
Cristina Landeta- PhD
- Assistant Professor at Indiana University Bloomington
Cristina Landeta
- PhD
- Assistant Professor at Indiana University Bloomington
About
18
Publications
2,874
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
423
Citations
Introduction
Current institution
Additional affiliations
February 2018 - August 2019

enEvolv
Position
- Engineer
November 2017 - February 2018
August 2011 - August 2017
Education
January 2007 - July 2011
August 2001 - June 2006
Publications
Publications (18)
Mycobacteria, including Mycobacterium tuberculosis —the etiological agent of tuberculosis—have a unique cell envelope critical for their survival and resistance. The cell envelope’s assembly and maintenance influence permeability, making it a key target against multidrug-resistant strains. Disulfide bond (DSB) formation is crucial for the folding o...
Disulfide bond formation has a central role in protein folding of both eukaryotes and prokaryotes. In bacteria, disulfide bonds are catalyzed by DsbA and DsbB/VKOR enzymes. First, DsbA, a periplasmic disulfide oxidoreductase, introduces disulfide bonds into substrate proteins. Then, the membrane enzyme, either DsbB or VKOR, regenerate DsbA’s activi...
In bacteria, disulfide bonds contribute to the folding and stability of proteins important for processes in the cellular envelope. In Escherichia coli, disulfide bond formation is catalyzed by DsbA and DsbB enzymes. DsbA is a periplasmic protein that catalyzes disulfide bond formation in substrate proteins, while DsbB is an inner membrane protein t...
In bacteria, disulfide bonds contribute to the folding and stability of proteins important for processes in the cellular envelope. In E. coli , disulfide bond formation is catalyzed by DsbA and DsbB enzymes. DsbA is a periplasmic protein that catalyzes disulfide bond formation in substrate proteins while DsbB is an inner membrane protein that trans...
Critical Gram-negative pathogens, like Pseudomonas, Stenotrophomonas and Burkholderia, have become resistant to most antibiotics. Complex resistance profiles together with synergistic interactions between these organisms increase the likelihood of treatment failure in distinct infection settings, for example in the lungs of cystic fibrosis patients...
Critical Gram-negative pathogens, like Pseudomonas, Stenotrophomonas and Burkholderia, have become resistant to most antibiotics. Complex resistance profiles together with synergistic interactions between these organisms increase the likelihood of treatment failure in distinct infection settings, for example in the lungs of cystic fibrosis patients...
Critical Gram-negative pathogens, like Pseudomonas , Stenotrophomonas and Burkholderia , have become resistant to most antibiotics. Complex resistance profiles together with synergistic interactions between these organisms increase the likelihood of treatment failure in distinct infection settings, for example in the lungs of cystic fibrosis patien...
Antimicrobial resistance is one of the greatest global health challenges today. For over three decades antibacterial discovery research and development has been focused on cell-based and target-based high throughput assays. Target-based screens use diagnostic enzymatic reactions to look for molecules that can bind directly and inhibit the target. T...
In bacteria, disulfide bonds confer stability on many proteins exported to the cell envelope or beyond, including bacterial virulence factors. Thus, proteins involved in disulfide bond formation represent good targets for the development of inhibitors that can act as antibiotics or anti‐virulence agents, resulting in the simultaneous inactivation o...
Disulfide bonds influence the stability and activity of many proteins. In Escherichia coli, the DsbA and DsbB enzymes promote disulfide bond formation. Other bacteria, including the Actinobacteria, use instead of DsbB the enzyme vitamin K epoxide reductase (VKOR), whose gene is found either fused to or in the same operon as a dsbA-like gene. Mycoba...
Review: "Disulfide bond formation in prokaryotes" in Nature Microbiology. As part of the Springer Nature Content Sharing Initiative, we can now publicly share full-text access to a view-only version of the paper by using the following SharedIt link:
http://rdcu.be/Hq04
Interest in protein disulfide bond formation has recently increased because of the prominent role of disulfide bonds in bacterial virulence and survival. The first discovered pathway that introduces disulfide bonds into cell envelope proteins consists of Escherichia coli enzymes DsbA and DsbB. Since its discovery, variations on the DsbAB pathway ha...
Disulfide bonds confer stability and activity to proteins. Bioinformatic approaches allow predictions of which organisms make protein disulfide bonds and in which subcellular compartments disulfide bond formation takes place. Such an analysis, along with biochemical and protein structural data, suggests that many of the extremophile Crenarachaea ma...
Disulfide bonds are critical to the stability and function of many bacterial proteins. In the periplasm of Escherichia coli , intramolecular disulfide bond formation is catalyzed by the two-component Dsb system. Inactivation of the Dsb pathway has been shown to lead to a number of pleotropic effects, though cells remain viable under standard labora...
Disulfide bonds contribute to protein stability, activity and folding in a variety of proteins including many involved in bacterial virulence such as, toxins, adhesins, flagella and pili among others. Therefore, inhibitors of disulfide bond formation enzymes could have profound effects on pathogen virulence. In the Escherichia coli disulfide bond f...
Disulfide bonds are found in many proteins associated with the cell wall of Escherichia coli, and for some of these proteins the disulfide bond is critical to their stability and function. One protein found to contain a disulfide bond is the essential cell division protein FtsN, but the importance of this bond to the protein's structural integrity...
In bacteria, disulfide bonds confer stability on many proteins exported to the cell envelope or beyond. These proteins include numerous bacterial virulence factors, and thus bacterial enzymes that promote disulfide bond formation represent targets for compounds inhibiting bacterial virulence. Here, we describe a new target- and cell-based screening...
Replicon architecture in bacteria is commonly comprised of one indispensable chromosome and several dispensable plasmids. This view has been enriched by the discovery of additional chromosomes, identified mainly by localization of rRNA and/or tRNA genes, and also by experimental demonstration of their requirement for cell growth. The genome of Rhiz...