Cristina Nali

Cristina Nali
Università di Pisa | UNIPI · Department of Agriculture, Food and Environment (DAFE)

PhD

About

224
Publications
41,517
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
4,031
Citations
Introduction
Cristina Nali currently works at the Department of Agriculture, Food and Environment (DAFE), Università di Pisa. Cristina does research in Horticulture, Forestry and Environmental Science. Their most recent publication is 'Editorial-ozone and plant life: the Italian state-of-the-art'.

Publications

Publications (224)
Article
Full-text available
Natural infections of Verticillium spp. (Fungi, Ascomycota) on Ailanthus altissima have suggested to consider the biological control as a promising strategy to counteract this invasive plant, which is otherwise difficult to control by traditional mechanical and chemical treatments. Verticillium wilt is able to lead plants to death, throughout a pat...
Article
Full-text available
Antioxidants and phytohormones are hallmarks of abiotic stress responses in plants. Although it is known that they can offer cell protection or accelerate programmed cell death (PCD) depending on the level of stress, the involvement of these metabolites in stress acclimation is still not fully elucidated. Here, we showed the role of antioxidants an...
Article
Ozone (O3) is a phytotoxic air pollutant capable of limiting plant yield and growth, and altering the quality of edible plant products. This study aimed to investigate the effects of long-term O3 exposure at realistic and future concentrations (applied during fruit development) not only on morphological, physiological, and biochemical plant/leaf tr...
Article
Full-text available
Durum wheat (Triticum turgidum L. subsp. durum (Desf.) Husn) is a staple crop of the Mediterranean countries, where more frequent waterlogging events are predicted due to climate change. However, few investigations have been conducted on the physiological and agronomic responses of this crop to waterlogging. The present study provides a comprehensi...
Article
Selected light wavebands promote plant development and/or the biosynthesis of targeted metabolites. This work offers new insights on the effects of red (R), green (G), blue (B), and white (W - R:G:B; 1:1:1) LED light supplementation on physiochemical traits of strawberry leaves. Gas exchange and chlorophyll fluorescence parameters, photosynthetic p...
Article
Molecular mechanisms underlying plant functioning under salt conditions have not been completely elucidated, especially in a recalcitrant and less studied fruit trees such as pomegranate (Punica granatum L.). Here, we identified and characterized the expression of NHX1, HKT1 and SOS1 to understand their role in mediating Na⁺ and K⁺ transport, trans...
Article
Eliciting plants consists in the application of chemical, physical, and biological factors that induce stressful conditions, and so trigger defense mechanisms and the production of bioactive compounds and phytochemicals. In this study, the phenolic and volatile organic compound (VOCs) profiles of sage leaves under a chronic ozone (O3) exposure (120...
Article
In their natural environment, date palms are exposed to chronic atmospheric ozone (O3) concentrations from local and remote sources. In order to elucidate the consequences of this exposure, date palm saplings were treated with ambient, 1.5 and 2.0 times ambient O3 for three months in a free-air controlled exposure facility. Chronic O3 exposure redu...
Article
Ozone (O3)-induced metabolic changes in leaves are relevant and may have several ecological significances. Here, variations in foliar chemistry of two poplar clones (Populus deltoides × maximowiczii, Eridano, and P. × euramericana, I-214) under a chronic O3 treatment (80 ppb, 5 h d-1 for 10 consecutive days) were investigated. The aim was to elucid...
Article
Mediterranean plants are particularly threatened by the exacerbation of prolonged periods of summer drought and increasing concentrations of ground-level ozone (O3). The aims of the present study were to (i) test if selected markers (i.e., reactive oxygen species, ROS; malondialdehyde, MDA; photosynthetic pigments) are able to discriminate the oxid...
Article
Full-text available
Advancements in the ability to detect plant responses to salinity are mandatory to improve crop yield, quality, and management practices. The present study shows the capability of hyperspectral reflectance (400–2400 nm) to rapidly and non-destructively detect and monitor the responses of two pomegranate cultivars (Parfianka, P, and Wonderful, W) un...
Article
Techniques to monitor oxidative stress pre-visually are essential to optimize plant management. Here, we investigated the capability of hyperspectral reflectance (350−2500 nm) to characterize responses of two pomegranate cultivars (Parfianka and Wonderful) under ozone (O3) episodes at a gradient of concentrations (50, 100 and 200 ppb for 5 h). Anal...
Article
Full-text available
Specialized metabolites constitute a major antioxidant system involved in plant defence against environmental constraints, such as tropospheric ozone (O3). The objective of this experiment was to give a thorough description of the effects of an O3 pulse (120 ppb, 5 h) on the phenylpropanoid metabolism of sage, at both biochemical and molecular leve...
Article
Verticillium dahliae (Kleb.) is a soil-borne pathogen able to cause yield losses in eggplant, Solanum melongena L., one of the most important vegetable crops in the Mediterranean basin. In this study, an experiment was conducted to assess physiological and biochemical mechanisms modulating the interactions between S. melongena cv. Violetta di Rimin...
Article
Full-text available
High-throughput and large-scale measurements of chlorophyll a fluorescence (ChlF) are of great interest to investigate the photosynthetic performance of plants in the field. Here, we tested the capability to rapidly, precisely, and simultaneously estimate the number of pulse-amplitude-modulation ChlF parameters commonly calculated from both dark- a...
Article
Two-year-old pomegranate (Punica granatum L.) plants of the commercial cultivars Wonderful (W) and Parfianka (P) were subjected for 47 days in the substrate to four salt concentrations (0, 100, 150 and 200 mM NaCl), in order to evaluate their strategies in terms of Na⁺/Cl⁻ translocation and tissue/organ compartmentalization, as well as of antioxida...
Article
To decipher the role of low molecular weight antioxidants in the sensitivity of Melissa officinalis L. (lemon balm, an aromatic plant, widely cultivated for pharmaceutical, food, beverage and cosmetic purposes) to realistic ozone (O3) concentrations, plants of this species were exposed to the gaseous pollutant (80 ppb for 5 h), and investigated for...
Article
Full-text available
The aim was the evaluation of the biochemical and physiological responses of green-(GP) and red-leafed (RP) Prunus cerasifera mature leaves to 20 d of polyethylene glycol (PEG 6000)-induced water stress in order to elucidate a possible ameliorative role exerted by anthocyanins. At 10 d, the anthocyanin content remained unchanged in RP water-stresse...
Article
Full-text available
The aim was the evaluation of the biochemical and physiological responses of green- (GP) and red-leafed (RP) Prunus cerasifera mature leaves to 20 d of polyethylene glycol (PEG 6000)-induced water stress in order to elucidate a possible ameliorative role exerted by anthocyanins. At 10 d, the anthocyanin content remained unchanged in RP water-stress...
Article
Full-text available
The aim of this study was to evaluate the tolerance of lichens (Evernia prunastri) and mosses (Brachythecium sp.) to short-term (1 h), acute (1 ppm) O3 fumigation under different hydration states (dry, <10% water content, metabolism almost inactive; wet, >200% water content, metabolism fully active). We hypothesized that stronger damage would occur...
Article
Full-text available
To compare the phenolic responses under oxidative stressors, plants of two Italian cultivars of durum wheat (Claudio and Mongibello) were (a) exposed to ozone (O3) (80 ppb, 5 hr/day for 70 consecutive days), with the aim to investigate the changes of phenolic compound contents in their leaves, or (b) flooded (seven consecutive days). Plants showed...
Article
Full-text available
The final stage of leaf ontogenesis is represented by senescence, a highly regulated process driven by a sequential cellular breakdown involving, as the first step, chloroplast dismantling with consequent reduction of photosynthetic efficiency. Different processes, such as pigment accumulation, could protect the vulnerable photosynthetic apparatus...
Article
Full-text available
The final stage of leaf ontogenesis is represented by senescence, a highly regulated process driven by a sequential cellular breakdown involving, as the first step, chloroplast dismantling with consequent reduction of photosynthetic efficiency. Different processes, such as pigment accumulation, could protect the vulnerable photosynthetic apparatus...
Article
Full-text available
Advancements in techniques to rapidly and non-destructively detect the impact of tropospheric ozone (O3) on crops are required. This study demonstrates the capability of full-range (350–2500 nm) reflectance spectroscopy to characterize responses of asymptomatic sage leaves under an acute O3 exposure (200 ppb for 5 h). Using partial least squares re...
Article
In this study, the effects of ozone (O3) on the physiology of the lichen Pseudevernia furfuracea var. furfuracea previously subjected to field stressing conditions were assessed. Samples collected in a pristine site were exposed for 6 weeks at 3 sites characterized by different pollution, e.g. elemental and PAH depositions (site RU, close to wood-b...
Article
Full-text available
BACKGROUND Nowadays the preference of the consumers turned towards the consumption of functional food, and the reduction of chemical preservatives for food conservation. Moreover, the antimicrobial property and the human health promoting quality of plant secondary metabolites are well known. Due to the forecasted climate changes and increasing popu...
Article
Plants produce secondary metabolites promoting adaptation to changes in the environment and challenges by pathogenic microorganisms. Ozone (O3), a crucial gaseous air pollutant, has been reported to alter the chemical composition of plants and this also involves changes in bioactive secondary compounds. The objective of this work was to assess unde...
Article
Full-text available
Background Similar to other urban trees, holm oaks (Quercus ilex L.) provide a physiological, ecological and social service in the urban environment, since they remove atmospheric pollution. However, the urban environment has several abiotic factors that negatively influence plant life, which are further exacerbated due to climate change, especiall...
Article
Tropospheric ozone (O3) is the most important gaseous pollutant and induces a mass of negative impacts on vegetation at functional and genic levels. The aim of the present study was to investigate the role of reactive oxygen species and signalling molecules in sage plants exposed to O3 (200 ppb, 5 h). Ozone exposure induced only a transient oxidati...
Article
There is a lack of knowledge about the possibility that plants facing abiotic stressors, such as drought, have an altered perception of a pulse of O3 and incur in alterations of their signalling network. This poses some concerns as to whether defensive strategy to cope episodic O3 peaks in healthy plants may fail under stress. In this study, a set...
Article
Plants are exposed to a broad range of environmental stresses, such as salinity and ozone (O3), and survive due to their ability to adjust their metabolism. The aim of this study was to evaluate the physiological and biochemical adjustments adopted by pomegranate (Punica granatum L. cv. Dente di cavallo) under realistic field conditions. One-year-o...
Article
Full-text available
Anthocyanic morphs are generally less efficient in terms of carbon gain, but, in turn, are more photoprotected than anthocyanin-less ones. To date, mature leaves of different morphs or leaves at different developmental stages within the same species have generally been compared, whereas there is a lack of knowledge regarding different stages of dev...
Article
Plants are frequently exposed to adverse environmental conditions such as drought and ozone (O3). Under these conditions, plants can survive due to their ability to adjust their metabolism. The aim of the present study was to compare the detoxification mechanisms of three oak species showing different O3 sensitivity and water use strategy. Two-year...
Article
Understanding the role of ozone pollution on forest ecosystems is crucial to any effort to mitigate climate change by stabilizing atmospheric carbon dioxide concentrations. Ozone risk assessment should be founded upon spatio-temporal resolution of the pollutant distribution and the biological processes incited by the phytomedically relevant "effect...
Article
Full-text available
Physiological and biochemical responses to ozone (O3) (150 ppb, 8 h day⁻¹, 35 consecutive days) of two Italian provenances (Piedmont and Tuscany) of Fraxinus excelsior L. were evaluated, with special attention to the role of phenylpropanoids. Our results indicate (i) the high O3 sensitivity especially of Piedmont provenance (in terms of visible inj...
Article
Full-text available
Liriodendron tulipifera (known as the tulip tree) is a woody species that has been previously classified as sensitive to ozone (O3) in terms of visible leaf injuries and photosynthetic primary reactions. The objective of this work is to give a thorough description of the detoxification mechanisms that are at the basis of O3 sensitivity. Biochemical...
Article
Full-text available
The predicted effects of global change (GC) will be exacerbated in the more densely populated cities of the future, especially in the Mediterranean basin where some environmental cues, such as drought and tropospheric ozone (O3) pollution, already mine seriously plant survival. Physiological and biochemical responses of a Mediterranean, evergreen,...
Article
Full-text available
Tropospheric ozone (O3) causes severe damage to many vascular plants but not to lichens. It was recently suggested that this may be due to their high levels of natural defences against the oxidative bursts associated to their fluctuating water content. In this study, the combined effects of watering regime (with or without a daily spray of distille...
Article
Full-text available
The Mediterranean basin can be considered a hot spot not only in terms of climate change (CC) but also for air quality. Assessing the impact of CC and air pollution on ecosystem functions is a challenging task, and adequate monitoring techniques are needed. This paper summarizes the present knowledge on the use of reflectance spectroscopy for the e...
Article
Full-text available
The physiological and ultrastructural effects induced by acute exposure to ozone (O3) were investigated in the lichen Xanthoria parietina. Our working hypothesis was that parietin content and hydration of the thalli may play a role in the modulation of the effects of O3 exposure. Four batches of X. parietina samples, dry and wet, with (P+) and with...
Article
Full-text available
Seedlings of durum wheat [Triticum turgidum subsp. durum (Desf.) Husn] were exposed to zinc nutrition and to ozone (O3) in a factorial combination: adequate (+Zn treatment) or no Zn (−Zn) in the nutrient solution, followed by exposure to either ozone-free air (filtered air, FA) or to 150 nL L⁻¹ ozone (O3) for 4 h. Although omitting Zn from the nutr...
Chapter
The major tea-growing regions of the world are located in Asia, where tea contributes substantially to their economy. It is known how the rapid development of the economy, twinned to global change, has created in many districts of industrialized countries critical levels of air pollution. Abiotic stresses may affect plant growth, quality, and distr...
Article
Full-text available
Drought frequency is predicted to increase in future environments. Leaf water potential (ΨLW) is commonly used to evaluate plant water status, but traditional measurements can be logistically difficult and require destructive sampling. We used reflectance spectroscopy to characterize variation in ΨLW of Quercus oleoides Schltdl. & Cham. under diffe...
Article
Removing lichen substances from dry lichen thalli using pure acetone is the least detrimental method. Measurements of properties strictly related to the photobiont, such as chlorophyll a fluorescence (Chl a F), are frequently used to verify acetone toxicity but they cannot reveal possible damage accumulated at the whole thallus level. Here, measure...
Article
Full-text available
Understanding the interactions between drought and acute ozone (O3) stress in terms of signaling molecules and cell death would improve the predictions of plant responses to climate change. The aim was to investigate whether drought stress influences the responses of plants to acute episodes of O3 exposure. In this study, the behavior of 84 Mediter...
Article
Full-text available
Global climate change represents a moving target for plant acclimation and/or adaptation, especially in the Mediterranean basin. In this study, the interactions of severe drought (20% of the effective daily evapotranspiration) and O3 fumigation (80 ppb, 5 h day−1, for 28 consecutive days) on (i) photosynthetic performance, (ii) cell membrane stabil...
Article
Ozone (O3) and salinity are usually tested as combined factors on plant performance. However, the response to a single episode of O3 in plants already stressed by an excess of NaCl as occurs in the natural environment, has never been investigated but is important given that is commonly experienced in Mediterranean areas . Three-year-old Quercus ile...
Article
Full-text available
Understanding the induction of plant defenses against viruses using biocontrol agents is essential for developing new strategies against these pathogens, given the ineffectiveness of chemical treatments. The ability of Trichoderma harzianum, strain T-22 (T22) to control Cucumber mosaic virus (CMV) in Solanum lycopersicum var. cerasiforme plants and...