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New Insightintothe ComparativePowerof Quality-ControlRulesThat Use Control
Observations within a Single Analytical Run
Curtis A. Parvin

The error detection characteristics of quality-control (QC)
rules that use control observations within a single analyt-
ical run are investigated. Unlike the evaluation of OC rules
thatspan multiple analytical runs, most of the fundamen-
tal results regarding the performance of QC rules applied
within a single analytical run can be obtained from statis-
tical theory, without the need for simulation studies. The
case of two controlobservationsper run is investigatedfor
ease of graphical display, but the conclusions can be
extended to more than two controlobservationsper run.
Results are summarized ina graphicalformatthatoffers

many interesting insights into the relations among the
various QC rules. The graphs provide heuristicsupportto
the theoretical conclusions that no QC rule is best under
all error conditions, but the multirule that combines the
mean rule and a within-run standard deviation rule offers
an attractive compromise.

IndexIngTerms: statistics ‘ computer modeling ‘ error detec-
tion

Evaluation of the ability of a quality-control (QC) rule
to detect out-of-control states that persist until they are
discovered and corrected was the topic of a recent series
of papers (1-3). These papers showed that for the
evaluation and comparison of QC rules that span more
than a single analytical run, the simulation approach
that has been used routinely in the laboratory medicine
literature is not appropriate (4-6). This approach esti-
mates the irrelevant probability of rejecting an analyt-
ical run independently of whether previous runs are
accepted or rejected. The concepts of probability of error
detection (pa) and probability of false rejection (Pfr)
must be replaced by concepts such as the average run
length (ARL) to rejection, the average conditional prob-
ability of rejection, or the cumulative probability of
rejection at the ith run with error (1). Estimates of these
alternative concepts can be obtained from simulation
approaches that allow each cycle of the simulation to
test successive analytical runs until a run isrejected.
Simulation isan essential tool in thissituationbecause
of the complexity of the QC rules and the lack of
independence of these rules from run to run, making
attempts to derivestatisticaltheory very difficult.
The purpose of this paper isto investigate the error

detection ability of rules that only use control observa-
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tions within the current run. Many of the QC rules that
have been proposed and evaluated, and that are used
routinely in the clinical laboratory, utilize control ob-
servations in the current analytical run only. The con-
cepts of probability of error detection and probability of
false rejection are meaningful and useful in this situa-
tion; either the traditional or alternative simulation
approach can be used to evaluate error detection ability.
However, in contrast to the situation where QC rules
are applied across analytical runs, rules that apply only
to the current run make it possible to draw many
important fundamental conclusions by using statistical
theory, without the need to simulate. A few papers have
pointed to some of this theory within the context of QC
in clinical chemistry (7, 8). In this paper, the theory is
extended and conveyed within a graphical context that
offers intuitive support to the findings.

Six different QC rules are compared. By Westgard’s
notation (9) they are the 1,, rule, 2 rule, R rule, X
rule, 1/2JR rule, and X/R rule. The case with two
control observations per run will be used throughout,
thereby allowing convenient graphical presentation of
the results. All evaluations are performed without sim-
ulation. The results are summarized by displaying two-
dimensional graphs showing contour plots for the bi-
variate distribution of the control observations when
the process is in control or, when it is out of control,
superimposed on a two-dimensional representation of
the rejection region for a particular rule. Displayed in
this way, the graphs provide interesting insights into
the relations among the various QC rules and their
comparative ability for error detection. The results
generalize in a straightforward way to more than two
control observations per run.

Methods

I assume there are two control observations per run
and that the control observations follow the model

i=1,2,3,...,j’1,2

where C denotes the measured value of the jth control
observation in the ith analytical run, E, represents
random between-run error, and e represents random
within-run error for the jth control observation in the
ith analytical run. During stable operation, the distri-
butions of E, and e are assumed to be independent and
Gaussian with means = 0 and variances = 1. For a
specific analytical run (say, run 1) the between-nm
error (E1) is constant and the two control measurements
within the run are independently distributed with



z1

means p + E1 and p + E1 and variances 4 and 42

However, for an arbitrary analytical run (say, run i) E,
is random and the total imprecision of the control
measurements must reflect the added imprecision due to
the random between-run error. Additionally, the control
measurements are not independently distributed, but
are correlated because of the common component of
between-nm error that they share. Therefore, in the
general case, C1 and C follow a bivariate Gaussian
distribution with means Pi and variances o, = a, +
4, and (T2, and correlation (p) between C-1 and C of
(ffb,0b,)/(fft #{176}i).The control rules evaluated in this paper
use control observations within a single analytical run;
therefore, to streamline notation, the run subscript, i,
will be dropped.

This model is a more general formulation of the model
I described previously (3). if the two control observa-
tions in a run are on the same control material, then ,
= IL2, (Tb, = a and oS,,, = o2. if the two control
observations are on different control materials, then

, and the magnitudes of between-nm and within-
run imprecision for the two control materials may or
may not be equal.

The ratio of between-nm to within-nm standard de-
viation for the jth control observation during stable
operation will be denoted . It is easy to veri1r that the
relation of pto 4’s, and is

II \f
= V i + ,) i +

Two situations are evaluated; the casewhere there is no
between-nm error (, = = 0),which impliesp = 0,
and the case where the magnitudes of between-nm and
within-run imprecision are equal = = 1), which
implies p = 0.5. For simplicity, these cases will be
referred to as = 0 and 4.,,= 1. Three different error
situations are evaluated. In the first case a systematic
error (SE) in the QC mean is evaluated. I assume a shift
in each QC mean (IL) by an amount SE = 2.0o. Next, I
assume that total analytical imprecision increases from
its stable value, o, to REb = l.5o-t, because of an
increase in the between-nm component of imprecision
from its stable value, 0b.’ to an out-of-control value o.
Finally, I assume that total analytical imprecision in-
creases from its stable value, o, to RE,, = 1.5u,,
becauseof an increase in the between-nm component of
imprecision from its stable value, r, to an out-of-

control value, uw. The formulas used to determine the
magnitude of o. or r that increase total imprecision
by a factor of 1. were described previously (3).

All analyses are performed on the transformed vari-
ables z, = (C - &/Ot, which have means = 0, variances
= 1, and the same correlation between z1 and z2 as given
earlier for C1 and C2. The probability of rejection for a
rule is obtained by numerically integrating the volume
under the appropriate bivariate Gaussian probability
density function over the rejection region defined by the

rule. The Mathematica software package was used for
the numerical integration and for creation of the figures
(10).

Results

Figure 1 portrays the bivariate Gaussian distribu-
tions describing the probability density for z1 and z2
when there is no between-nm error (4 = 0.0, top panel)
and when between-nm imprecision equals within-run
imprecision for each control observation (4 = 1.0,
bottom panel). The probability density defines a surface
in three-dimensional space. For every pair of (z1, z2)
values there is a density f(z1, z2) represented by the
height of the surface at that point. Probability corre-
sponds to volume under the surface. Circles (p = 0) or
ellipses (p 0) define the contours of constant density
(elevation) on the surfaces. The following figures repre-
sent these bivariate distributions by a single contour

f(z1,z2)

f(z1,z2)

s=o.o

4s=1.o

zl

Fig.1. Surfaceplots describingthebivaiiatenormaldistributionfor
twocontrolobservations within an analytlcai run
Surfacecontourstrace a constantvalue for the density function f(z1. z2).When
no component of between-run imprecision exists (, = 0), z1 and 22 are
uncorrelatedand the contoursof the distributionare circles (tsp panel). When
between-run imprecisionexIsts (4i > 0), 21 and z2 are correlated and the
contoursare ellipses (bottom panel)

CLINICAL CHEMISTRY, Vol.39, No.3, 1993 441



-e-I
-6 -3 0 3 6

z,
-63036 6 3 0 3 6

13
13
22.
22,
R4,
R,
x
x
13/22/R4,
13/225/R4,

R1R4,

0 0.0054
1 0.0052
0 0.0010
1 0.0081
0 0.0047
1 0.0047
0 0.0050
1 0.0050
0 0.0097
1 0.0159
0 0.0100
1 0.0100

0.2921
0.2548
0.2500
0.3333
0.0047
0.0047
0.5085
0.3094
0.4089
0.3971
0.5194
0.3203

Fig. 2.The error detection characteristics ofthe12,rule
The shaded area (extendingto ± =) denotes the rejectionregionforthe rule.
In the top three panels no between-run imprecision exists during stable
operation. In the bottom three panels equal componentsof between-runand
within-run imprecision exist during stable operation. The dashed contours
represent the bivariato probability distribution of the control observations
during in-control operation. The solid contours represent the bivarlate distil-
butlon during three differentout-of-controlstates. Left panels representa shift
in the QC means; middle panels represent an increase in between-run
imprecision;and right panels representan increase in within-run Imprecision

0.0814
0.0726
0.0634
0.0966
0.0047
0.0047
0.1335
0.0856
0.1117
0.1204
0.1406
0.0923

0.0889
0.0878
0.0166
0.0310
0.0593
0.1306
0.0613
0.0382
0.1234
0.1900
0.1189
0.1651

‘SE denotesa shift in theOC mean; RE., and RE,, denote IncreasesIntotal
analytical imprecisiondue to an Increase In the between-runcomponent and
within-runcomponent, respectively.

b Ratioofbetween-runto within-run imprecisiondurIng stable operation.
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defined so that the volume contained within it equals a
specified probability.

Figure 2 portrays the error detection ability of the 1
rule. The 1 rule rejects the nm if either one or both of
the control observations is >3 total analytical standard
deviations away from itsmean value. The shaded area
in each panel defines the rejection region for the rule.
The rejection region extends to ± along each axis, but,
for display purposes, the axes have been restricted to
±6. The dashed contours define the bivariate distribu-
tion for z1 and z2 during in-control operation. The solid
contours define the bivariate distribution under differ-
ent error conditions. The top three panels are cases
where 4 = 0.0 and the bottom three panels are cases
where 4 = 1.0. The volume contained within each
contour equals 1 - p for the rule when 4’ = 0.

The left panels depict a constant shift in the mean.
The out-of-control distributions (solidcontours) have the
same shape as the in-control distributions (dashed con-
tours), but they are shifted sothat they are centered at
the out-of-control values for the QC means. The middle
panels depict an increase in between-nm imprecision.
The out-of-control distributions remain centered at the
in-control means, but the increase in between-nm im-
precision has increased the dispersion in the distribu-
tions, reflected in the larger contours required to con-
tain the same fraction of the distributions. Additionally,
the ratio of between-nm to within-nm imprecision is
now greater than 4,,sothe correlation between z1 and z2
is increased. The right panels depict an increase in
within-nm imprecision. As in the between-nm case, the
dispersion of the distributions has increased while still
being centered at the in-control means. However, in this
case, the increase in within-nm imprecision reducesthe
ratio of between-run to within-run imprecision below d’

(except when , = 0) and the correlationbetween z1 and
z2 is decreased.

The probability that the 1 rule rejects a run is
calculated by integrating the volume under the bivari-
ate probability density describing the current state of
the assay over the area defined by the rejection region
for the rule. Conversely, the probability that the rule
accepts a run is equal to the volume under the appro-
priate density function contained within the unshaded
region. For instance, the volume contained within the
unshaded square region under the bivariate density
function represented by the solid circle in the upper left
panel of Figure 2 equals 0.7079. This isthe probability
of accepting the rule when a shift in the QC means of
2 total analytical standard deviations has occurred.
Table 1 lists the rejection probabilities obtained by
numerical integration for the in-control and out-of-
control states for the 138rule depicted in Figure 2 and
for the other rules for which figures follow.

Figure 3 depicts the 2 rule, which rejects the run if
both control observations are more than 2 total analyt-
ical standard deviations above their means or both are
more than 2 total analytical standard deviations below
their means. The contours in Figure 3 are larger than
those in Figure 2 because, when 4, = 0.0, the false-
rejection rate for the 228 rule (pfr = 0.0010) is smaller
than the false-rejection rate for the 1, rule (p =

0.0054). Consequently, the contours for the 2 rule are
larger, to contain the additional acceptance probability.

Figure 4 represents the R rule, which rejects if the
absolute difference between (C1 - ILi)Icr and (C2 -

IL2W#{176}2is>4. Note that this is the original range rule,
which is based on the difference between the two control
observations, not the modified rule that required one
control observation to be at least two within-run stan-
dard deviations above its QC mean and the other be at
least 2 within-nm standard deviations below its mean.
Unlike the and 228rules, the rejection region for the

Table 1. ProbabilIties of Rejection ObtaIned by
Numerical Integration

Probability of je’Jon’

Rule in-control SE = 2.0 RED= 1.5 RE,, = 1.5
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FIg. 3. Same as in Fig. 2, but representing the error detection
characteristics ofthe22, rule

---
-6 -3

Fig. 4. Same as In Fig. 2, but
characteristics oftheR4,rule

R4,, rule changes as the ratio of between-run to within-
run imprecision changes. This isbecause z1 and z2 are
defined in terms of total analytical standard deviation,
but the Ri,, rule is defined in terms of within-run
standard deviation. The Appendix describes how the
rejection regions in Figure 4 are determined.

Figure 5 depicts the X rule. This rule rejects a run if
the absolute value of the average ofz1 and z2 exceedsthe
specified control limit. The X rule shown in Figure 5 has
a control limit of 2.807, which gives a false-rejection rate
of 0.005. The variance of the average of z1 and z2 equals
(1 + p)!2. The rejection region for the X rule also
changes as the ratio of between-run to within-run im-
precision changes (as in the R, rule), because p depends
on the relative amounts of between-run and within-run
imprecision. The Appendix describes how the rejection
regions in Figure 5 are determined.

Figure 6 depicts the rejection region resulting from
the combination of the 13,, 22,, and R4, rules, and Figure
7 portrays the combination of the X and R4, rules.
Control limits of 2.785 were used for the X rule in
Figure 7.When combined with the R1,, rule, this pro-

Fig. 5.Same as inFig. 2, but representing the errordetection
characteristics oftheX rule

Fig. 6. Same as in Fig. 2, but representing the errordetection
characteristicsof the 13/225/R4, rule

#{176}‘ ________

Fig.7.Same as inFig.2, but representingthe errordetection
characteristics of theXJRS,,rule

duces a false-rejection rate of 0.01. The shaded rejection
region in Figure 6 is the result of overlaying the shaded
regions for each individual control rule. Consequently,
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the rejection probability for this combination rule is
greater than for any of the three individual rules, but
(because the individual rejection regions overlap) less
than the sum of the rejection probabilities of the three
individual rules. Also in Figure 6, the amount of shaded
region contained within the dashed contour is greater in
the three lower panels, where the between-run and
within-run components of imprecision are equal, than in
the three upper panels, where the between-run compo-
nent of imprecision is zero. This shows that the false-
rejection rate for the 1j22,fR, rule increases as 4),
increases. Table 1 demonstrates the effect of 4), on the
various control rules. The rejection regions for the R4,,
and X rules change as 4), changes so that the false-
rejection rate remains unchanged. However, the rejec-
tion rates for the 13 and 22, rules change as 4’,,changes.
Consequently, the rejection rate of the 138/22,/R4, rule
depends on 4), but that of the X/R, rule does not.

DiscussIon

One of the effects of between-run imprecision on the
performance of QC rules is that the control observations
within a run are not independent of one another. Each
control observation shares a common component of
between-run error. When there are two control observa-
tions per run, this results in the bivariate distribution
for the control observations being more concentrated
along the line defined by z2 = z1 (Figure 1). This line is
referred to as the principal axis of the probability
distribution. As the magnitude of between-run impreci-
sion increases relative to the magnitude of within-run
imprecision, the probability distribution of the control
observations within a run becomes increasingly concen-
trated along the principal axis.

Visualizing the consequences that the three different
error conditions studied here have on the probability
distribution of the control observations helps in the
interpretation of the performance of the various QC
rules. The distribution moves along the principal axis
when an out-of-control condition causes equal shifts
(relative to total analytical imprecision) in each QC
mean. The distribution is “stretched” along the princi-
pal axis when an out-of-control condition in between-
run imprecision causes equal increases in the total
analytical imprecision for each control material. The
distribution is spread out in all directions, but to a
greater degree (when 4), is greater than zero) in the
direction perpendicular to the principal axis when an
out-of-control condition in within-run imprecision
causes equal increases in the total analytical impreci-
sion for each control material. Note that the middle
panels of Figures 2-7 illustrate that, within a single
run, increases in between-run imprecision behave more
like a shift in the mean than an increase in analytical
imprecision (3).

Even though many more-sophisticated QC rules have
been proposed, the 13 rule is still widely used in clinical
laboratories. Figure 2 verifies that the 13 rule is a
reasonable all-around rule that protects against all
three types of error conditions, because it guards against

changes in the probability distribution of the control
observations in all directions. In contrast, the 22, rule
(Figure 3) can detect only changes in the distribution
along its principal axis. This illustrates why it is much
better at detecting shifts in the mean or increases in
between-run imprecision than at detecting increases in
within-run imprecision. The R4,, rule (Figure 4) detects
only changes perpendicular to the principal axis of the
probability distribution, which explains why it has
power for detecting increases in within-run imprecision
but not shifts in the mean or increases in between-run
imprecision.

The X rule (Figure 5), like the 22, rule, detects
changes along the principal axis of the probability
distribution. However, the X rule maximizes the
amount of the probability distribution falling within the
rejection region whenever an error condition causes a
change in the distribution along its principal axis,
because thisrule’s rejection limits are perpendicular to
the principal axis. Thus, the rule demonstrates good
power at detecting the types of shifts in the QC means
and increases in between-run imprecision evaluated
here (3, 11). In fact, itcan be proved that of all rules
based on control observations within a single run with
the same false-rejection rate, the X rule is the most
powerful for detecting these out-of-control conditions
(12).

Figure 6 clearly illustrates that the impact of combin-
ing the 1,,, 22,, and R4,, rules is to create a rejection
region that more closely approximates the contour of the
in-control probability distribution of the control obser-
vations. This produces a rule that has increased ability
to detect all types of error conditions (but with an
accompanying increase in false-rejection rate). Another
result that can be theoretically derived is that the QC
rule that uses the dashed contours in the figures to
define its rejection region is the most powerful rule for
detecting the increases in within-run imprecision stud-
ied here (12). The quadratic equation that defines these
contours of constant probability density represents a
chi-square statistic (,). Therefore, the 12,/22,/R mul-
tirule approximates the rule, which is the best rule
for detecting these increases in within-run imprecision.
The Appendix shows that this rule is a combination of
the quantities used in the X rule and the range rule.

The XIR4, rule (Figure 7) definesa rejectionregion
that is similar in appearance to the rejection region for
the 1,, rule, with two important exceptions. First, un-
like the 1,, rule, the rejection region for the X/R, rule
changes with 4),,so that the probability of false rejection
does not depend on the value of 4),,. It is not readily
apparent from Figure 2 and Table 1, but ps,,and for
the 13 rule both decrease as 4’, increases. The false-
rejection rate for the 13 rule when 4),, = 2 is 0.0047 and
when 4’,, =4 it is 0.0039. Second, unlike the 13,,rule, the
orientation of the rejection regions for the X/R4, rule is
optimal with respect to the changes in the probability
distribution of the control observations that occur dur-
ing the three types of out-of-control conditions investi-
gated here.
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Clearly, no one rule is best under all out-of-control
error conditions. If detecting all types of error conditions
is important, a compromise isrequired. Table2 displays
rejection probabilities for the X rule, the rule, the
X/R,, rule, and the 13,,/22,/R,, rule for the three error
conditions, with the control limits of the rules defined so
their false rejection rates match the false rejection rate
of the 138/22,/R4,, rule. Table 2 suggests that the X/R4,,
rule is a good compromise. Interestingly, this is the
same QC strategy proposed by Levey andJennings (13)
in one of the earliest papers on quality control to appear
in the laboratory medicine literature. More recently,
Linnet (8) provided strong arguments supporting the
superiority of the mean rule and a rule based on the
within-run standard deviation, 4. The 4 rule has been
described previously where it was denoted 4,1(3) or
(11). With two control observations per run, the 4 rule
and the range rule are equivalent (3).

The rule also displays respectable power in all
cases, with slightly superior performance in detecting
increases inwithin-run imprecision but slightly inferior
performance in detecting shifts in the QC means or
increases in between-run imprecision compared with
the X/R, rule. However, the XLR, combination rule
(where k can be any positive value, including 4) allows
two control limits to be specified. This provides flexibil-
ity in defining the relative error detection ability for
shifts in the QC means and increases in between-run
imprecision vs increases in within-run imprecision for
cases in which the importance of detecting these differ-
ent types of error conditions vary. The single control
limit of the x2 rule does not allow control over the
relative error detection ability for the different types of
out-of-control conditions.

The results displayed in Tables 1 and 2 and Figures
1-7 reflect only a single error magnitude for each
out-of-control condition. The same relative relation be-
tween the control rules holds at other error magnitudes,
although the degree of difference between the rules
changes as the magnitude of error changes.

If the two control observations within an analytical

Table 2. ProbabilIties of Rejection after Matching
False-Rejection Rates

Rule #{149},‘ In-control SE = 2.0 RED= 1.5 RE,,, = 1.5

R 0 0.0097 O.5953c 0.166r 0.0846
1 0.0159 0.4592c O.l397 0.0749

x2 0 0.0097 0.4827 0.1316 0.1273c

y 1 0.0159 0.3555 0.1087 0.2082c
R/R4, 0 0.0097 0.5114 0.1378 0.1171
/R,, 1 0.0159 0.4135 0.1247 0.1838
13,,/22,/R4,, 0 0.0097 0.4089 0.1117 0.1234
1,,/22,,/R,,, 1 0.01 59 0.3971 0.1204 0.1900

‘SE denotes a shift in the QC mean; RE,,and RE,,,denote IncreasesIntotal

analytical Imprecision due to an Increase in between-run and within-run
components, respectively.

Ratio ofbetween-runto withIn-run imprecisionduring stable operation.
C The maximum obtaInableprobabilityof rejectionfor the error conditionby

any rule with the earns false-rejection rate.

run are on a single control material, any out-of-control
condition will necessarily produce the same shift in the
means of z1 and z2 or increase in the total analytical
imprecision of z1 and z2. However, if the two control
observations being evaluated by the control procedure
are on different control materials, then out-of-control
conditions are not restricted to equal shifts in the means
or increases in total imprecision. The consequence of an
out-of-control condition that produces unequal shifts in
the QC means of the two control materials is to move the
bivariate distribution ofz1 and z2 in a different direction
than the principal axis. For example, an out-of-control
condition that causes a relatively large shift in the QC
mean for a low-concentration control material (z1), but a
negligible shift in the mean for a high-concentration
control material (z2) would move the bivariate distribu-
tion ofz1 and z2 approximately along the direction of the
z1 axis. Likewise, an out-of-control condition that causes
unequal increases in total imprecision for the two con-
trol materials will expand the bivariate distribution of
z1 and z2 and will also rotate the distribution so that its
principal axis is no longer defined by the line z2 = z1.
The laboratory medicine QC literature has investigated
only out-of-control conditions that produce equal shifts
in the QC means or equal increases in imprecision.

When out-of-control conditions can produce changes
in the distribution of control observations in any direc-
tion, the situation more appropriately becomes a prob-
lem in multivariate QC (14, 15). If it is important to
detect any shifts in the QC means or any increases in
total imprecision, then the x2 rule that defines the
in-control contour for the control observations has opti-
mal characteristics. This was briefly mentioned by Heil-
bron et al. (7). However, if out-of-control conditions are
expected to produce similar shifts in each QC mean or
similar increases in total imprecision for each control
material, then the K/Rk, rule is again a good compro-
mise.

When the number of control observations in a run (N)
is greater than two, displaying the error detection
characteristics of the QC rules in the fashion employed
here becomes impractical. With N = 3, the acceptance
region for the 13 rule and the rejection regions for the
22, rule are cubes in three-dimensional space. The
rejection boundary for the Re, rule isa cylinderaligned
along the principal axis with a hexagonal cross-section.
The K rule’s rejection limits are two parallel planes
perpendicular to the principal axis. However, the con-
clusions are the same. The K rule is stillbest for
detecting shifts of equal magnitude (relative to total
imprecision) in the QC means or increases in between-
run imprecision that produce equal increases in total
imprecision for each control material. The superiority of
the K rule over the other rules increases as N increases.
The rule representing the probability contour for the
joint distribution of the N control observations is still
best for detecting increases in within-run imprecision
that produce equal increases in total imprecision for
each control material. WithN >2, the 4 rule issuperior
to the range rule. The rejection limits of the 4 rule



or
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4 - 2pzjz2 + z -

-h

The numerator and denominator can be reexpressed as

(z1 - z2)2(1 + p)/2 + (z1 + z2)2(1 - p)/2 - h

(l+p)(l-p) -

whichsimplifies to
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when N = 3, for example, define a cylinder aligned
along the principal axis with a more optimal circular
(rather than hexagonal) cross-section. Therefore, the
Xi4 rule is superior to the K/Rk, rule. However, for
values up to N = 6 it has been demonstrated that the
difference between the 4 rule and the R1, rule is small
(3).

In sumnlslry, important conclusions concerning the
error detection characteristics of QC rules that use
control observations within a single analytical run have
been reached without performing simulations. With the
assumption of two control observations per run, all
false-rejection and error detection probabilities have
been determined exactly by numerical integration.
Graphical display of the probability distributions of the
two control observations in a run under various in-
control and out-of-control conditions superimposed on
the rejection region of a QC rule has been used to lend
insight into the comparative performance characteris-
tics of alternative control strategies. The numerical
results and visual insight support the conclusionthat no
single QC rule is best under all error conditions, but the
Xi4 (or X/Rk,) rule offers a good compromise.

Appendix
Rejection Limits for the R4, Rule Shown in Figure 4

The rejection limits for the R, rule are defined as

[(C1 - ,.&1)/u,] - [(C2 - L2)/o’,] = ±4 (1)

(z1ut1/cr,) - (z2o/o-2) = ±4 (2)

where z,, = (C,, - &‘#{176} Given that 4, = crbkr and o =

o + a it follows that a/cr,,, = Vi + . If = =

,, then p = /(1 + and a,/cr,, = 1/\/1-i Upon

substitution, the rejection limits become

(z1 - z2)/’\/i = ±4

= z1 ±

If = = 0, then p = 0 and the rejection limits are
deflnedby the two linesz2 =z1 ± 4.If,1 = = 1, then
p = 0.5 and the rejection limits are defined by the lines

= ± 4/’/,

Rejection Umits for the X Rule Shown in Figure 5

The variance of(z1 + z2)/2 equals {Var(z1) + Var(z2) +
2Cov(z1, z2)}/4 where Var and Coy represent variance
and covariance, respectively. The variances of z1 and z2
are 1 and their covariance is p. Therefore, the variance
of (z1 + z2)12 is {1 + 1 + 2p}/4 = (1 + p)/2. The rejection
regions depicted in Figure 5 are of the form

(z1 + z2)/2
= ±2.807

J?iTj/2

z2 -z1±2.807\/iT)

If,1 = = 0, then p = 0 and the rejection limits are
= -z1 ± 2.807V’. If = = 1, then p = 0.5 and

the rejection limits are z2 = -z1 ± 2.807V’.

Rejection Umits Derived from the Bivanate Probability

Contours

Assume z1 and z2 follow a bivariate Gaussian distri-
bution with means = 0, variances = 1, and correlation =

p. Then the equation that defines the contour of constant
elevation on the density surface at a height = h is (16,
p 89)

(z1 - z2)2 (z1 + z2)2
+

2(l-p) 2(l+p)

The first term in this sum is proportional to the square
of the statistic used in the range rule and the second
term is proportional to the square of the statistic used in
the mean rule (see above). Each of these terms is
chi-square distributed with one degree of freedom and
they are statistically independent. Therefore, their sum
isa chi-square statistic with two degrees of freedom, and
the control limit h can be specified as an appropriate

(3) percentile of the distribution.
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