameworks for urban crime forecasting with better accuracies as compared to previous work. However, these studies typically partition a metropolitan area into synthetic regions,...
Researchers and practitioners working with spatial data often develop fundamental new techniques they would like to share with their community. These are not necessarily new research results, not yet in any textbook, but they are interesting, self-contained techniques for doing something useful in the domain of spatial data. We call these technique...
As countries look towards re-opening of economic activities amidst the ongoing COVID-19 pandemic, ensuring public health has been challenging. While contact tracing only aims to track past activities of infected users, one path to safe reopening is to develop reliable spatiotemporal risk scores to indicate the propensity of the disease. Existing wo...