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Abstract

Transgenic (Tg) mouse models of Alzheimer’s disease (AD)
are used to investigate mechanisms underlying disease
pathology and identify therapeutic strategies. Most Tg AD
models, which at least partly recapitulate the AD phenotype,
are based on insertion of one or more human mutations
(identified in Familial AD) into the mouse genome, with the
notable exception of the anti-NGF mouse, which is based
on the cholinergic unbalance hypothesis. It has recently
emerged that impaired hippocampal synaptic function is
an early detectable pathological alteration, well before the
advanced stage of amyloid plaque accumulation and gen-
eral cell death. Nevertheless, electrophysiological studies
performed on different Tg models or on the same model by
different research groups have yielded contrasting results.
We therefore summarized data from original research papers
studying hippocampal synaptic function using electrophysi-
ology, to review what we have learned so far. We analyzed
results obtained using the following Tg models: (1) single/
multiple APP mutations; (2) single presenilin (PS) muta-
tions; (3) APPxPS1 mutations; (4) APPxPS1xtau mutations
(3xTg); and (5) anti-NGF expressing (ADI11) mice. We
observed that the majority of papers focus on excitatory basic
transmission and long-term potentiation, while few studies
evaluate inhibitory transmission and long-term depression.
We searched for common synaptic alterations in the various
models that might underlie the memory deficits observed
in these mice. We also considered experimental variables
that could explain differences in the reported results and
briefly discuss successful rescue strategies. These analyses
should prove useful for future design of electrophysiology
experiments to assess hippocampal function in AD mouse
models.

Keywords: Alzheimer’s disease; hippocampus; synaptic
plasticity; transgenic mouse.

Introduction

Transgenic (Tg) mouse models that recapitulate a range of
Alzheimer’s disease (AD)-like phenotypes have been used
for over 15 years to investigate mechanisms underlying dis-
ease pathology. Most Tg AD mouse models have been engi-
neered by the insertion in the mouse genome of mutated
human genes, first identified in early-onset familial cases of
AD (FAD).

One of the factors associated with AD is the aberrant pro-
cessing of the amyloid precursor protein (APP), which leads
to increased levels of the AP peptide, one of its proteolytic
derivatives. The most common isoforms of A are AB40 and
AP42, with AB42 being more fibrillogenic and thus aggre-
gating into insoluble plaques within the brain, a phenomenon
that is one of the hallmarks of the pathology. Another promi-
nent pathological hallmark of AD is the presence of hyper-
phosphorylated tau, a microtubule associated protein, which,
when aggregating, forms neurofibrillary tangles (NFTs), typi-
cal of taupathies. AD is also characterized by neuronal loss,
with cholinergic neurons of the basal forebrain being espe-
cially sensitive and representing the first cell population to
die during disease progression. Understanding how these dif-
ferent aspects of the pathology contribute to the debilitating
AD-related memory loss is a matter of intense investigation.
In recent years, however, evidence has accumulated demon-
strating that synaptic loss, rather than AP plaques, NFTs or
neuronal loss, is the best pathological correlate of cognitive
impairment (Selkoe, 2002; D’ Amelio et al., 2011). In particu-
lar, impaired synaptic function of the hippocampus appears
to be particularly affected, leading to defective hippocampal-
dependent memory processing, well before the advanced
stage in which amyloid plaques accumulate and general cell
loss takes place. Within the last two decades, several electro-
physiological studies have therefore been performed on Tg
AD models to identify the nature of this defect.

In this review, we have analyzed all the original research
papers that we could identify, which report in vitro slice
or in vivo analysis of hippocampal synaptic function using
electrophysiology from the following groups of Tg mouse
models: (1) APP-derived; (2) single presenilin (PS)-derived;
(3) APPxPS1; (4) APPxPS1xTau (3xTg); (5) anti-NGF
expressing (AD11) mice. We have chosen to focus on these
AD mouse models as they have been the most promising in
reproducing at least some of the hallmarks of the disease.

We have searched for common denominators of synaptic
alterations across the different Tg models that could pro-
vide new insights into hippocampal dysfunctions underlying
the memory deficits observed in these mice. We also report
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rescue strategies evaluated so far and experimental variables
that could explain differences in conflicting results.

Description of the AD mouse models

Several mouse models have been evaluated for hippocampal
function by means of electrophysiology. For clarity, we divide
them throughout the review in APP-derived, PS1-derived,
APP/PS1, 3xTg and AD11 models (Table 1). In this section,
we will briefly review the genotypes and the phenotypes of
all the models used for the electrophysiological studies. A
summary of the information and the references, as well as
complementary information on these models, is reported in
Table 1. This table does not represent an exhaustive list of
AD mouse models available, but only models analyzed by
electrophysiology. For a more comprehensive review on AD
mouse models, one can refer to the following papers: Ashe
and Zahs, 2010; Elder et al., 2010; Morrissette et al., 2009
or visit the Alzheimer forum at http://www.alzforum.org/res/
com/tra/default.asp.

APP-derived models

These mice over-express the human form of APP, mutated in
one or more sites (see Table 1 for mutation details and refer-
ences). The single mutations inserted in the APP gene repre-
sent mutations characterized in FAD, which are named the
Swedish (swe), the Indiana (ind), the London (Ld) or arc muta-
tions. Another set of mice harbor the swe mutation together
with either the ind or arc mutation. With aging, these models
exhibit AR accumulation and plaques, hyperphosphorylated
tau, and hippocampal-dependent memory deficits reminiscent
of AD pathology, but do not display NFTs, cholinergic defi-
cits or neuronal loss (Morrissette et al., 2009).

PS1-derived models

Most of these mice over-express the human presenilin gene
(PS1) harboring an FAD mutation. This gene is implicated in
the proteolysis of APP as part of the y-secretase complex. The
mutations are named by the amino acid change that they result
in (see Table 1 for mutation details and references). Studies of
electrophysiology have been performed on mutants M146L,
M146V, A246E and L286V. A mouse model was also gener-
ated encoding the PSIAE9 FAD mutation, which results in a
non-cleavable, but functional, variant of PS1. One knock-in
mouse was generated where mouse PS1 was replaced by its
mutant M146V. These presenilin FAD mutant mice consis-
tently show an age-dependent elevation of AB42 with little
effect on AB40, but they generally do not develop plaques, tau
pathology, cholinergic deficits or neuronal loss and have few
cognitive deficits (Games et al., 2006).

APP/PS1 models

To increase the brain AP accumulation and plaque load,
several investigators crossed APP-derived and PS1-derived

mouse models. Most double transgenic models studied by
electrophysiology harbored the human APPswe transgene
together with the PSIM146L, the PS1A246E, the PS1L166P
or the PS1A9 transgene (see Table 1 for details and refer-
ences). One knock-in mouse was generated where the mouse
APP gene harbors the swe mutation along with missense muta-
tions (to humanize mouse AP) and the PS1 gene harbors the
L166P mutation. APP/PS1 double transgenic mice generally
develop early and extensive AP plaque formation and exhibit
tau hyperphosphorylation and cognitive deficits, but still lack
cholinergic deficits, neuronal loss and NFTs (Morrissette et
al., 2009).

3xTg model

The 3xTg model over-expressing human APPswe and tau
MAPTP301L and harboring a knock-in of PSIM146V was
engineered by Oddo et al. (2003). With aging, these mice dis-
play both A plaques and tangle pathology, including NFTs,
and exhibit hippocampal-dependent memory deficits. They
also exhibit cholinergic alterations and cortex-specific neu-
ronal loss (Oddo et al., 2003; Bittner et al., 2010; Perez et
al., 2011).

AD11 model

This alternative model is not based on FAD mutations, but on
the long-standing hypothesis that AD pathology might be due
to loss of neurotrophic action of the nerve growth factor (NGF)
(Capsoni and Cattaneo, 2006). These mice express an anti-
NGF antibody which reduces the levels of free NGF from about
1.5 months of age (Capsoni et al., 2000). With aging, these mice
display all lesions of AD pathology including A accumulation
and plaques, tau hyperphosphorylation and NFTs, cholinergic
deficits and hippocampal-dependent memory deficits.

Before describing the functional hippocampal alterations
observed in these mice models, we will briefly introduce the
hippocampal system.

The hippocampal system

The hippocampus is a highly organized structure playing a
major role in memory encoding and spatial navigation (Kesner
and Hopkins, 20006). It is one of the first regions of the brain
to suffer damage in Alzheimer’s disease (Karow et al., 2010).
It is characterized by the tri-synaptic pathway consisting of
three glutamatergic synapses, which relay information from
the entorhinal cortex (EC) to CA1 cells (Figure 1). The main
input to the hippocampus is the perforant pathway emanat-
ing from the EC, which forms excitatory synapses with the
granule cells of the dentate gyrus (DG). It is divided into two
sets of fibers: the medial and the lateral perforant pathways
(MPP and LPP, respectively). The first one is generated at the
medial portion of the entorhinal cortex and makes connec-
tions onto the proximal dendritic area of the granule cells;
the latter is generated at the lateral portions of the entorhinal
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Outout to EC

Input from EC

DG

Figure 1 Diagram of the hippocampus displaying the glutamater-
gic tri-synaptic pathway (DG, CA3, CAl).

EC, enthorinal cortex; LPP, lateral perforant pathway; MPP, medial
perforant pathway; Schaf. Coll., Schaffer collateral fibers.

cortex and synapses onto the distal dendrites of these same
cells. The MPP and LPP synapses have different properties
(e.g., inverse short-term plasticity phenotype), but investi-
gators do not systematically differentiate between the two
incoming pathways during their recordings, leading to diffi-
culties in comparison of data. From DG granule cells, axons
forming the mossy fiber pathway connect to the pyramidal
cells in area CA3, which in turn project to the pyramidal cells
in CA1 by means of the Schaffer collateral pathway. We will
refer to this latter connection as the SC-CA 1 synapse through-
out the review. The excitability of the tri-synaptic pathway is
tightly regulated by the activity of local interneurons which
synapse onto excitatory neurons. These interneuron-excit-
atory neuron synapses release the inhibitory neurotransmit-
ter y-aminobutyric acid (GABA) and control the depolarizing
potential of the excitatory neurons.

Virtually all studies have focused on the SC-CA1 and/or
the DG synapses. Only two papers report analysis of synap-
tic activity in CA3 neurons (Barrow et al., 2000; Brown et
al., 2005). We have divided the following sections by type of
hippocampal function that was analyzed and provide a brief
explanation of each function before summarizing the data
reported in the different AD mouse models. We have also
divided the reporting of data by synapse analyzed and by AD
model type in sections where a large body of literature was
available.

Basic glutamatergic synaptic transmission

The main type of excitatory transmission in the hippocampus
is via release of glutamate from the pre-synaptic terminals
leading to the binding and opening of ®-amino-3-hydroxy-5-
methylisoazol-4-propionate and N-methyl-D-aspartate iono-
tropic receptors (AMPAR and NMDAR) at the post-synaptic
terminal. At resting membrane potential, NMDAR channel
opening is blocked by Mg** leaving the AMPARSs as the main
contributors to the transmission. Synaptic responses can be
recorded by field or single cell recording techniques. In the
field configuration, the synaptic response from a population
of neurons is recorded as a variation in the potential (field
excitatory post-synaptic potential or fEPSP). In single cell

recording, synaptic responses are usually recorded with the
voltage-clamp whole cell technique. In this configuration,
current excitatory synaptic currents (EPSC) are recorded.

For a rapid assessment of the status of synaptic trans-
mission, most investigators rely on fEPSP slope analysis
in response to increasing stimulation of the afferent fibers.
These measurements provide an input-output (I/O) rela-
tionship (or I/O curve). To minimize slice-to-slice record-
ing variability (due to factors such as health and number of
connections within the slice, electrode position and tip size,
etc.), fEPSPs are usually reported relative to the pre-synaptic
fiber volley (FV). The FV precedes the fEPSP in the recorded
trace as it is the potential generated by the synchronous action
potentials firing in the pre-synaptic fibers. An increase in
the I/O curve suggests an increase in glutamatergic (mostly
AMPAR-mediated) synaptic transmission, while a decrease
in this parameter suggests impaired transmission. FV and
fEPSP amplitudes are also sometimes reported, but since
they are highly variable between slices and preparations,
their alterations are more difficult to interpret. One can isolate
the AMPAR or NMDAR currents by using pharmacological
blockers of either channel to assess receptor-specific I/O rela-
tionships and roughly evaluate the relationship between the
two currents or field potentials. Again, to take into account
variability in the recording conditions between slices, the
ratio between AMPAR-mediated and NMDAR-mediated cur-
rents (more common) or fields can be reported.

Another protocol useful to assess changes in glutamater-
gic transmission is the recording of spontaneous or miniature
EPSCs (SEPSCs and mEPSCs, respectively), which can only
be performed during whole cell recordings. sEPSCs are usu-
ally due to release of one vesicle containing glutamate (quan-
tum) from the pre-synaptic terminal. This release can be either
triggered by action potential-firing in the pre-synaptic neuron,
or action potential-independent. If a sodium channel blocker
like tetrodotoxin (TTX) is added to the recording medium,
only action potential-independent events, called miniature
EPSC (mEPSC), will take place. At resting membrane poten-
tial, due to the NMDAR Mg?** block, spontaneous release of
glutamate will generate only AMPAR EPSC. Due to quantal
release, a change in the amplitude of mEPSCs or sEPSC is
generally interpreted as a variation in the number of AMPARSs
per synapse. On the contrary, an alteration in event frequency
can be interpreted as due to changes in the number of spon-
taneous release events from the pre-synaptic terminal or to
a change in the number of synapses containing AMPARs.
NMDAR spontaneous mEPSC analysis is only very rarely
reported because the events’ slow rise time and low amplitude
make accurate and reliable detection difficult. To our knowl-
edge, it has never been reported for AD mouse models.

Basic synaptic transmission in AD models:
SC-CA1 synapse

Table 2 summarizes the analysis of basic synaptic transmission
at the SC-CA1 synapse from AD models, obtained using field
or whole cell electrophysiology. After 15 years of analysis of
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this synaptic function, the emerging picture is still not clear.
For each study presented in Table 2, we report some of the
experimental conditions that might influence results. These
are: (1) the presence of kynurenate during the dissection; (2)
the presence of GABA, receptor blockers during recordings;
(3) recording in a submerged or interface chamber; (4) extra-
cellular Ca** concentration.

APP-derived models

Even at similar ages and sometimes in apparently identical
slicing and recording conditions, the twenty studies on the
different APP-based models analyzing 1/O relationship at the
SC-CAL1 synapse provide highly conflicting results. Notably,
contrasting results were even found in the same mouse model
(see Table 2, e.g., Chapman et al., 1999 vs. Fitzjohn et al.,
2001 for the Tg2576 model or Roder et al., 2003 vs. Middei et
al., 2010 for the APP23 model). As detailed in Table 2, most
studies (14/20) report analysis between 3 and 10 months of
age. Even in this age range, about half of the papers (6/14)
report normal I/O relationship while the other half (8/14)
observed reduced basic transmission. In the few studies (7/20)
that analyzed this transmission in older animals (12 months
onwards), a conflict in the data reported is still apparent. Some
of these studies performed electrophysiological recordings
after behavioral tests (Trinchese et al., 2004; Middei et al.,
2010), a sequence that in principle could unmask subtle defi-
cits present only in the AD mouse model. Impairment in I[/O
curves was not detected by Middei et al. in APP23 mice after
training the animals in the Morris water maze (when compared
to pseudo-trained mice) nor in Trinchese et al. after training in
the radial arm water maze test, suggesting that this parameter
of synaptic function is not affected by previous engagement of
the hippocampus in memory formation.

Data from whole cell electrophysiology performed on
APP-derived models can also reveal subtle alterations that
are not apparent with field I/O recordings, as in our recent
study on 3-month-old Tg2576 mice where we observed nor-
mal field I/O relationship, but lower AMPA/NMDA ratios
and lower AMPA mEPSC frequency (D’ Amelio et al., 2011).
The lowering of this ratio was first described in another APP-
derived model by Hsia et al. (1999), but not confirmed by
Saganich et al. (2006). It is worth noting that, contrary to our
study, Saganich et al. (2006) report a reduction in field I/O
and no change in the AMPA/NMDA ratio. In the Saganich et
al. study, however, picrotoxin was present only in whole cell
and not in field recordings, thereby making the comparison
difficult (see Table 2 for details). We and others also report
normal AMPA mEPSC amplitude in this type of model (Hsia
et al., 1999; D’ Amelio et al., 2011).

PS1-derived models

Only four reports analyzed the I/O relationship in PS1-derived
models with analysis spanning over 1-12-month-old mice
(see Table 2 for references and details). Within this age range,
most studies (3/4) reported normal synaptic transmission at
the SC-CA1 synapse, while only Oddo et al. (2003) report

reduced transmission correlating with aging. Mice submitted
to a memory task before electrophysiological analysis did not
display alterations (Trinchese et al., 2004). No data are avail-
able on I/O relationships in PS1 mutants older than 1 year.
Three studies isolated the AMPAR and NMDAR fEPSP. They
reported normal AMPAR I/O relationships at all ages ana-
lyzed. However, they observed age-dependent alterations of
NMDAR transmission, suggesting an early increase followed
by a reduction in NMDAR transmission, although the age of
appearance of these modifications was variable depending on
the model evaluated (Dewachter et al., 2008; Auffret et al.,
2009, 2010).

APP/PS1 models

Eight studies evaluated I/O relationships of the SC-CA1 syn-
apse in APP/PS1 double transgenic mice (see Table 2 for ref-
erences and details). Contrary to the early reduction observed
in APP-derived models, all studies report normal I/O rela-
tionships up to at least 4 months of age and prior behavioral
training of the mice did not influence this parameter at this
age (Trinchese et al., 2004). After this age, about half of
the reports (4/7) observed reduced transmission, but others
(3/7) observed normal transmission. Chang et al. (2006) iso-
lated the AMPAR and NMDAR components of the EPSC by
whole cell electrophysiology and observed normal NMDAR,
but reduced AMPAR transmission. They also report normal
AMPA mEPSC frequency, but lower amplitude. These whole
cell data contrast again with data reported in APP-derived
models.

3xTg model

For the 3xTg model, Oddo et al. (2003) report reduced trans-
mission by I/O field at 6 months but not 1 month of age. No
independent study has confirmed or challenged this finding
to date.

AD11 model

Another recording strategy that might reveal subtle changes
in synaptic dysfunction is the lowering of [Ca®'] in the extra-
cellular recording solution, a condition that decreases neu-
rotransmitter release probability. We and others observed
normal transmission at the SC-CA1 synapse in AD11 mice at
6 and 11-13 months of age in standard ([Ca**]=2.5 mM) exter-
nal solution (Sola et al., 2006; Houeland et al., 2010). We,
however, detected an enhancement of transmission at lower
(1 mm) calcium concentration in 11-13-month-old mice, an
alteration that was not present in 1-month-old mice (Houeland
et al., 2010). This intriguing finding is supported by another
recent study analyzing the effect of increasing endogenous
AP (by treatment with thiorphan, a neprilysin inhibitor) on
acute hippocampal slices (Abramov et al., 2009). This treat-
ment leads to an increase in SC-CA1 synaptic transmission
in low, but not high, calcium conditions. Together, these data
suggest that this synapse might harbor an AD-related defect
in the mechanism of pre-synaptic glutamate release, which is
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sensitive to external calcium levels and only revealed under
conditions of low release probability.

Contrary to in vitro studies, in vivo studies performed on the
various models (Tg2576, APP23, PDAPP/109 and APPswe/
PS1L166P) all report normal I/O relationship at the SC-CAL1
synapse, arguing against any defect in synaptic transmission
at this synapse in vivo (Giacchino et al., 2000; Huang et al.,
2006; Mitchell et al., 2009; Gengler et al., 2010).

Considering the above analysis of the literature, at present it
is not possible to argue for or against a significant effect of A
accumulation and resulting AD-like pathology on basic syn-
aptic transmission at the SC-CA1 synapse. The only conclu-
sion that we can draw from summarizing the conflicting data
on APP and APP/PS1-based models is that, when a defect is
detected at all, it is always a reduction in transmission, sug-
gesting that AP accumulation under some experimental condi-
tions might negatively affect this parameter. On the other hand,
data suggest that FAD-related alterations in PS1 function do
not overtly affect basic synaptic transmission of the AMPARs
at the SC-CAL1 synapse, but that NMDAR transmission might
be more influenced with possibly a biphasic relationship lead-
ing first to enhancement of transmission and then a reduction.
Finally, the data on AD11 mice suggest a potentially over-
looked AB-linked calcium-dependent alteration of transmission
that might uniquely occur in the aging brain in the context of
decreasing cerebrospinal fluid (CSF) calcium levels (Jones and
Keep, 1988). Re-analysis of other AD mouse models in 1 mmM
calcium conditions should help determine if this phenotype is
unique to the AD11 model or if it is a more global AB-induced
alteration as suggested by Abramov et al. (2009).

Basic synaptic transmission in AD models: DG
synapse

The I/0 relationship of glutamatergic transmission in the DG
has been evaluated in only four AD models so far (see Table
3). While this makes it easier to summarize the data, fewer
independent studies are present to confirm the findings. When
a distinction was made as to what pathway was analyzed, the
MPP was always evaluated. No data are available on the LPP.
The only conflicting data regard the analysis of the Tg2576
model, where Chapman et al. (1999) and Fitzjohn et al.
(2001) both report normal transmission up to 18 months of
age, while Jacobsen et al. (2006) observe a decrease in trans-
mission in this same model at 4-5 months of age. Brown et al.
(2005) observed only a slight reduction in transmission at 12—
14 months of age in TAS10 mice, also expressing hAPPswe.
Analysis of hAPP/J20 mice consistently results in normal
transmission, but this mouse model was only analyzed up to
6 months of age (Palop et al., 2007; Sun et al., 2008; Harris et
al., 2010). Two other studies by Mucke’s group in 4—6-month-
old hAPPJ20 mice isolated the AMPAR and NMDAR poten-
tials to individually evaluate their I/O relationship and both
report normal AMPAR transmission but reduced NMDAR
transmission (Cissé et al., 2011; Roberson et al., 2011). It
is worth noting that the reduction in NMDAR transmission

was not detectable in the standard measurement of the I/O
relationship (no blockers) by the same investigators (Palop
et al., 2007; Harris et al., 2010), most likely because AMPAR
transmission dominates the EPSP during this standard analy-
sis. Finally, we observed normal synaptic transmission at the
MPP-DG synapse in 11-13-month-old AD11 mice, but as for
the SC-CA1 synapse, we observed enhanced transmission in
conditions of low release probability (Houeland et al., 2010).
No analysis of DG transmission has ever been performed in
PS1-derived and APP/PS1 models or 3xTg models.

The four papers reporting analysis of synaptic transmis-
sion in the DG in vivo in Tg2576, APP23, PDAPP/109 and
APPswe/PS1A246E show normal I/0 relationships (see Table
3), suggesting a lack of significant effects of AD-like pathol-
ogy on this hippocampal parameter in vivo.

Together the available data on the DG synapses suggest
that the development of AD-like pathology does not affect
AMPAR transmission, but might compromise NMDAR trans-
mission in the DG. Also, as for the SC-CA1 synapse, trans-
mission might be altered in low calcium conditions. Further
analysis of transmission at the DG synapses in other Tg mod-
els is required to confirm or challenge these findings.

Short-term pre-synaptic plasticity of AMPAR
transmission

Hippocampal synapses display short-term plasticity, a process
that modulates release of neurotransmitter by either enhancing
it (facilitation), or by decreasing it (depression) (Zucker and
Regehr, 2002). This short-term pre-synaptic plasticity occurs
within a time-scale of milliseconds to a maximum of seconds
and is highly dependent on calcium (Zucker and Regehr, 2002).
The most commonly used assay to explore this plasticity is the
paired-pulse ratio (PPR). A PPR protocol consists of deliver-
ing pairs of stimuli at one or more inter-stimulus intervals (ISI;
10 ms up to 500 ms in the studies reported here) and obtaining
the ratio of the slope (and/or peak for whole cell recordings) of
the second EPSP to the first EPSP (P2/P1). The SC-CA1 syn-
apse of adult rodents typically displays paired-pulse facilitation
(PPF) whereby the second response can be up to 150-200%
larger than the first response. When recorded in vitro, DG gran-
ule cells typically display PPF (up to 150% increase) when the
LPP is stimulated and paired-pulse depression (PPD; with up
to 20% decrease) when the MPP is stimulated (McNaughton,
1980; Colino and Malenka, 1993). This short-term plasticity
can also be evaluated when submitting the synapse to trains
of stimulation at various frequencies. In this assay, one can
assess more subtle alterations in synapse fatigue. As for the
PPR assay, trains of stimulation lead to sustained facilitation at
the SC-CA1 synapse and at the LPP-DG granule cell synapse,
while they lead to sustained depression when stimulating the
MPP to DG granule cell synapse (Houeland et al., 2010).

Short-term plasticity: SC-CA1 synapse

Out of the 28 studies which evaluate PPF at the SC-CA1 syn-
apse in vitro, 25 report normal PPF, while only three report
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Table 5 (Continued)

Not rescued

Rescued

Increase

Normal

Color legend:

Months of age

Invivo

16 17 18 1920 =24

15

11 12 13

10

n.s.

Anesthesia

Protocol
HFS, 4x100 Hz (ISI

10 s)

PDAPP/109 HFS, 10x200 Hz

Mouse
APP23

Paper

Sodium penthobarbital

Huang, 2006

Urethane

(0.75 Hz)

Giacchino,
2000

HFS, 1x200 Hz Urethane

APPswe/

Gengler, 2010

PS1L166P

Results obtained in Tg mice are reported as comparisons against their respective wild-type phenotypes (normal, decrease or increase) through color coding (see top of Table), in an age-dependent
manner. Attempts of rescue (in italics in mouse or protocol column) are also reported in color codes (see top of Table; inh., inhibitor). Studies are divided into in vitro and in vivo. For each study,
the protocol of LTP induction is reported. “TBS’ denoted theta-burst stimulation, for which we did not detail the exact protocol used. ‘HFS’, high frequency stimulation, for which we reported the
protocol used. For in vitro studies, we report recording conditions: ‘Kyn’ indicates the presence of kynurenate during the dissection (y: yes; y/n indicates results were the same whether experiments

were performed in Kynurenate or not); ‘GB’ indicates the presence of the GABA ,ergic blockers, picrotoxin (P) or bicuculline (B), during recordings; ‘S/I’ refers to recordings in a submerged or

interface chamber. The ‘Ca’ column reports ACSF Ca?* concentration used during experiments. ‘n.s.”, not specified. In a few cases, electrophysiology experiments were performed after behavior

protocols: *, indicates a training protocol; **, indicates pseudo-training; #, indicates that LTP was reduced only at 60 min post-induction, not earlier. For in vivo experiments, the anesthesia under

which recordings were performed is specified. Colored boxes surrounded by black contours highlight direct comparison of parameter by same experimenter (e.g., for rescue experiments or recording

condition).

glutamatergic synaptic strength by insertion of AMPAR at the
surface of synapses (Malenka and Bear, 2004). This process
is NMDAR- and calcium-dependent. LTP is believed to be
a cellular correlate of hippocampal-dependent memory for-
mation and in vivo studies suggest that LTP is indeed spe-
cifically involved in memory encoding (Gruart et al., 2006;
Whitlock et al., 2006). Two types of stimulation protocols
are generally used to induce LTP in CA1 pyramidal neurons
and DG granule cells. LTP can be elicited by high frequency
stimulation (HFS) consisting generally of one of more trains
of 100 Hz for 1 s. Increasing the number of trains results in
more robust expression of LTP. LTP can also be elicited by
theta-bust stimulation (TBS) consisting of a more complex
pattern of short high frequency bursts, which are designed to
mimic more natural patterns of stimulation. Potentiation of
synaptic strength is immediate and is usually analyzed over
the next hour, but LTP can last for up to several hours, or
even days in vivo, depending on the protocol used. Despite
the fact that definite proof of causality is still lacking, it is
generally believed that loss of LTP underlies memory deficits.
It is therefore not surprising that virtually all papers (49/51)
evaluating hippocampal function in AD mouse models ana-
lyzed LTP. Unfortunately, after over 15 years of evaluation
of this parameter, a consensus on whether or not and to what
extent LTP is affected in these models is still not reached. All
reports of LTP analysis on AD mouse models are summarized
in Tables 5 and 6. In these Tables, we have specified the HFS
protocol used. Details for TBS protocols, which vary greatly
in stimulation pattern between the studies, can be found in the
reference papers.

SC-CA1LTP

Most studies analyzed LTP at the SC-CA1 synapse in vitro
(39/49). Even with this large body of evidence, a clear-cut
conclusion on the functionality of this plasticity in AD mod-
els cannot be drawn.

APP-derived models

Studies using APP-derived mouse models provide mixed
results with either normal LTP (9/20), impaired LTP (10/20)
or increased LTP (1/20) being observed (see Table 5 for refer-
ences and details). Contrasting data are evident in the Tg2576
and the hAPPJ20 mouse models, where either normal LTP
or an age-dependent reduction in LTP are reported for the
SC-CALl synapse (e.g., Chapman et al., 1999 vs. Fitzjohn
et al., 2001 or Saganich et al., 2006 vs. Palop et al., 2007).
Two other studies of mice also over-expressing hAPPswe,
the APP23 and TAS10 models, report normal LTP (Roder et
al., 2003; Brown et al., 2005), arguing against a significant
effect of over-expression of this transgene on this parameter.
Intriguingly, however, Middei et al. (2010) recently reported
alterations in LTP only after submitting mice to a behavioral
memory task. APP23 mice were submitted to pseudo-training
or training in the Morris water maze. Pseudo-trained mice
displayed normal LTP, but trained APP23 mice displayed
reduced potentiation. These data suggest that challenging the
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mice with a learning paradigm could facilitate the detection of
hippocampal plasticity deficits.

As for in vitro data, in vivo analysis of LTP in the APP-
derived models did not provide clear evidence of a significant
LTP impairment (see Table 5 for references and details).

When considering all the reports on APP-derived mice
both in vitro and in vivo, we still cannot reach a clear conclu-
sion on how over-expression of APP mutant transgenes and
the resulting AR accumulation affect LTP expression at the
SC-CA1 synapse. Possible origins of such variability in the
results will be discussed later in the review. It is worth not-
ing that these data are in contrast with the current literature
demonstrating that acute exposure to synthetic or naturally
secreted AP impairs hippocampal LTP in vitro and in vivo
(Cullen et al., 1997; Walsh et al., 2002; Wang et al., 2002;
Klyubin et al., 2005, 2008; Townsend et al., 2006; Wei et al.,
2010).

PS1-derived models

To the best of our knowledge, 10 papers reported LTP anal-
ysis of the SC-CA1 synapse in PS1-derived mouse models
(see Table 5 for references and details). The picture is clearer
than for APP-derived models. Most studies (8/10) report that
young adult (1-6 months) transgenic mice over-expressing
PS1A246E, PSIM146L, PSIM146V, PS1AE9 or PS1L286V
display significantly enhanced LTP at the SC-CA1 synapse,
especially when induced with a weak protocol (e.g., 1 s or
less at 100 Hz), but also with TBS. This phenotype is spe-
cific to over-expression of the mutated PS1 protein as mice
expressing wild-type PS1 do not display it (Zaman et al.,
2000; Dewachter et al., 2008; Auffret et al., 2009). In two
longitudinal studies, Auffret et al. (2009, 2010) observed a
biphasic phenotype with an enhancement in young mice and a
reduction in older mice. This biphasic LTP phenotype is remi-
niscent of the NMDAR transmission phenotype observed in
these mice (Table 2), a correlation that is not surprising since
LTP induction is dependent on NMDAR transmission.

In conclusion, although a consensus has not yet been
reached, these reports suggest that over-expression of FAD
mutant forms of PS1 on LTP positively impacts SC-CA1 LTP
expression in the first few months of life, but then impairs it
during aging. Analysis of LTP in mice older than 14 months has
not been reported, but would help confirm this hypothesis.

APP/PS1 models

Considering the conflicting data obtained in APP-derived
mice and the probably biphasic phenotype of PS1-derived
mice on SC-CA1 LTP expression, it is not surprising that data
obtained in double APP/PS1 transgenics are also controver-
sial (see Table 5 for references and details). Nine publications
evaluated SC-CA1 LTP in the various APP/PS1 models with
six reporting reduced LTP observed as early as 3 months of
age and three reporting normal LTP up to at least 1 year of
age. This discrepancy is unlikely to be due to the induction
protocol used as both phenotypes were observed using TBS or
HEFS induction. No conflicting data on the same mouse model

have been reported as yet. The type of PS1 mutation harbored
by the mice might, however, have influenced the outcome
of this analysis as lack of LTP alterations was reported in
APPswe/PS1A246E and APPswe/PS1A9, while reduced LTP
was reported in APPswe/PS1M146L, APPswe/PS1IM146V,
APPswe/PS1P246L and APPswe/PS1L166P. Finally, an in
vivo study on APPswe/PS1L166P reports strong impairment
of LTP from 8 months of age.

3xTg model

The original study on the 3xTg mouse model reported an
impairment of LTP at 6 months of age (Oddo et al., 2003).
Wang et al. (2009) could induce robust LTP in 9—12-month-
old 3xTg mice. They mention, however, that the LTP observed
in these mice is half of that observed in their non-transgenic
counterparts, suggesting an LTP impairment, without report-
ing these data.

AD11 model

We recently reported that both TBS- and HFS-induced SC-
CA1l LTPs are normal in AD11 mice at 1 year of age
(Houeland et al., 2010), arguing against an effect of NGF-
deprivation and correlated AD-like pathology on this type of
plasticity.

When summarizing the data obtained in the various AD
mouse models, it is currently difficult to draw conclusions on
the LTP phenotype at the SC-CA1 synapse. It is likely that
this plasticity might be compromised, but only revealed under
some experimental conditions and not others. We will discuss
the possible impact of methodological variations on these
results in the ‘variability in methodology’ section.

DG LTP

In comparison to SC-CA1 LTP, results of DG LTP analysis
are considerably more uniform, but less data are available
and fewer types of models have been evaluated than for the
SC-CAL1 synapse. Ten studies report DG LTP analysis in vitro,
most of which (9/10) observed a reduction of LTP (see Table
6 for references and details). When specified, the pathway
analyzed was always the MPP pathway. So far, only one con-
troversy has emerged regarding the analysis of Tg2576 mice,
with two studies reporting reduction of LTP, while one study
reports normal LTP. The induction protocols were different in
the three reports, but only Fitzjohn et al. (2001) specified the
MPP as the pathway analyzed. It is possible that the results
vary depending on which pathway is analyzed. All the other
studies in the APP-based, and the studies in the APP/PS1 and
the AD11 models, report reduced DG LTP with some variabil-
ity in age of appearance of this deficit. No data are currently
available on DG LTP in PS1-derived models. The five in vivo
studies concerning DG LTP also mostly support an impair-
ment of LTP (4/5) (see Table 6 for references and details).
The available data on the Tg models analyzed therefore
support a deficit in LTP in the DG. It will be important to
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verify if the deficit is pathway specific and if other AD mouse
models that have not yet been analyzed also display this
phenotype.

Of the reports that investigated both CA1 and DG LTP in
the same mice under the same in vitro experimental condi-
tions, Fitzjohn et al. (2001) report normal LTP in both regions,
while Chapman et al. (1999), Palop et al. (2007), Harris et al.
(2010) and Houeland et al. (2010) report more severe deficits
in DG than in CA1, with the last three above-mentioned stud-
ies not observing any defects in CA1 at all.

Based on the currently available literature of LTP phe-
notypes in the different AD mouse models, we can suggest
that this plasticity is likely to be more affected in the DG
than in the CA1l by the development of AD-like pathology.
Understanding why the DG might be more susceptible in the
context of AD could provide important new information on
the molecular mechanisms of the pathology.

Long-term depression of AMPAR transmission

There are two main forms of long-term depression (LTD) in
the hippocampus, both resulting in the weakening of AMPA
receptor synaptic transmission. The most studied form of
LTD is NMDAR-dependent, but under certain experimen-
tal conditions an mGluR-dependent form has also been
described (Malenka and Bear, 2004; Luscher and Huber,
2010). Although these two forms of LTD rely on different
intracellular mechanisms for induction, they can both be
induced by prolonged low frequency stimulation (LFS, typi-
cally single or pairs of pulses, 200 ms apart, delivered at 1 Hz
for 15 min). This triggers the endocytosis of AMPAR subunits
and a long-term reduction in the number of post-synaptic sur-
face AMPARs.

SC-CA1LTD

LTD has been largely neglected when analyzing hippocam-
pal function in AD mouse models. Only two studies have
so far reported LTD analysis (Chang et al., 2006; D’ Amelio
et al., 2011; see Table 7). Chang et al. (2006), working with
the APPNhL/NhL/PS1P246L model, analyzed LTD in an
age-dependent study. Using the standard LFS protocol, they
report a linear decrease in LTD expression in CA1 pyramidal
neurons between 9 and 20 months. By contrast, we recently
reported an enhancement of LFS-induced LTD in CAl pyra-
midal neurons of early-symptomatic, 3-month-old Tg2576
mice (D’Amelio et al., 2011). These LTD data correlated
with enhanced calcineurin-dependent dephosphorylation of
the AMPAR subunit GluR1 at Serine 845 (D’Amelio et al.,
2011), a molecular process known to occur during NMDAR-
dependent LTD (Malenka and Bear, 2004). A longitudinal
study on the age-dependency of this alteration needs to be
performed to identify its relationship to disease progression.
The only available data therefore demonstrate that LTD of
CA1 pyramidal neurons is altered in AD mouse models, but give
conflicting results on the nature of this defect. To our knowl-
edge, no studies have reported analysis of LTD in the DG of AD

models. It is, however, worthwhile noting that recent studies
demonstrate that acute application of AB-containing medium
on healthy mouse hippocampal slices results in enhanced LTD
(Shankar et al., 2008; Li et al., 2009). Furthermore, another
study demonstrated that AR over-expression in organotypic
slices (using viral mediated over-expression of APP) leads
to loss of surface AMPAR using mechanisms reminiscent of
mGluR-dependent LTD (Hsieh et al., 2006). Considering this
literature, it will be important to understand how NMDAR-
and mGluR-dependent LTD are affected in the different AD
mouse models by in depth analysis of this synaptic parameter
and its relationship to disease progression.

Inhibitory GABAergic transmission

Inhibitory GABAergic transmission via local interneurons is
essential to brain function, controlling the generation of Na*-
and Ca®-dependent action potentials, synaptic transmission
and plasticity, as well as the generation and pacing of synchro-
nous oscillatory brain activity (Mody and Pearce, 2004; Mann
and Paulsen, 2007). Fast, but also tonic, inhibition of excitatory
transmission is mediated by ionotropic GABA, receptors,
while G-protein coupled inhibition is mediated by GABA,
metabotropic receptors (Sivilotti and Nistri, 1991; Pinard et al.,
2010). The relative diversity of GABAergic interneuron sub-
types compared to more uniform pyramidal neurons has ren-
dered electrophysiological studies on these interneurons more
difficult. GABAergic transmission onto glutamatergic neurons
is generally evaluated by analysis of spontaneous miniature
inhibitory post-synaptic currents (SIPSCs), which are generated
by action potential-dependent and action potential-independent
spontaneous release of GABA quanta from the pre-synaptic
terminals. Isolation of action potential-independent miniature
IPSCs (mIPSCs) is obtained with the addition of TTX. Evoked
IPSCs can also be evaluated by stimulation of local interneu-
rons. Compared to the plethora of papers described above ana-
lyzing glutamatergic transmission and plasticity, only a few
papers have analyzed hippocampal GABAergic transmission
in the CA1, DG and CA3 hippocampal areas of AD mouse
models (see Table 8 for references and details).

GABAergic transmission in CA1

Data on CA1 GABAergic function in an APP-derived mouse
model TgCNRDS8 were obtained from one group (Jolas et
al., 2002). An alteration emerges in the properties of IPSCs
recorded at 4-5 months of age (see Table 8 for details). A
thorough study on CAl alterations of GABAergic function
in 6-month-old AD11 mice was performed by Cherubini’s
group in two papers. The first study (Rosato-Siri et al., 2006)
observed that, contrary to WT mice, nicotine-induced potenti-
ation of glutamatergic function in AD11 mice is dependent on
GABA transmission, suggesting that the relationship between
cholinergic modulation and inhibitory/excitatory transmis-
sion is altered. The follow-up study (Lagostena et al., 2010)
demonstrated that GABA was in fact depolarizing and excit-
atory in this Tg model, a finding supported by single cell data



394 C. Marchetti and H. Marie

Table 7 Long-term depression (LTD) of synaptic transmission at the hippocampal SC-CA1 synapse in AD mouse models.

Increase

Normal

Color legend:

Months of age

In vitro

12 13 1420

11

10

Ca

GB S/

Kyn

Protocol

Mouse

Paper

No
Yes

900 p, 1Hz

Tg2576

D’Amelio, 2011
Chang, 2006

200 ms, 1 Hz

Paired 900 p, ISI

APPNLh/PS1P246L
Results obtained in Tg mice are reported as comparisons against their respective wild-type phenotypes (normal, decrease or increase) through color coding (see top of Table), in an age-dependent

manner. All studies were done in vitro. The protocol of LTD induction is reported (p

pulses). ‘Kyn’ indicates the presence of kynurenate during the dissection (y: yes); ‘GB’ indicates the presence

of the GABA ,ergic blocker picrotoxin (P) during recordings; ‘S/I’ refers to recordings in a submerged or interface chamber. The ‘Ca’ column reports ACSF Ca* concentration used during

experiments.

(impact of GABAergic activity on CA1 pyramidal cell firing,
reversal potential of GABA -mediated post-synaptic currents
and of GABA-evoked single-channel currents) as well as by
data from extracellular multiple unit activities (MUA) of the
CA neuronal network. This phenotype was dependent on the
serum levels of anti-NGF antibodies and is reminiscent of the
action of GABA during early post-natal development.

GABAergic transmission in DG

GABAergic transmission onto DG granule cells was recently
studied by Mucke’s group (Palop et al., 2007; Roberson et
al., 2011) in 3-6-month-old hAPPJ20 mice (see details in
Table 8). The authors suggest that inhibitory interneurons
make an increased number of effective synapses onto granule
cells (as reflected by higher mIPSC frequency), but that the
interneurons of transgenic mice are less active (as reflected
by lower sIPSC frequency). Additional experiments on sIP-
SCs in NBQX and APV and analysis of the excitatory/inhibi-
tory balance prompted the authors to further suggest that DG
interneurons were less active because of reduced excitatory
drive onto them and/or reduced intrinsic excitability. These
arguments await further experimental validation by indepen-
dent investigators and in other models.

GABAergic transmission in CA3

Two studies evaluated GABAergic transmission in CA3 pyra-
midal neurons (see Table 8 for details and references). Early
work by Barrow et al. (2000) of young adult PSIML146V
and PSIML146L mice failed to detect any alterations in
monosynaptic inhibitory post-synaptic potentials (IPSPs)
with respect to reversal potential, maximal response ampli-
tude or rise and decay time constants. Analysis of synchro-
nous GABAergic activity in the CA3 of TAS10 mice also
argues for normal GABAergic function in this area of the hip-
pocampus (Brown et al., 2005). These first analyses suggest
that mutated hAPP or PS1 over-expression does not overtly
influence GABAergic function in CA3, but in depth analysis
is necessary for confirmation.

We can conclude from the recent studies investigating
GABAergic function in some depth in CA1 and DG that the
GABAergic system is likely to be significantly affected in
these areas of the hippocampus in AD. However, as no thor-
ough longitudinal age-dependent evaluation of these altera-
tions was reported, data interpretation is limited with respect
to disease onset and progression. Nevertheless, these data
should be taken into consideration when interpreting results
obtained while recording glutamatergic transmission and
plasticity in the absence of blockers of GABAergic transmis-
sion, as will be discussed below.

Variability in methodology

It is clear from the above summaries of the different param-
eters of hippocampal function assessed in the AD models
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that investigators have consistently run into conflicting data.
These discrepancies are as yet mostly unexplained but could
stem from use of different mouse models which display dif-
ferent levels of transgene expression and/or different levels of
APP proteolysis. However, these above-mentioned possible
explanations cannot account for conflicting data obtained in
identical mouse models. In this section, we therefore discuss
what we believe could be possible methodological variabili-
ties at the basis of conflicting data.

Kynurenic acid

The excitotoxicity that inevitably occurs during dissection
can lead to highly variable health of slices. This has led to
the hypothesis that transgenic vs. wild-type mice could be
differentially affected by the slicing process. The difference
could trigger the appearance of deficits in synaptic trans-
mission of Tgs that were not present in the intact animal (as
proposed by Hsia et al., 1999) or allow detection of subtle
defects that are exacerbated by the dissection itself (Fitzjohn
et al., 2001). Several groups used the broad spectrum excit-
atory amino acid receptor antagonist kynurenic acid during
the dissection to reduce excitotoxicity (see Tables 2—-8), but
the comparison with studies that did not use kynurenic acid
could be influenced by other methodological differences. We
could find four papers that use both conditions (presence or
not of kynurenic acid) within the same study, making it eas-
ier to draw conclusions. Fitzjohn et al. (2001) demonstrated
that a reduction in synaptic transmission can be avoided at
12 months of age, but not at 18 months, in Tg2576 mice by
addition of kynurenic acid during dissection (see Table 2),
suggesting that kynurenic acid addition might prevent detec-
tion of subtle synaptic defects, which become more pro-
nounced with age. The other three studies (Hsia et al., 1999;
Gong et al., 2004; Trinchese et al., 2004), however, reported
that addition of kynurenic acid during the dissection did not
prevent the impairments in basic transmission and LTP they
observed (see Table 2).

In general, as there is no standard universal procedure for
slice dissection (for example, addition of kynurenic acid,
sucrose, ascorbic acid during the dissection, and conditions of
recovery such as time, temperature, interface vs. submerged,
etc.), it cannot be excluded that dissection procedures influ-
ence the outcome of the recordings. Until discrepancies are
resolved, we advocate that the methodological details of this
procedure should be well documented in publications for
future investigators to be able to reproduce the data.

Strain background

There is a large variability in the background used to gener-
ate the mouse models, but in the past few years investigators
have tried to backcross to C57BL6 mice whenever possible.
It is also possible that subtle differences in background arise
from in-house breeding of the species. Trinchese et al. (2004)
report differences in the likelihood of finding good and con-
sistent responses depending on the mouse strain used. In
particular, they report that single transgenic Tg2576 mice

give higher variability in this sense than double transgenic
APPswe/PSIM146L. As differences in electrophysiological
properties of different mouse strains have been reported in the
past (Nguyen et al., 2000), a different susceptibility to exci-
totoxicity of Tg2576 mice (C57B16/SJL hybrid background)
vs. APPswe/PS1M146L mice (PS1:SW/B6D2 background) is
not to be excluded.

Activity-dependent changes in Ap levels

In vitro studies demonstrated that synaptic activation influ-
ences the levels of both extracellular and intraneuronal AP
(Kamenetz et al., 2003; Tampellini et al., 2009) and that it can
protect against AB-related synaptic changes (Tampellini et
al., 2009). These in vitro observations are strengthened by the
report that synaptic activity rapidly and directly influences the
level of AP in the interstitial fluid in vivo (Cirrito et al., 2005).
While these are interesting observations in view of therapeu-
tic strategies for AD patients, changes in brain activity levels
in animals housed in different laboratories or possibly even
variations in hippocampal slice activity due to different slic-
ing and recording conditions (e.g., use of receptor blockers)
could be a cause of conflicting results observed.

Use of GABA, blockers

Most investigators evaluating glutamatergic transmission and
plasticity did not include blockers of GABAergic transmis-
sion (see Tables 2—6). Some investigators use these block-
ers for recording DG LTP but not CA1 LTP. We suggest that
this omission should be taken into account when interpreting
data. Indeed, GABAergic transmission is known to regulate
excitatory transmission and plasticity of principal glutamater-
gic neurons via fast stimulation-dependent and tonic activa-
tion of GABA, receptors (Wigstrom and Gustafsson, 1986;
Evans and Viola-McCabe, 1996; Seabrook et al., 1997) and
the few studies reporting analysis of GABAergic transmis-
sion in AD mouse models suggest significant alterations of
the GABAergic system, as detailed above. In fact, two studies
report that inclusion of GABA blockers impacted the synap-
tic plasticity phenotype of the AD mouse model under study
(Zaman et al., 2000; Yoshiike et al., 2008; see Tables 5 and 6
for details). These data demonstrate that the balance between
excitation and inhibition is likely to be perturbed in AD as
suggested by Palop and Mucke (2010), and therefore evalu-
ation of glutamatergic function would be more accurately
interpreted in conditions where GABAergic transmission is
blocked and vice versa.

Calcium concentration in the external medium

As detailed in the basic synaptic transmission section, we have
recently observed that lowering external calcium to 1 mm
revealed synaptic transmission deficits in AD11 mice not
observed at the standard concentration of 2.5 mm (Houeland
et al., 2010). Virtually all investigators have analyzed synap-
tic function of AD models in variable calcium concentration
ranging from 2 to 3.5 mm (see Tables 2—7), although calcium
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concentration in the CSF in vivo ranges between 1 and 2 mm,
decreasing with age (Jones and Keep, 1988). Also, it is
becoming increasingly clear that AP pathogenicity is tightly
linked to neuronal calcium signaling (Demuro et al., 2010).
It is therefore possible that disparity in the calcium concen-
trations used in the various studies influenced the results.
Furthermore, analyzing synaptic function in conditions of
lowered release probability might permit the detection of as
yet uncharacterized phenotypes.

Rescue experiments

The use of AD models has enabled investigators to assess the
importance of specific proteins or the potential of pharmaco-
logical compounds in the rescue of observed phenotypes. In
this section, we will briefly summarize the different publica-
tions that described the rescue of hippocampal plasticity phe-
notypes. These rescue experiments are detailed in Tables 2-8.

Rescue by rolipram

Rolipram is a specific inhibitor of the phosphodiesterase type
4 (PDEA4) isoform which enhances signaling through cAMP,
including activation of PKA/transcription factor cAMP
Response Element Binding protein (CREB) pathway. Gong et
al. (2004) described rescue of basic synaptic transmission and
LTP at the SC-CA1 synapse in APPswe/PS1M146L mice after
chronic intraperitoneal treatment with rolipram. They further
demonstrate that this treatment rescues the levels of phos-
phorylated CREB, which were lower in untreated APPswe/
PS1M146L mice. These data suggest that enhancing activa-
tion of the cAMP/PKA/CREB pathway might be beneficial in
restoring normal hippocampal function, although evidence of
the direct involvement of CREB is lacking as cAMP and PKA
are known to also target other substrates.

Rescue by over-expression of ADAM10

ADAMIO is a disintegrin and metalloproteinase that can
cleave APP at the main o-secretase site thus augmenting the
non-amyloidogenic processing of APP. Over-expression of
ADAMI10 in a mouse that also expresses the APPLond muta-
tion (APP/Ld/ADAMI10 mouse) rescued the LTP impairment
observed in the APP/Ld single mutant (Postina et al., 2004).
These data suggest that favoring the non-amyloidogenic pro-
cessing of APP could be a beneficial strategy to restore nor-
mal hippocampal function.

Cleavage of APP at D664

APP contains a consensus site for caspase cleavage at D664
resulting in the generation of the intracellular C31 fragment.
To understand the importance of this cleavage in impairment
of hippocampal function, D664 A mice were created by intro-
duction of the D664 A mutation in the APPswe/ind transgene
(as expressed in the hAPPJ20 line), thus preventing caspase
cleavage (Galvan et al., 2006). Two studies analyzed these
mice by electrophysiology and reported conflicting results.

Saganich et al. (2006) report that introduction of the D664A
mutation rescues basic synaptic transmission and LTP at
the SC-CA1 synapse, which they observed in hAPPJ20. In
contrast, Harris et al. (2010) did not observe any rescue of
SC-CAL1 basic synaptic transmission and of the MPP-DG
LTP phenotype that they had previously characterized in the
hAPPJ20 mice. At present, we cannot therefore conclude on
the importance of this caspase cleavage site in relation to
impairments of hippocampal function.

Rescue by genetic ablation of Cystatin C gene

Cystatin C (Cys3) is a protease that inhibits Cathepsin B
(CatB), an AP degrading enzyme. Inhibition of Cys3 results
in enhanced activity of CatB and thus enhanced degradation
of AB. Sun et al. (2008) crossed hAPPJ20 mice with Cys3 null
mice (Cys37) to evaluate if loss of Cys3 could rescue hip-
pocampal function. They report that hAPPJ20/Cys3” mice still
displayed reduced basic synaptic transmission at the SC-CA1
synapse. Deletion of Cys3, however, rescued the PPR ratio at
the LPP-DG synapse and rescued LTP at the MPP-DG syn-
apse. These data suggest that inhibition of Cys3 protease activ-
ity could be a potential therapeutic target for AD.

Rescue by genetic ablation of o7 nicotinic
acetylcholine receptor (¢7ZnAChR) gene

AP42 was shown to bind to the oi7nAChR with high affin-
ity and both are found colocalized in neuritic plaques of
human AD brains (Wang et al., 2000a,b). Dziewczapolski
et al. (2009) therefore evaluated the impact of deleting the
a7nAChR gene on hippocampal function of hAPPJ9 mice.
The impairment they observed in hAPPJ9 mice was partially
rescued in hAPPJ9/07/nAChR -/- double transgenic mice,
suggesting that inhibition of o7nAChR function could be
beneficial in the treatment of AD.

Rescue by Af antibodies

One therapeutic approach that has received a lot of attention in
the last decade is the use of immunization against AP to inter-
fere with its deposition and speed up its clearance (Golde et
al., 2011). Knobloch et al. (2007a) report that a single dose of
intraperitoneal injection of an antibody (6E10) directed against
the AP sequence was sufficient to reverse the LTP deficit they
observed in ArcAB mice. We could not find other electrophysi-
ological evaluations of the effects of A immunization on hip-
pocampal function in AD mouse models. This paucity of data
is surprising considering the large body of literature assessing
the benefits of this type of immunization in AD models (see
Wisniewski and Sigurdsson, 2010 for review).

Rescue by inhibition of protein phosphatase 1

Protein phosphatase 1 (PP1) is known to be involved in
the regulation of NMDAR-dependent synaptic plasticity
by dephosphorylating key synaptic proteins (Munton et al.,
2004). Knobloch et al. (2007a) demonstrated that blocking
its activity acutely by bathing slices of ArcAP or APPswe/
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PS1M146L mice in the selective inhibitor tautomycin rescued
the LTP impairments observed at the SC-CA1 synapse. These
data suggest that PP1 is implicated in this impairment and that
its inhibition could restore normal plasticity.

Rescue by inhibition of calpains

Calpains are calcium-dependent proteases, the activity of
which is abnormally elevated in AD (Trinchese et al., 2008
and references therein). Trinchese et al. (2008) showed that
pharmacologically inhibiting calpain activity restored synap-
tic transmission and LTP in the APPswe/PS1M146L mouse
model. These data suggest that calpain inhibition may prove
useful as a therapeutic target.

Rescue by increasing expression of X118

X11P is a neuronal adaptor protein that binds to the intra-
cellular domain of APP (Mitchell et al., 2009 and references
therein). Alterations to X11f expression influence APP pro-
cessing and AP production. Mitchell et al. (2009) crossed
X11p over-expressing mice with Tg2576 mice and demon-
strated by in vivo electrophysiology that this manipulation
rescued the late phase LTP impairments they observed in the
Tg2576 mice. These data suggest that modulating X113 func-
tion could be beneficial in AD.

Rescue by increase in EphB2 expression

EphB2 is a receptor tyrosine kinase that regulates NMDAR
trafficking and function. It is implicated in the regulation of
NMDAR-dependent Ca?* influx and down-stream activation
of transcription factors that mediate synaptic plasticity. Cissé
etal. (2011) injected a lentivirus expressing EphB2 in the CA1
or DG of hAPPJ20 mice. They report that increased expres-
sion of EphB2 is sufficient to rescue NMDAR transmission
and LTP, parameters that were reduced at the MPP-DG syn-
apse in hAPPJ20 mice, but not sufficient to rescue the lower
PPR at the MPP-synapse nor the basic synaptic transmission
deficit observed at the SC-CA1 synapse. The authors conclude
that increasing EphB2 levels could be beneficial in AD.

Rescue by inhibition of caspase 3

We recently reported that acutely treating hippocampal slices
of Tg2576 mice with the caspase 3 inhibitor z-DEVD-fink is
sufficient to restore normal AMPAR/NMDAR ratios at the
SC-CA1 synapse (D’Amelio et al., 2011). These data suggest
that increased activation of caspase 3 is responsible for dis-
rupting the balance between AMPAR and NMDAR transmis-
sion at this synapse and that inhibiting its activity could be
sufficient to restore normal synaptic balance.

Rescue by removal of tau

Several studies suggest that the microtubule-associated protein
tau mediates or enables the pathogenic effects of AP (Ittner
and Gotz, 2011). Roberson et al. (2011) therefore evaluated

the effects of removing tau on hippocampal synaptic function
by crossing hAPPJ20 mice with tau-/- mice. Removing tau
restored all excitatory and inhibitory transmission and plas-
ticity deficits that they had observed in hAPPJ20. These data
suggest that tau is a key protein mediating hippocampal func-
tional deficits in these mice and that lowering its expression
could be beneficial in AD.

These various studies provide important information on
the potential therapeutic targets to be considered to restore
normal hippocampal function. Their interpretation is, how-
ever, still limited as no independent studies are yet available
to confirm or challenge these findings, except for the D664A
mice where conflicting data have emerged. It will therefore
be important to test these rescue approaches in other mouse
models.

Future perspectives

Several approaches could help make sense of how hippocam-
pal function is perturbed during AD-like neurodegeneration.
First, we advocate dissociation of analysis of GABAergic and
glutamatergic function by systematic use of blockers. Also, to
understand how the different parameters of hippocampal func-
tion are affected with disease progression, we suggest a more
systematic age-dependent analysis of the phenotype observed.
Finally, to identify the alterations of hippocampal function
that are more likely to contribute to AD-related memory loss,
we propose the concept of common denominators (Houeland
et al., 2010). The common denominators to the most compre-
hensive AD mouse models, independent of their etiology, are
accumulation of AP, tau hyperphosphorylation and memory
deficits. By comparing the data on hippocampal function in
the various models as summarized in this review, we believe
that, at present, impairment of DG plasticity and alterations of
GABAergic function could be two other common denomina-
tors responsible for memory loss, irrespective of the origin
of the insult (e.g., mutant hAPP over-expression or loss of
NGF trophic support). Further analysis of these hippocampal
parameters in other mouse models is necessary to support or
challenge this notion, but this type of approach could prove
useful for the development of targeted therapeutic strategies.
Finally, we found that some crucial aspects of hippocampal
synaptic function, such as LTD or CA3 transmission and plas-
ticity, have been almost, if not completely, ignored. Analysis
of novel aspects of hippocampal physiology in the models
will help to understand how this structure is affected during
AD-like neurodegeneration.
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