Cristina Escolar

Cristina Escolar
King Juan Carlos University | URJC · Biology and Geology

Ph.D

About

51
Publications
20,482
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
3,603
Citations
Additional affiliations
May 2008 - March 2014
Escuela Superior de Ciencias Experimentales y Tecnologia
Position
  • PhD Student
January 2008 - December 2012
King Juan Carlos University

Publications

Publications (51)
Article
Full-text available
Multiple ecosystem functions need to be considered simultaneously to manage and protect the many ecosystem services that are essential to people and their environments. Despite this, cost effective, tangible, relatively simple, and globally‐relevant methodologies to monitor in situ soil multifunctionality, i.e. the provision of multiple ecosystem f...
Article
Full-text available
A positive soil carbon (C)−climate feedback is embedded into the climatic models of the IPCC. However, recent global syntheses indicate that the temperature sensitivity of soil respiration (RS) in drylands, the largest biome on Earth, is actually lower in warmed than in control plots. Consequently, soil C losses with future warming are expected to...
Article
Full-text available
Climate and human impacts are changing the nitrogen (N) inputs and losses in terrestrial ecosystems. However, it is largely unknown how these two major drivers of global change will simultaneously influence the N cycle in drylands, the largest terrestrial biome on the planet. We conducted a global observational study to evaluate how aridity and hum...
Article
Full-text available
Soil communities dominated by lichens and mosses (biocrusts) play key roles in maintaining ecosystem structure and functioning in drylands worldwide. However, few studies have explicitly evaluated how climate change-induced impacts on biocrusts affect associated soil microbial communities. We report results from a field experiment conducted in a se...
Article
Soil surface communities composed of cyanobacteria, algae, mosses, liverworts, fungi, bacteria and lichens (biocrusts) largely affect soil respiration in dryland ecosystems. Climate change is expected to have large effects on biocrusts and associated ecosystem processes. However, few studies so far have experimentally assessed how expected changes...
Data
Full-text available
Plant-plant interactions are driven by environmental conditions, evolutionary relationships (ER) and the functional traits of the plants involved. However, studies addressing the relative importance of these drivers are rare, but crucial to improve our predictions of the effects of plant-plant interactions on plant communities and of how they respo...
Article
Full-text available
Geographic, climatic, and soil factors are major drivers of plant beta diversity, but their importance for dryland plant communities is poorly known. This study aims to: i) characterize patterns of beta diversity in global drylands, ii) detect common environmental drivers of beta diversity, and iii) test for thresholds in environmental conditions d...
Article
1. Climate change will raise temperatures and modify precipitation patterns in drylands worldwide, affecting their structure and functioning. Despite the recognized importance of soil communities dominated by mosses, lichens and cyanobacteria (biocrusts) as a driver of nutrient cycling in drylands, little is known on how biocrusts will modulate the...
Article
Full-text available
As a key component of the carbon cycle, soil CO2 efflux (SCE) is being increasingly studied to improve our mechanistic understanding of this important carbon flux. Predicting ecosystem responses to climate change often depends on extrapolation of current relationships between ecosystem processes and their climatic drivers to conditions not yet expe...
Article
Full-text available
The importance of biological soil crusts (biocrusts) for the biogeochemistry of drylands is widely recognized. However, there are significant gaps in our knowledge about how climate change will affect these organisms and the processes depending on them. We conducted a manipulative full factorial experiment in two representative dryland ecosystems f...
Article
Full-text available
Model systems have had a profound influence on the development of ecological theory and general principles. Compared to alternatives, the most effective models share some combination of the following characteristics: simpler, smaller, faster, general, idiosyncratic or manipulable. We argue that biological soil crusts (biocrusts) have unique combina...
Article
Full-text available
As a key component of the carbon cycle, soil CO2 efflux (SCE) is being increasingly studied to improve our mechanistic understanding of this important carbon flux. Predicting ecosystem responses to climate change often depends on extrapolation of current relationships between ecosystem processes and their climatic drivers to conditions not yet expe...
Article
Full-text available
Plant-plant interactions are driven by environmental conditions, evolutionary relationships (ER) and the functional traits of the plants involved. However, studies addressing the relative importance of these drivers are rare, but crucial to improve our predictions of the effects of plant-plant interactions on plant communities and of how they respo...
Article
Full-text available
Aim Geographical, climatic and soil factors are major drivers of plant beta diversity, but their importance for dryland plant communities is poorly known. The aim of this study was to: (1) characterize patterns of beta diversity in global drylands; (2) detect common environmental drivers of beta diversity; and (3) test for thresholds in environment...
Article
Full-text available
The biogeochemical cycles of carbon (C), nitrogen (N) and phosphorus (P) are interlinked by primary production, respiration and decomposition in terrestrial ecosystems1. It has been suggested that the C, N and P cycles could become uncoupled under rapid climate change because of the different degrees of control exerted on the supply of these elemen...
Article
The biogeochemical cycles of carbon (C), nitrogen (N) and phosphorus (P) are interlinked by primary production, respiration and decomposition in terrestrial ecosystems. It has been suggested that the C, N and P cycles could become uncoupled under rapid climate change because of the different degrees of control exerted on the supply of these element...
Article
Dryland ecosystems account for ~27% of global soil organic carbon (C) reserves, yet it is largely unknown how climate change will impact C cycling and storage in these areas. In drylands, soil C concentrates at the surface, making it particularly sensitive to the activity of organisms inhabiting the soil uppermost levels, such as communities domina...
Article
Full-text available
While much is known about the factors that control each component of the terrestrial nitrogen (N) cycle, it is less clear how these factors affect total N availability, the sum of organic and inorganic forms potentially available to microorganisms and plants. This is particularly true for N-poor ecosystems such as drylands, which are highly sensiti...
Data
Pearsońs relationships between organic (DON and amino acids) and inorganic (ammonium and nitrate) N forms with aridity for both Stipa tenassicima (STIPA) and Bare soil (BS) microsites. Every data point is the average of five soil samples. Significance levels are as follows: *p<0.05, **p<0.01 and ***p<0.001. Ammonium, nitrate and DON were measured a...
Data
Pearson correlations coefficients. between available N and climatic (aridity), abiotic (pH; SAC: sand content), plant (CBA: coverage of bare ground; CHE: coverage of Stipa tenacissima; PA: plant patch area; API: Average plant patch interdistance; NP: number of plant patches per 10 m of transect) and nutrient (Organic-C; MIN; potential net mineraliz...
Data
Pearson correlations coefficients. between the different climatic (aridity), abiotic (pH; SAC: % of sand content), plant (CBA: % of coverage of bare ground; CHE: % of coverage of Stipa tenacissima; PA: plant patch area [m2]; API: Average plant patch interdistance [m]; NP: number of plant patches per 10 m of transect) and nutrient (Organic-C [%]; MI...
Data
Summary results of the semi-parametric PERMANOVA analyses carried out with organic carbon. PERMANOVA uses permutation tests to obtain p values, does not rely on the assumptions of traditional parametric ANOVA, and can handle experimental designs such as employed here (1). The model used evaluated the effects of plot (PL as random factor) and micros...
Data
Location, climatic, physical and main soil chemical characteristics in the studied sites. MAT = Mean annual temperature; MAP = Mean annual precipitation; Stipa = coverage of Stipa. (DOC)
Data
Relationships between organic (DON and amino acids) and inorganic (ammonium and nitrate) N forms with total available N for both Stipa tenassicima (STIPA) and Bare soil (BS) microsites. Every data point is the average of five soil samples. Significance levels are as follows: *p<0.05, **p<0.01 and ***p<0.001. Ammonium, nitrate and DON were measured...
Article
Full-text available
Biological soil crusts (BSCs) are key biotic components of dryland ecosystems worldwide that control many functional processes, including carbon and nitrogen cycling, soil stabilization and infiltration. Regardless of their ecological importance and prevalence in drylands, very few studies have explicitly evaluated how climate change will affect th...
Article
Full-text available
Biological soil crusts (BSCs) are specialized communities dominated by mosses, lichens, liverworts, cyanobacteria, and other organisms that may constitute as much as 70% of the living cover in dryland ecosystems. These organisms not only fix CO2 from the atmosphere, but also control the small-scale spatio-temporal soil CO2 fluxes in the ecosystems...
Article
Full-text available
Experiments suggest that biodiversity enhances the ability of ecosystems to maintain multiple functions, such as carbon storage, productivity, and the buildup of nutrient pools (multifunctionality). However, the relationship between biodiversity and multifunctionality has never been assessed globally in natural ecosystems. We report here on a globa...
Article
Full-text available
Biological soil crusts (BSCs), composed of lichens, cyanobacteria, mosses, liverworts and microorganisms, are key biotic components of arid and semi-arid ecosystems worldwide. Despite they are widespread in Spain, these organisms have been historically understudied in this country. This trend is beginning to change as a recent wave of research has...
Article
1. At the heart of the body of research on biodiversity effects on ecosystem function is the debate over whether different species tend to be functionally singular or redundant. When we consider ecosystem multi-function, the provision of multiple ecosystem functions simultaneously, we may find that seemingly redundant species may in fact play uniqu...
Article
Questions: To what degree do biological soil crusts (BSCs), which are regulators of the soil surface boundary, influence associated microbial communities? Are these associations important to ecosystem functioning in a Mediterranean semi-arid environment? Location: Gypsum outcrops near Belmonte del Tajo, Central Spain. Methods: We sampled a total of...
Conference Paper
Background/Question/Methods Climate change will exacerbate the degree of abiotic stress experienced by semi-arid Mediterranean ecosystems, as predictions point out to an increase in temperature close to 3ºC annually and a reduction of rainfall close to 20% over current values. While these changes in environmental conditions are predicted to affec...
Article
Full-text available
Climate change will exacerbate the degree of abiotic stress experienced by semi-arid ecosystems. While abiotic stress profoundly affects biotic interactions, their potential role as modulators of ecosystem responses to climate change is largely unknown. Using plants and biological soil crusts, we tested the relative importance of facilitative-compe...
Article
Despite that soils may be the greatest repository of biodiversity on Earth, and that most terrestrial ecosystem functions occur in the soil, research on the role of soil biodiversity in ecosystem function has lagged behind corresponding research on aboveground organisms. Soil organisms pose special problems to biodiversity–function research, includ...
Article
The stress-gradient hypothesis (SGH) predicts a shift from predominant competition to facilitation as abiotic stress increases. Most empirical tests of the SGH have evaluated the interactions between a single or a few pairs of species, have not considered the effects of multiple stress factors, and have not explored these interactions at nested spa...
Article
Question: Are soil lichen communities structured by biotic interactions?Location: Gypsum outcrops located next to Belmonte del Tajo, central Spain.Methods: We sampled a total of 68 (50 cm × 50 cm) plots in gypsum outcrops from central Spain. Each plot was divided into 100 (5 cm × 5 cm) sampling quadrats, and the presence of all lichen species in ev...

Network

Cited By

Projects

Project (1)