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1. Introduction and preliminaries

In this section we shall present some useful lemmas and definitions regarding
rectangular and b-rectangular metric spaces. Also, we shall present some recent results
in the field of fixed point theory concerning expansive operators and some generalized
contraction mappings.
In [6], A. Branciari introduced a new metric-type space, when triangle inequality
is replaced by an inequality which involves four different elements. This is called a
rectangular metric space or a generalized metric space (g.m.s.)

Definition 1.1. Let X 6= ∅, d : X × X → [0,∞), such that for each x, y ∈ X and
u, v ∈ X (each distinct from x and y), we have that

(1) d(x, y) = 0⇐⇒ x = y,
(2) d(x, y) = d(y, x),
(3) d(x, y) ≤ d(x, u) + d(u, v) + d(v, y).

Furthermore, from [10] we mention that convergent sequences and Cauchy se-
quences can be introduced in a similar manner as in metric spaces.
Also, from the same paper, we know that if (X, d) is a rectangular metric space and
if (xn) is a b-rectangular Cauchy sequence with the property that xn 6= xm, for each
n 6= m, then (xn) converge to at most one point, i.e. the property that (X, d) is
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Haussdorf becomes superfluous.
Moreover, from [8], [9], [22], we recall the definition of b-rectangular metric spaces (or
b-generalized metric spaces), briefly b-g.m.s.

Definition 1.2. Let X 6= ∅, s ≥ 1 be a given real number and d : X × X → [0,∞),
such that for each x, y ∈ X and u, v ∈ X (each distinct from x and y), we have that

(1) d(x, y) = 0⇐⇒ x = y,
(2) d(x, y) = d(y, x),
(3) d(x, y) ≤ s [d(x, u) + d(u, v) + d(v, y)].

As in metric spaces, we recall the basic notions regarding sequences in b-g.m.s:

Definition 1.3. Let (X, d) be a b-g.m.s, x ∈ X and (xn) ⊂ X be a given sequence.
Then

(a) (xn) is convergent in (X, d) to an element x ∈ X, if for each ε > 0, there
exists n0 ∈ N, such that d(xn, x) < ε, for each n > n0. We denote this by lim

n→∞
xn = x.

(b) (xn) is Cauchy in (X, d) (or b-rectangular Cauchy, briefly b-g.m.s.), if for
each ε > 0, there exists n0 ∈ N, such that d(xn, xn+p) < ε, for each n > n0 and for
each p > 0. We denote this by lim

n→∞
d(xn, xn+p) = 0, for each p > 0.

(c) (X, d) is said to be complete b-g.m.s, if every Cauchy sequence in X converges
to some x ∈ X.

We recall the following important remark from [8]:

Remark 1.4. (1) Every metric space and every rectangular metric space (g.m.s) is
b-g.m.s.

(2) The limit of a sequence in a b-rectangular metric space is not unique.
(3) Every convergent sequence in a b-g.m.s is not necessarily a b-g.m.s Cauchy.

For this, we recall a crucial lemma from [8], i.e. (Lemma 1.5), that specify when
a b-rectangular Cauchy sequence can’t have two limits in a b-g.m.s.

Lemma 1.5. Let (X, d) be a b-rectangular metric space, with the coefficient s ≥ 1. Let
(xn) be a b-rectangular Cauchy sequence in X, such that xn 6= xm, for each n 6= m.
Then (xn) can converge to at most one point.

Also, we recall from [12] and [8] the following crucial lemma.

Lemma 1.6. Let (X, d) be a b-rectangular metric space, with the coefficient s ≥ 1. Also,
let (xn) be a sequence for which xn 6= xm, for every n 6= m, with lim

n→∞
d(xn, xn+1) = 0.

If (xn) is not a b-rectangular Cauchy sequence, then there exists ε > 0, such that for
each k ∈ N, there exists (m(k)) and (n(k)) two sequences of positive integers, such
that

d(xm(k), xn(k)) ≥ ε,
ε

s
≤ lim sup

k→∞
d(xm(k), xn(k)−2) ≤ ε and

ε

s
≤ lim sup

k→∞
d(xm(k)+1, xn(k)−1).
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In [22], another crucial lemma regarding sequences in b-rectangular metric spaces
was presented. For convenience, we remind it below.

Lemma 1.7. Let (X, d) be a b-g.m.s., with coefficient s ≥ 1.
(a) Consider two sequences (xn) and (yn), such that xn converges to x ∈ X and

yn converges to y ∈ X, with x 6= y. Also, suppose that for each n ∈ N, xn 6= x and
yn 6= y. Then

1

s
d(x, y) ≤ lim inf

n→∞
d(xn, yn) ≤ lim sup

n→∞
d(xn, yn) ≤ sd(x, y).

(b) Consider an element y ∈ X and a b-rectangular Cauchy sequence (xn), such
that xn 6= xm, for each n 6= m. Moreover, suppose that the sequence (xn) converges
to an element x 6= y. Then

1

s
d(x, y) ≤ lim inf

n→∞
d(xn, y) ≤ lim sup

n→∞
d(xn, y) ≤ sd(x, y).

Finally, for the convenience of the reader, we recall some important results in b-
rectangular metric spaces. In [9], George et.al.studied basic contraction-type mappings
in b-rectangular metric spaces, like Kannan operators, i.e.

d(Tx, Ty) ≤ λ [d(x, Tx) + d(y, Ty)] , with λ ∈
[
0,

1

s+ 1

]
.

In [8], Radenovic et.al. extended the results to mappings satisfying

d(fx, gy) ≤ ad(gx, gy) + b [d(gx, fx) + d(gy, fy)] ,

for each x, y ∈ X and studied unique coincidence and common fixed points for the
pair of operators (f, g) that satisfies some additional assumptions.
Also, for more results in b-rectangular metric spaces and for a consistent survey on
different generalized metric-type spaces, we recommend [11] and [12].
Now, regarding generalized contraction mappings we recall some recent advances in
this subfield of fixed point theory.
In [13], Karapinar studied unique fixed points for some generalized contractions on
cone Banach spaces satisfying the following contractive-type conditions

d(x, Tx) + d(y, Ty) ≤ pd(x, y), where p ∈ [0, 2)

and

ad(Tx, Ty) + b [d(x, Tx) + d(y, Ty)] ≤ sd(x, y), with 0 ≤ s+ |a| − 2b < 2(a+ b).

Moreover, in 2009, Kumar [14] presented some theorems for two maps satisfying the
following

d(fx, fy) ≥ qd(gx, gy), with q > 1,

where f is onto and g is one-to-one.
Moosaei, Azizi, Asadi and Wang generalized the results of Karapinar as follows
In [15], Moosaei used Krasnoselskii’s iteration defined in convex metric spaces, for the
following mappings, that satisfy

d(Tx, Ty) + d(x, Tx) + d(y, Ty) ≤ rd(x, y), where r ∈ [2, 5),
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respectively

ad(x, fx) + bd(y, fy) + cd(fx, fy) ≤ kd(x, y), with 2b− |c| ≤ k < 2(a+ b+ c)− |c|.

In [17], Moosaei and Azizi extended the results to generalized contraction-type oper-
ators, studying coincidence points for various mappings, such as

ad(Sx, Tx) + bd(Sy, Ty) + cd(Tx, Ty) ≤ ed(x, y),

where T (K) ⊂ S(K), K and S(K) are closed and convex subsets of a convex metric
space and the coefficients satisfy

2b− |c| ≤ e < 2(a+ b+ c)− |c|.

Nevertheless, in 2014, Moosaei [16] studied a more generalized pair of contractions
(S, T ), where

αd(Tx, Ty) + β [d(Sx, Tx) + d(Sy, Ty)] + γ [d(Sx, Ty) + d(Sy, Tx)] ≤ ηd(Sx, Sy),

with some assumptions on contractive-coefficients, i.e.

2β + γ − |γ| − α ≤ η < α+ 2β + 3γ − |γ| and β + γ ≤ 0.

Asadi in [3], using the same iteration (Krasnoselskii) on convex metric spaces, studied
fixed points for generalized Hardy-Rogers type-mappings, as follows

ad(x, Tx) + bd(y, Ty) + cd(Tx, Ty) + ed(Ty, x) + fd(y, Tx) ≤ kd(x, y),

where

b+ e− |f |(1− λ)− |c|λ
1− λ

≤ k < a+ b+ c+ e+ f − |c|λ− |f |(1− λ)

1− λ
,

and λ ∈ [0, 1] is the coefficient of Krasnoselskii’s iteration.
Furthermore, Wang and Zhang, in [23] extended the above results for pairs of gener-
alized Hardy-Rogers type contractions.
Now, expansive and expansive-type mappings can be considered a particular case of
generalized contractions. Regarding the former ones, we recall some recent develop-
ment into the study of this type of operators.
In 2011, Aage [1] considered expansive mappings in cone metric spaces. The more
general form of these mappings, with some underlying assumptions, are

d(Tx, Ty) ≥ kd(x, y) + ld(x, Tx) + pd(y, Ty),

where T satisfies K ≥ −1, p < 1, l > 1 and k + l + p > 1.
Aydi et.al. studied in [4] some interesting fixed point theorems for pairs of expansive
mappings for spaces endowed with c-distances. We recall them using the standard
notations for metric spaces, i.e.

d(Tx, Ty) ≥ ad(fx, fy) + bd(Tx, fx) + cd(Ty, fy),

with b < 1, a 6= 0, f(X) ⊆ T (X) and (T (X), d) ⊂ (X, d) complete.
Also, in cone rectangular metric spaces, some fixed point theorems were developed.
For example, in [20], pair of mappings satisfying

d(fx, fy) ≥ αd(gx, gy) + βd(fx, gx) + γd(fy, gy)
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were studied, with some assumptions on the coefficients α, β and γ and on the range
of g and f .
These pairs of generalized mappings were extended by Olaoluwa and Olaleru in [18],
but in the framework of b-metric spaces and for a pair of four mappings, as follows

d(fx, gy) ≥ a1d(Sx, Ty) + a2d(fx, Sx) + a3d(gy, Ty) + a4d(fx, Ty) + a5d(gy, Sx).

Also, for the sake of convenience, we recall other studies in metric-type spaces and
for expansive-type mappings, as follows: in [24] generalized mappings were studied on
cone rectangular metric spaces using the technique of scalarizing, in [21] mappings
that satisfy

d(Tx, Ty) ≤ ϕ(d(x, y))

were studied on cone rectangular metric spaces and in [19], fixed point theorems for
a general type of expansive mappings were developed, satisfying

φ(d(S2x, TSy)) ≥ 1

3

[
d(Sx, S2x) + d(TSy, Sy) + d(Sx, Sy)

]
.

Also, in the context of dislocated metric spaces, Daheriya et.al. [7] studied rational-
type expansive mappings, and in [2] Alghamdi studied fixed points for generalized
expansive mappings in b-metric like spaces.
The purpose of this work is to extend some fixed results for a hybrid class of general-
ized contractive-type mappings and for some expansive-type operators in the context
of b-rectangular metric spaces. Moreover, at the end of the second section, we shall
let and open problem.

2. Main results

Moosaei in [15] used Krasnoselskii iteration to develop fixed point theorems for
generalized contractions on convex metric spaces. It is easily seen that we can use
Picard instead of Krasnoselkii sequences in metric spaces.
In this section, our aim is to extend the results of Moosaei [15] for generalized con-
traction mappings from metric spaces to b-rectangular metric spaces. Also, we extend
and develop the fixed point results of Aage [1] from cone metric spaces to b-g.m.s.
Furthermore, we extend results from [20] of Patil, from rectangular metric spaces to
b-rectangular ones (b-g.m.s).
Also, examples similar to those in [1], [12] and [20] justifying our theorems are given.
Now, let’s consider generalized contractions f : X → X on a b-g.m.s. X, satisfying
the following condition:

ad(x, fx) + bd(y, fy) + cd(fx, fy) ≤ kd(x, y).

We will analyze two separate cases: when c > 0 and c < 0. Also, for expansive-type
mappings, i.e. when c < 0, we consider two types of sequence, namely the classical
Picard iteration xn+1 = fxn, for each n ∈ N and the ’inverse’ Picard iteration, i.e.
xn = fxn+1, for each n ∈ N, for which we require that the operator f is onto.
Our first result is a theorem for the existence and uniqueness of the fixed point of a
mapping satisfying the contractive condition from above. The technique we will use
is based on the (Lemma 1.6 ).
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Theorem 2.1. Let (X, d) be a complete b-rectangular metric space (b-gms), with co-
efficient s > 1. Consider a mapping f : X → X, satisfying the following contractive
condition

ad(x, fx) + bd(y, fy) + cd(fx, fy) ≤ kd(x, y), where 0 ≤ k − b < a+ c

s
.

Also, suppose the following assumptions are satisfied

(A) If c > 0 and k ≥ 0, then
k

c
<

1

s
,

(B) If c > 0 and k ≤ 0, then we have no additional conditions,

(C) If c < 0 and k < 0, then
k

c
> s2.

Then, the Picard sequence (xn), defined as xn+1 = fxn, for each n ∈ N converges to
a fixed point of the mapping f .

Proof. We consider the Picard iterative process (xn), defined as xn+1 = fxn, for each
n ∈ N. Applying the contractive condition for the pair (xn−1, xn), we get that

ad(xn, fxn) + bd(xn−1, fxn−1) + cd(fxn−1, fxn) ≤ kd(xn−1, xn)

ad(xn, xn+1) + bd(xn−1, xn) + cd(xn, xn+1) ≤ kd(xn−1, xn)

(a+ c)d(xn, xn+1) ≤ (k − b)d(xn−1, xn)

So d(xn, xn+1) ≤ δd(xn−1, xn), where δ :=
k − b
a+ c

∈
[
0,

1

s

)
from the theorem’s as-

sumptions, since 0 ≤ k − b < a+ c

s
.

So d(xn, xn+1) ≤ δnd(x0, x1). Since δ ∈
[
0,

1

s

)
, it follows that lim

n→∞
d(xn, xn+1) = 0.

Also, by a routine argument (by reductio ad absurdum), it follows easily that
xn 6= xn+1, for each n ∈ N and that xn 6= xm, for each n 6= m.
The next step is to show that the sequence (xn) is b-rectangular Cauchy. We will use
(Lemma 1.6) and we shall apply it on three different cases
(1) Case c > 0: Let’s suppose that the sequence (xn) is not b-rectangular Cauchy.
Then, there exists ε > 0 and two sequences of nonnegative real numbers (m(k)) and
(n(k)), such that the assumptions from (Lemma 1.6) are satisfied.
Now, we will apply the contraction condition for x = xm(k) and y = xn(k)−2. It follows
that

ad(xm(k), xm(k)+1) + bd(xn(k)−2, xn(k)−1) + cd(xm(k)+1, xn(k)−1) ≤ kd(xm(k), xn(k)−2)

cd(xm(k)+1, xn(k)−1) ≤ kd(xm(k), xn(k)−2)−ad(xm(k), xm(k)+1)−bd(xn(k)−2, xn(k)−1).

Because c > 0, we have that

d(xm(k)+1, xn(k)−1) ≤ k

c
d(xm(k), xn(k)−2)− a

c
d(xm(k), xm(k)+1)− b

c
d(xn(k)−2, xn(k)−1).

Now, we want to apply the limit superior. We make the following necessary remark
and consider the following cases

If a ≥ 0, then −a
c
≤ 0, so −a

c
d(xm(k), xm(k)+1) ≤ 0, so an upper bound for this

element is 0.



Contractions of b-g.m.s. 501

If a ≤ 0, then −a
c
≥ 0, so −a

c
d(xm(k), xm(k)+1) ≥ 0. Applying the limit superior, we

get that

lim sup
k→∞

(
−a
c

)
d(xm(k), xm(k)+1) =

(
−a
c

)
lim sup
k→∞

d(xm(k), xm(k)+1)

=
(
−a
c

)
lim
k→∞

d(xm(k), xm(k)+1) = 0.

The same reasoning can be made about the sign of the coefficient b and about the
limit superior of the sequence (d(xn(k)−2, xn(k)−1)) as a subsequence of (d(xn, xn−1)).

Case (A): When k ≥ 0.

Since k ≥ 0, we have that
k

c
≥ 0. We know that lim sup

k→∞
d(xm(k), xn(k)−2) ≤ ε.

Multiplying by

(
k

c

)
and taking the limit superior, we get that

lim sup
k→∞

(
k

c

)
d(xm(k), xn(k)−2) = lim sup

k→∞

∣∣∣k
c

∣∣∣d(xm(k), xn(k)−2)

=
k

c
lim sup
k→∞

d(xm(k), xn(k)−2) ≤ k

c
ε.

From (Lemma 1.6), it follows that
ε

s
≤ lim sup

k→∞
d(xm(k)+1, xm(k)−1) ≤ k

c
ε, so

1

s
≤ k

c
.

This is a contradiction with the assumption that in this case we have
k

c
<

1

s
.

Case (B): When k ≤ 0.

In this case we have that
k

c
≤ 0, so

k

c
d(xm(k), xn(k)−2) ≤ 0, then we can take 0 as an

upper bound for it. By (Lemma 1.6), we have that
ε

s
≤ 0. Since ε > 0 and s ≥ 1, we

got a contradiction.
Now, in the two cases from above, we have shown that (xn) is b-rectangular Cauchy.
Moreover, we have said that xn 6= xm, for each n 6= m.
Since (X, d) is complete, it implies that there exists u ∈ X, such that xn → u, i.e.

lim
n→∞

d(xn, u) = 0.

Now, we shall show that u is a fixed point for f

d(u, fu) ≤ s [d(u, xn) + d(xn, xn+1) + d(xn+1, fu)]

= s [d(u, xn) + d(xn, xn+1) + d(fxn, fu)]

Since c > 0, then

d(fxn, fu) ≤ k

c
d(xn, u)− b

c
d(xn, xn+1)− a

c
d(u, fu).

So

d(u, fu) ≤ s
[
d(u, xn) + d(xn, xn+1) +

k

c
d(xn, u)− b

c
d(xn, xn+1)− a

c
d(u, fu)

]
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Taking the limit when n→∞, we get(
1 + s

a

c

)
d(u, fu) ≤ 0,

so (c+ sa)d(u, fu) ≤ 0. Furthermore, since c > 0 and 0 < (a+ c) < (a+ cs), then u
is a fixed point for f .

(2) Case c < 0: We have that

ad(x, fx) + bd(y, fy) + cd(fx, fy) ≤ kd(x, y)

cd(fx, fy) ≤ kd(x, y)− ad(x, fx)− bd(y, fy)

So

d(fx, fy) ≥ k

c
d(x, y)− a

c
d(x, fx)− b

c
d(y, fy).

This is a case of expansive-type mapping. By (Lemma 1.6), there exists ε > 0, such
that for every k ∈ N, there exists (m(k)), (n(k)) two sequences of nonnegative real
numbers such that the assumptions in the already mentioned lemma are true. By
b-rectangular inequality, we have that

d(xn(k)−2, xm(k)) ≤ s
[
d(xm(k)−1, xn(k)−3) + d(xn(k)−3, xn(k)−2) + d(xm(k)−1, xm(k))

]
sd(xm(k)−1, xn(k)−3) ≥ d(xn(k)−2, xm(k))− sd(xn(k)−3, xn(k)−2)− sd(xm(k)−1, xm(k))

Dividing by s ≥ 1, we obtain the following

d(xm(k)−1, xn(k)−3) ≥ 1

s
d(xn(k)−2, xm(k))− d(xn(k)−3, xn(k)−2)− d(xm(k)−1, xm(k)).

Case (C): When k < 0: Here we have that
k

c
≥ 0. Multiplying by

(
k

c

)
, it implies

that

k

c
d(xm(k)−1, xn(k)−3) ≥ k

cs
d(xn(k)−2, xm(k))−

k

c
d(xn(k)−3, xn(k)−2)

− k

c
d(xm(k)−1, xm(k)).

Now, we apply the contractive condition for x = xm(k)−1 and y = xn(k)−3, i.e.

d(xm(k), xn(k)−2) ≥ k

c
d(xm(k)−1, xn(k)−3)−a

c
d(xm(k)−1, xm(k))−

b

c
d(xn(k)−3, xn(k)−2).

So, combining the above inequalities, we get that

d(xm(k), xn(k)−2) ≥ k

cs
d(xn(k)−2, xm(k))−

k

c
d(xn(k)−3, xn(k)−2)− k

c
d(xm(k)−1, xm(k))

− a

c
d(xm(k)−1, xm(k))−

b

c
d(xn(k)−3, xn(k)−2).



Contractions of b-g.m.s. 503

From the limit superior, we have get the following

lim sup
k→∞

(
−k
c

)
d(xn(k)−3, xn(k)−2) =

k

c
lim sup
k→∞

−d(xn(k)−3, xn(k)−2)

= −k
c

lim inf
k→∞

d(xn(k)−3, xn(k)−2)

=

(
−k
c

)
lim
k→∞

d(xn(k)−3, xn(k)−2) = 0

We have the same reasoning for d(xm(k)−1, xm(k)), with coefficient −k
c

. Also, for

coefficients a and b, we have that

If a ≥ 0, then −a
c
≥ 0, so

(
−a
c

)
d(xm(k)−1, xm(k)) ≥ 0, so we can make the lower

bound 0.

If a ≤ 0, then −a
c
≤ 0, so

(
−a
c

)
d(xm(k)−1, xm(k)) ≤ 0, so taking the limit superior,

it follows that:

lim sup
k→∞

(
−a
c

)
d(xm(k)−1, xm(k)) =

a

c
lim sup
k→∞

−d(xm(k)−1, xm(k))

= −a
c

lim inf
k→∞

d(xm(k)−1, xm(k))

= −a
c

lim
k→∞

d(xm(k)−1, xm(k)) = 0

Same remarks can be made about the coefficient b and for d(xn(k)−3, xn(k)−2).
By (Lemma 1.6), we get that

ε ≥ lim sup
k→∞

d(xm(k), xn(k)−2) ≥ k

cs
lim sup
k→∞

d(xm(k), xn(k)−2) ≥ εk

cs2
.

So
1

s2
≤ c

k
. This is a contradiction with the fact that in this case

k

c
> s2.

Now, since xn 6= xm, for each n 6= m, d(xn, xn+1) → 0, (xn) Cauchy b-rectangular
and (X, d) is complete, then there exists u ∈ X, such that xn → u. We shall show
that u is a fixed point for the mapping f.
Applying the contractive condition on the pair (u, xn), we get

ad(u, fu) + bd(xn, fxn) + cd(fu, fxn) ≤ kd(u, xn)

ad(u, fu) + bd(xn, xn+1) + cd(fu, xn+1) ≤ kd(u, xn)

Letting n → ∞, we have (a + c)d(u, fu) ≤ 0 and since we know that a + c > 0, it
follows that u is a fixed point for the mapping f . �

Relative to (Theorem 2.1 ), we give two examples that validate cases (A) and(C):
From [12], we recall an example of a complete b-rectangular metric space.

Example 2.2. Let X = A ∪ B, where A =
{ 1

n

∣∣∣n = 2, 5
}

and B = [1, 2]. We define

d : X ×X → [0,∞), such that d(x, y) = d(y, x) and

d

(
1

2
,

1

3

)
= d

(
1

4
,

1

5

)
=

3

100
,
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d

(
1

2
,

1

5

)
= d

(
1

3
,

1

4

)
=

2

100
,

d

(
1

4
,

1

3

)
= d

(
1

5
,

1

3

)
=

6

100
,

d(x, y) = (x− y)2, otherwise.
Then (X, d) is a complete b-rectangular metric space, with coefficient s = 3. Further-
more, (X, d) is not a metric space or a rectangular metric space.

Regarding case (A) of (Theorem 2.1 ), we give the following example.

Example 2.3. Let (X, d) be the b-rectangular metric space defined above, with s = 3.
Also, define f : X → X, such as

f(x) =


1

3
, x ∈ A

1

5
, x ∈ B

It is easy to observe that f has a unique fixed point
1

3
. Moreover, we shall show that

f satisfies

1 · d(fx, fy) ≤ 1

52
d(x, y) +

1

4
d(x, fx) +

23

100
d(y, fy),

for each x, y ∈ X.

Let’s define: a =
−1

4
, b =

−23

100
, k =

1

52
, c = 1 and s = 3.

We have the following cases

1) x ∈ A and y ∈ A: d(fx, fy) = d

(
1

3
,

1

3

)
= 0, so the above inequality is valid.

2) x ∈ B and y ∈ B: d(fx, fy) = d

(
1

5
,

1

5

)
= 0, so the inequality of f is true.

Now, for the non-trivial cases, it follows that:
3) x ∈ A and y ∈ B:

d(fx, fy) =

(
1

3
,

1

5

)
=

6

100
,

d(x, fx) = d

(
x,

1

3

)
≥ min

x∈A
d

(
x,

1

3

)
=

1

200
,

d(y, fy) = d

(
y,

1

5

)
=

(
y − 1

5

)2

= y2 − 2

5
y +

1

25
≥ min

y∈[1,2]
= 1− 1

4
+

1

25
=

6

25
.

Also d(x, y) = (y − x)2 = |y − x|2.
We have that

d(fx, fy) ≤ kd(x, y) + (−a) min
x∈A

d(x, fx) + (−b) min
y∈B

d(y, fy).

So
6

100
≤ 1

52
|y − x|2 +

1

4
· 1

200
+

23

100
· 6

25
,
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so
1

52
|y − x|2 ≥ −6619

12000
, which is obviously true.

4) x ∈ B and y ∈ A

d(fx, fy) =

(
1

3
,

1

5

)
=

6

100
,

d(x, fx) ≥ min
x∈B

d (x, fx) =
6

25
,

d(y, fy) ≥ min
y∈A

=
1

200

and

d(x, y) = (y − x)2 = |y − x|2.
We have that

6

100
≤ 1

52
|y − x|2 +

1

4
· 6

25
+

23

100
· 1

200
,

so
1

52
|y − x|2 ≥ −419

6000
, which is also true.

Moreover, we show that the conditions from (Theorem 2.1) - case (A) on the coeffi-
cients are satisfied

c > 0⇔ 1 > 0

k > 0⇔ 1

52
> 0

a+ c = 1− 1

4
=

3

4
> 0

b ≤ k ⇔ − 23

100
≤ 1

52
k

c
<

1

s
⇔ k <

1

3
⇔ 3 < 52

k < b+
a+ c

s
⇔ 1

52
+

23

100
<

1

4
⇔ 324 < 325

Now, we construct an example of a complete b-rectangular metric space, which will
be used further in this section.

Example 2.4. Let X = {1, 2, 3, 4} and define d : X ×X → [0,∞), such as

d(1, 2) = d(2, 1) =
6

10

d(1, 3) = d(3, 1) =
1

10

d(2, 3) = d(3, 2) =
1

10

d(1, 4) = d(4, 1) = d(2, 4) = d(4, 2) = d(3, 4) = d(4, 3) =
2

10

We will prove that (X, d) is a b-rectangular metric space with coefficient s =
3

2
, which

is not a rectangular metric space.
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For a b-rectangular metric space, we have that d(x, y) ≤ s [d(x, u) + d(u, v) + d(v, y)],
for each u, v 6∈ {x, y}, with u, v being distinct. We have the following cases.
• When x = y, the right hand side is 0, so the above inequality remains valid.
• When x 6= y, we employ the following sub-cases
Case (1): If x = 1 and y = 2 (x = 2 and y = 1 by symmetry):

6

10
≤ s [d(1, u) + d(u, v) + d(v, 2)] , for u, v 6∈ {1, 2}, i.e. u, v ∈ I1 = {3, 4}

6

10
= d(1, 2) ≤ s

[
min
u∈I1

d(1, u) + d(3, 4) + min
v∈I1

d(v, 2)

]
6

10
≤ s

[
1

10
+

2

10
+

1

10

]
, so s ≥ 3

2

Case (2): If x = 3 and y = 1 (x = 1 and y = 3 by symmetry):

1

10
≤ s [d(3, u) + d(u, v) + d(v, 1)] , for u, v 6∈ {1, 3}, i.e. u, v ∈ I2 = {2, 4}

1

10
= d(3, 1) ≤ s

[
min
u∈I2

d(3, u) + d(2, 4) + min
v∈I2

d(v, 1)

]
1

10
≤ s

[
1

10
+

2

10
+

1

10

]
, so s ≥ 1

4

Case (3): If x = 4 and y = 1 (x = 1 and y = 4 by symmetry):

2

10
≤ s [d(3, u) + d(u, v) + d(v, 1)] , for u, v 6∈ {1, 4}, i.e. u, v ∈ I3 = {2, 3}

2

10
= d(4, 1) ≤ s

[
min
u∈I3

d(4, u) + d(2, 3) + min
v∈I3

d(v, 1)

]
2

10
≤ s

[
2

10
+

1

10
+

1

10

]
, so s ≥ 1

2

Case (4): If x = 2 and y = 4 (x = 4 and y = 2 by symmetry):

2

10
≤ s [d(2, u) + d(u, v) + d(v, 4)] , for u, v 6∈ {2, 4}, i.e. u, v ∈ I4 = {1, 3}

2

10
= d(4, 2) ≤ s

[
min
u∈I4

d(2, u) + d(1, 3) + min
v∈I4

d(v, 4)

]
2

10
≤ s

[
1

10
+

1

10
+

2

10

]
, so s ≥ 1

2

Case (5): If x = 3 and y = 4 (x = 4 and y = 3 by symmetry):

2

10
≤ s [d(3, u) + d(u, v) + d(v, 4)] , for u, v 6∈ {3, 4}, i.e. u, v ∈ I5 = {1, 2}

2

10
= d(3, 4) ≤ s

[
min
u∈I5

d(3, u) + d(1, 2) + min
v∈I5

d(4, v)

]
2

10
≤ s

[
1

10
+

6

10
+

2

10

]
, so s ≥ 2

9
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So s ≥ 3

2
> 1,so we can take s =

3

2
.

Furthermore, (X, d) is not a b-g.m.s., because

6

10
= d(1, 2) > d(1, 3) + d(3, u) + d(u, 2) =

1

10
+

2

10
+

2

10
=

5

10
,

so 6 > 5, which is valid.

Now, we construct an example, justifying case (C) of (Theorem 2.1).

Example 2.5. Let X = {1, 2, 3, 4} the b-rectangular metric space defined above, with

coefficient s =
3

2
.

Let f(x) =

{
3, x 6= 4

1, x = 4
a self-mapping defined on X.

We shall show that f satisfies

d(fx, fy) ≥ (−3)d(x, y)− 5d(x, fx) + 3d(y, fy)

and also the conditions from case (C) of (Theorem 2.1).
Let f satisfy cd(fx, fy) ≥ kd(x, y) − ad(x, fx) − bd(y, fy). Let’s normalize the con-
tractive condition, by taking c = −1 < 0 We shall determine the coefficients k, a, b,
with k < 0, a > 0 and b < 0. We have the following cases

1) If x = y, then d(fx, fy) = d(fx, fx) = 0, so the left hand side is 0. Now, the
right hand side is k · 0 − ad(x, fx) − bd(x, fx) = −(a + b)d(x, f). This implies that
(a+ b)d(x, fx) ≥ 0. We have two sub-cases:
If x = 3, then d(x, fx) = d(3, 3) = 0, so the inequality is valid. Also, if 6= 3, then
d(x, fx) > 0, so we have the condition that −b ≤ a.

2) If 6= y, we have the following sub-cases

a) For x = 4 and y 6= 4, it follows that d(fy, fx) = d(fy, 1). Since y 6= 4, then

fy = 3, so d(fx, fy) = d(1, 3) =
1

10
.

Moreover, one can easily verify that d(x, y) = d(4, y) =
2

10
, for each y 6= 4,

d(x, fx) = d(4, fx) =
2

10
, for each x ∈ X and d(y, fy) = d(y, 3) ≤ max

y 6=4
d(y, 3) =

2

10
.

b) For y = 4 and x 6= 4, it follows that d(fx, fy) =
1

10
.

Moreover, we have that d(x, y) = d(4, x) =
2

10
, for each x 6= 4,

d(x, fx) = d(x, 3) =≥ min
x 6=4

d(x, 3) =
1

10
and d(y, fy) = d(4, fy) =

2

10
, for each value

of fy.

c) For y 6= y 6= 4 (simultaneously), it follows that d(fx, fy) = d(3, 3) = 0. Also

kd(x, y)− ad(x, fx)− bd(y, fy) ≤ 0, so kd(x, y)− bd(x, y) ≤ ad(x, fx).
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Now d(x, y) ≥ min
x,y∈X

d(x, y) =
1

10
.

Furthermore, we have that

d(y, fy) = d(y, 3) ≤ max
y 6=4

d(y, 3) =
2

10
and d(x, fx) = d(x, 3) ≥ min

x 6=4
d(x, 3) =

1

10
.

Now, we analyze the conditions on f .
For the case (1), we get −b ≤ a. For the case (2a), we get that

d(fx, fy) =
1

10
≥ kd(x, y)− ad(x, fx)− bmax

y 6=4
d(y, fy)

=
2k

10
− 2a

10
− 2b

10
≥ 2k

10
− 2a

10
− bd(y, fy),

because b < 0. So k < a+ b+
1

2
.

For the case (2b), we obtain

d(fx, fy) =
1

10
≥ kd(x, y)− amin

x 6=4
d(x, fx)− bd(y, fy)

=
2k

10
− a

10
− 2b

10
≥ 2k

10
− 2b

10
− ad(x, fx),

because a > 0. So k <
a

2
+ b+

1

2
.

For the case (2c), it follows that

d(fx, fy) = 0 ≥ k min
x 6=y 6=4

d(x, y)− amin
x 6=4

d(x, fx)− bmax
y 6=4

d(y, fy)

=
k

10
− a

10
− 2b

10
kd(x, y)− ad(x, fx)− bd(y, fy),

because b, k < 0 and a > 0, so k − sb ≤ a.
Additionally, f satisfies the conditions from (Theorem 2.1) - Case (C).

Let’s take k = −3, c = −1, a = 5, b = −3, with s =
3

2
. We verify that the coefficients

a, b, c, k verify all of the above conditions

−b ≤ a⇔ 3 ≤ 5, k < a+ b+
1

2
⇔ −3 < 2 +

1

2

k <
a

2
+ b+

1

2
⇔ 10 +

1

2
> 0, k − 2b ≤ a⇔ 3 > 1

b ≤ k ⇔ −3 ≤ −3,
k

c
> s2 ⇔ 12 > 9

k < b+
a+ c

s
⇔ 6 > 0, a+ c > 0⇔ 6 > 0

Remark 2.6. We observe that the contractive condition when c > 0, can be written
as:

d(fx, fy) ≤ k

c
d(x, y)− a

c
d(x, fx)− b

c
d(y, fy), for each x, y ∈ X.

Taking k > 0, a < 0 and b < 0, it follows that the operator f is of Reich-type, so the
above theorem (when k > 0) is similar with the results of [8].
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Now, we present an useful lemma for expansive-type mappings in b-rectangular
metric spaces, following the technique used in [18].

Lemma 2.7. Let (X, d) a b-rectangular metric space. Also, consider λ ∈ R and
x, y, z, w arbitrary elements of X, each distinct from each other. Then

λd(x, z) ≥
[

1 + s2

2s
λ+

1− s2

2s
|λ|
]
d(x, y) +

[
s− 1

2
λ− s+ 1

2
|λ|
]
d(z, w)

+

[
s− 1

2
λ− s+ 1

2
|λ|
]
d(w, y).

Proof. Let x, y, z, w arbitrary points from X, each distinct from each other. We ana-
lyze two cases for the parameter λ ∈ R:
Case (1): Let λ ≥ 0. From the b-rectangular inequality, we get that:

d(x, y) ≤ s [d(x, z) + d(z, w) + d(w, y)]

sd(x, z) ≥ d(x, y)− sd(z, w)− sd(w, y)

d(x, z) ≥ 1

s
d(x, y)− d(z, w)− d(w, y)

λd(x, z) ≥ λ

s
d(x, y)− λd(z, w)− λd(w, y)

Case (2): Let λ ≤ 0. From the b-rectangular inequality, it follows that:

d(x, z) ≤ s [d(x, y) + d(y, w) + d(w, z)]

λd(x, z) ≥ λsd(x, y) + λsd(y, w) + λsd(w, z)

So, from the above inequality, we have thatλd(x, z) ≥ λ

s
d(x, y)− λd(z, w)− λd(w, y), λ ≥ 0

λd(x, z) ≥ λsd(x, y) + λsd(y, w) + λsd(w, z), λ ≤ 0

Combining these cases, it follows that
λd(x, z) ≥ ϕ(λ)d(x, y) + ψ(λ)d(z, w) + ψ(λ)d(w, y), where

ϕ(λ) :=


λ

s
, λ ≥ 0

sλ, λ ≤ 0
and ψ(λ) :=

{
−λ, λ ≥ 0

sλ, λ ≤ 0

Similar to [18], we get thatϕ(λ) :=
1 + s2

2s
λ+

1− s2

2s
|λ|

ψ(λ) :=
s− 1

2
λ− s+ 1

2
|λ|

Also, as a final remark, we observe that ψ(λ) ≤ 0, for each λ ∈ R. �

For expansive-type mappings, i.e. when c < 0, we make the following important
remark.
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Remark 2.8. We have studied contraction-type mappings, that satisfied

ad(x, fx) + bd(y, fy) + cd(fx, fy) ≤ kd(x, y)

cd(fx, fy) ≤ kd(x, y)− ad(x, fx)− bd(y, fy)

d(fx, fy) ≥ k

c
d(x, y)− a

c
d(x, fx)− b

c
d(y, fy)

By some substitutions we can make the mapping f satisfy

d(fx, fy) ≥ αd(x, y) + βd(x, fx) + γd(y, fy),

where 
α =

k

c
β = −a

c

γ = −b
c

We will analyze the cases when α ≤ 0 and α ≥ 0, so, when k ≥ 0, c < 0, respectively
k ≤ 0, c < 0.

Now, involving rate of convergence, we present a constructive fixed point theorem
for expansive-type mappings in b-rectangular metric spaces, using Picard iterative
process.

Theorem 2.9. Let (X, d) a complete b-rectangular metric space, endowed with coeffi-
cient s ≥ 1. Also, consider f : X → X a mapping satisfying

d(fx, fy) ≥ αd(x, y) + βd(x, fx) + γd(y, fy), for each x, y ∈ X.

Moreover, suppose the following conditions are satisfied

(i) β < 1− s, γ > s, α+ γ <
1− β
s

,

(ii) If α > γ, then we have the additional assumptions α+ 1 < γ

(
1 +

1

s

)
.

If α < γ, then we have the additional assumptions α > 1 and 1− α < γ

(
1

s
− 1

)
.

Then, the mapping f has a fixed point.

Proof. In the proof of (Theorem 2.1), we have shown that the Picard sequence for
generalized contraction satisfy d(xn, xn+1) ≤ δd(xn−1, xn), for each n ∈ N, where

δ =
k − b
a+ c

. This is also valid for the situation of expansive-type mappings, when

c < 0. The condition that the Picard sequence is asymptotically regular was that

0 ≤ k − b < a+ c

s
.

In our case,

δ =
k − b
a+ c

=

k

c
− b

c
a

c
+ 1

=
α+ γ

1− β
.
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Now δ ∈
[
0,

1

s

)
, by hypothesis assumptions: β < 1, α+ γ > 0 and α+ γ <

1− β
s

.

By the contractive-type condition, we have that

d(fx, fy) ≥ αd(x, y) + βd(x, fx) + γd(y, fy)

and applying it for the pair (xn−1, xn+1), we obtain

d(xn, xn+2) ≥ αd(xn−1, xn+1) + βd(xn−1, xn) + γd(xn+1, xn+2) (2.1)

Now, we will try to evaluate an upper bound for d(xn, xn+2), for each n ∈ N, i.e.
using (Lemma 2.7), we obtain that

γd(xn+1, xn+2) ≥ ϕ(γ)d(xn, xn+2) + ψ(γ)d(xn, xn−1) + ψ(γ)d(xn−1, xn+1).

Now, let’s denote by d∗n := d(xn, xn+2) and by dn := d(xn−1, xn), for each n ∈ N.
From (2.1) we have

d∗n ≥ αd∗n−1 + βdn + ϕ(γ)d∗n + ψ(γ)dn + ψ(γ)d∗n−1.

This means that

[ϕ(γ)− 1] d∗n ≤ [−ψ(γ)− α] d∗n−1 + [−ψ(γ)− β] dn ≤ |ψ(γ) + α|d∗n−1 + |ψ(γ) + β|dn.

Let’s denote by a2 :=
|α+ ψ(γ)|
ϕ(γ)− 1

and by a1 :=
|β + ψ(γ)|
ϕ(γ)− 1

.

From the hypothesis, we know that ϕ(γ) > 1, i.e. γ > s > 0, since ϕ(γ) =
γ

s
. Then it

follows that a1 and a2 are positive.

Furthermore, since γ > 0, we have that ψ(γ) = −γ < 0. So a2 =
|α− γ|
γ

s
− 1

. For a2 < 1,

we get that |α− γ| < γ

s
− 1. So, we have two cases:

• When α > γ, i.e. α− γ > 0:

Then, the condition that a2 < 1 becomes α+ 1 <
γ

s
+ γ, i.e. α+ 1 < γ

(
1 +

1

s

)
.

Now, since γ + 1 < α + 1 < γ

(
1 +

1

s

)
, then s < γ, which is true. Also, since

γ + 1 < α+ 1 < γ

(
1 +

1

s

)
< 2γ, then 1 < γ, which is a valid assumption.

Moreover, from the hypothesis condition that α+γ <
1− β
s

, we employ two sub-cases

If β > 0, then 1− β < 1, i.e. α+ γ <
1

s
< 1, so α+ γ < 1. Since α, γ > s > 1, this is

obviously not true.
If β < 0, then β < 1, so 1− β > 0 (the denominator in δ is positive, so δ is positive).

Since β < 0, then
1− β
s

>
1

s
. Moreover, since α+γ > 1, then we get β < 1−s, which

is valid from hypothesis (ii).
Finally, we can verify easily that since s > 1, then β < 1 and since 1 − s < 1, then
s > 0, which are evidently true.
• We know verify the case when α < γ, i.e. α− γ < 0:
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Since |α− γ| = γ − α < γ

s
− 1, then 1− α < γ

(
1

s
− 1

)
, which is true by hypothesis

(ii).

Moreover, since
1

s
− 1 < 0, then α > 1 is obviously true, also by hypothesis. Also,

since γ > α > 1, then γ > 1, which is valid by the fact that γ > s.

Also, as in previous case, by the assumption on δ that α+ γ <
1− β
s

, if β > 0, then

α+ γ <
1− β
s

< 1, which contradicts the fact that α, γ > 1.

So β < 0 and from the assumption that β < 1 − s means that the right hand side
1− β
s

> 1, so 1 < α+ γ <
1− β
s

, which is valid.

So d∗n ≤ a2d∗n−1 + a1dn, for each n ∈ N. We know that

dn = d(xn−1, xn) ≤ δd(xn−1, xn−2) ≤ . . . ≤ δn−1D0,

where D0 := d1 = d(x0, x1), with x0 an arbitrary fixed element.
So d∗n ≤ a2d∗n−1 + a1δ

n−1D0.
We take a major bound for d∗n :

d∗n ≤ a2d∗n−1 + a1δ
n−1D0 ≤ a2(a2d

∗
n−2 + a1δ

n−2D0) + a1δ
n−1D0

= a22d
∗
n−2 + a2a1δ

n−2D0 + a1δ
n−1D0

≤ a22(a2d
∗
n−3 + a1δ

n−3D0) + a1a2δn−2D0 + a1δ
n−1D0

= a32d
∗
n−3 +D0a1

(
δn−1 + a2δ

n−2 + a22δ
n−3)D0 ≤ . . .

≤ ak2d∗n−k + a1
(
δn−1 + a2δ

n−2 + . . .+ ak−12 δn−k
)
D0

The last term is d∗0 = d(x2, x0), so n− k = 0 =⇒ k = n. This means that

d∗n ≤ an2d∗0 + a1D0

(
a02δ

n−1 + a2δ
n−2 + . . .+ an−12 δ0

)
Let’s denote by S := a02δ

n−1 + a2δ
n−2 + . . . + an−12 δ0. The first term in the sum is

δn−1. This is a geometric progression, with general term bn and
b3
b2

= a2
δn−3

δn−2
=
a2
δ

,

so

S =
δn−1 ·

(
1−

(a2
δ

)n)
1−

(a2
δ

) =
δn − an2
δ − a2

.

So d∗n ≤ an2d∗0+
δn − an2
δ − a2

a1D0.Now we can show that the sequence (xn) is b-rectangular

Cauchy. We shall evaluate d(xn, xn+p), for each n ∈ N and p > 0 fixed. We divide
in two cases: the first one, when p = 2m, with m ≥ 2 and the second one, when
p = 2m+ 1, with m ≥ 1:
Case (i): When p = 2m+ 1, with m ≥ 1. We evaluate

d(xn, xn+p) = d(xn, xn+2m+1) ≤ s [d(xn, xn+1) + d(xn+1, xn+1) + d(xn+2, xn+2m+1)]

≤ s [dn+2 + dn+1] + s2 [d(xn+2, xn+3) + d(xn+3, xn+4) + d(xn+4, xn+2m+1)]

≤ s [dn+2 + dn+1] + s2 [dn+3 + dn+4] + s3 [dn+5 + dn+6] + . . .+ smdn+2m,
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where dn+2m = d(xn+2m, xn+2m+1). So, we get the following estimation

d(xn, xn+2m+1) ≤ s
[
δnD0 + δn+1D0

]
+ s2

[
δn+2D0 + δn+3D0

]
+ s3

[
δn+4D0 + δn+5D0

]
+ . . .+ smδn+2mD0

≤ sδn
[
1 + sδ2 + s2δ4 + . . .+

]
D0 + sδn+1

[
1 + sδ2 + s2δ4 + . . .+

]
D0

=
1 + δ

1− sδ2
sδnD0,

and by hypothesis we know that sδ2 < 1 is satisfied. So, d(xn, xn+2m+1) → 0, when
n→∞ and m ≥ 1 fixed.

Case (ii): When p = 2m, with m ≥ 2. We evaluate

d(xn, xn+2m) ≤ s [d(xn, xn+1) + d(xn+1, xn+2) + d(xn+2, xn+2m)]

≤ s [dn+2 + dn+1] + sd(xn+2, xn+2m)

≤ s [dn+2 + dn+1] + s2 [dn+4 + dn+3] + s3 [dn+6 + dn+5] + . . .+

+ sm−1 [d2m−3 + d2m−2] + sm−1d(xn+2m−2, xn+2m)

≤ s
[
δnD0 + δn+1D0

]
+ s2

[
δn+2D0 + δn+3D0

]
+ . . .+

+ sm−1
[
δ2m−4D0 + δ2m−3D0

]
+ sm−1d(xn+2m−2, xn+2m)

≤ sδn
[
1 + sδ2 + s2δ4 + . . .

]
D0

+ sδn+1
[
1 + sδ2 + s2δ4 + . . .

]
D0 + sm−1d∗n+2m

=
1 + δ

1− sδ2
sδnD0 + sm−1d∗n+2m

Also, we have shown that d∗n ≤ an2d∗0 +
δn − an2
δ − a2

a1D0. So d∗n+2m ≤ an+2m
2 d∗0 +Qa1D0,

where Q :=
δn+2m − an+2m

2

δ − a2
.

Now, we have two cases: if δ − a2 > 0, then Q =
δn+2m − an+2m

2

δ − a2
≤ δn+2m

δ − a2
and this

converge to 0 as n→∞. In a similar manner, if δ − a2 < 0, then

Q =
an+2m
2 − δn+2m

a2 − δ
≤ an+2m

2

a2 − δ
,

and this converge to 0 as n → ∞. This reasoning is valid, since, from the theorem’s

assumptions, we know that 0 ≤ a2 < 1 and δ <
1

s
< 1. So, in this case, since Q→ 0,

then d(xn, xn+2m)→ 0, as n→∞.
So, from both cases, we have shown that (xn) is a b-rectangular Cauchy sequence.
Also, we know that xn 6= xm, for each n 6= m and that (X, d) is complete. This means
that there exists u ∈ X, such that lim

n→∞
xn = u.

Moreover, since the contractive condition can be reduced to the original form, i.e.
ad(x, fx) + bd(y, fy) + cd(fx, fy) ≤ kd(x, y), then, as in the proof of (Theorem 2.1),
there exists a unique point u of f , as long as a+ c > 0 and c < k. �
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Finally, we give an example regarding (Theorem 2.9 ).

Example 2.10. Let (X, d), with X = {1, 2, 3, 4} be the b-rectangular metric space,
endowed with the b-rectangular metric from (Example 2.2 ). Define a self-mapping f ,
by: f(1) = 2, f(2) = 3, f(3) = 1 and f(4) = 4. It is obviously that f has as a unique
fixed point the element 4 ∈ X. We will determine the coefficients α, β and γ, such
that f satisfies d(fx, fy) ≥ αd(x, y) + βd(x, fx) + γd(y, fy):

By x = 2 and y = 1, we get that
1

10
≥ α 6

10
+ β

1

10
+ γ

6

10
(2.2)

By x = 1 and y = 2, we get that
1

10
≥ α 6

10
+ β

6

10
+ γ

1

10
(2.3)

By x = 1 and y = 3, we get that
6

10
≥ α 1

10
+ β

6

10
+ γ

1

10
(2.4)

By x = 3 and y = 1, we get that
6

10
≥ α 1

10
+ β

1

10
+ γ

6

10
(2.5)

By x = 1 and y = 4, we get that
2

10
≥ α 2

10
+ β

6

10
+ γ

2

10
(2.6)

By x = 4 and y = 1, we get that
2

10
≥ α 2

10
+ β

2

10
+ γ

6

10
(2.7)

By x = 3 and y = 2, we get that
1

10
≥ α 1

10
+ β

1

10
+ γ

1

10
(2.8)

By x = 2 and y = 3, we get that
1

10
≥ α 1

10
+ β

1

10
+ γ

1

10
(2.9)

By x = 4 and y = 2, we get that
2

10
≥ α 2

10
+ β

2

10
+ γ

1

10
(2.10)

By x = 2 and y = 4, we get that
2

10
≥ α 2

10
+ β

1

10
+ γ

2

10
(2.11)

By x = 4 and y = 3, we get that
2

10
≥ α 2

10
+ β

2

10
+ γ

1

10
(2.12)

By x = 3 and y = 4, we get that
2

10
≥ α 2

10
+ β

1

10
+ γ

2

10
(2.13)

By x = y, we get that β + γ ≤ 0 (2.14)

Now, we observe that (2.11) and (2.14) are equivalent relations. Also, we shall employ
the more restrictive conditions on the coefficients α, β and γ, i.e. inequalities (2.11),
(2.3), (2.5), (2.7), (2.8) and (2.14). Furthermore, we shall impose more restrictive
conditions such that the number of inequalities is reduced: instead of (2.11) and
(2.3), we impose that 1 ≥ 6α+β+ 2γ, instead of (2.7) and (2.8) we require only (2.7)
and instead of 1 ≥ 6α+β+2γ and (2.5), we require 1 ≥ 6α+β+6γ. We mention that
all of the above reasoning was made under the assumptions that β ≤ 0 and γ > 0.
Now, we have only two conditions, along with the conditions from (Theorem 2.9 ),
when α > γ 

β + γ ≤ 0, 1 ≥ 6α+ β + 6γ

β < 1− s, γ > s, αγ

α+ γ <
1− β
s

, α+ 1 < γ

(
1 +

1

s

)
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Now, taking account of the fact that s =
3

2
, we can find some values for the coefficients

α, β and γ. For example, the inequalities are satisfied when α =
9

50
, β = −101

5
and

γ =
17

100
.

Now, we recall (Lemma 2) from [5], that is crucial for inequalities involving
difference inequations.

Lemma 2.11. Let (an) and (bn) be two sequences of nonnegative real numbers, such
that

an+1 ≤ α1an + α2an−1 + . . .+ αkan−k+1 + bn, where n ≥ k − 1.

If α1, . . . , αk ∈ [0, 1),
k∑

i=1

αi < 1 and lim
n→∞

bn = 0, then it follows that lim
n→∞

an = 0.

Remark 2.12. In the previous proof, we have shown that the following estimation is
valid

d∗n = d(xn+2, xn) ≤ an2d∗0 +
δn − an2
δ − a2

a1D0.

So, based on this lemma, we give a nonconstructive approach for evaluating (xn) as
a Cauchy sequence.
In the above lemma, let’s take k = 1. Then, we get that an+1 ≤ α1an + bn, with
α1 ∈ [0, 1) and lim

n→∞
bn = 0. Then lim

n→∞
an = 0.

Now, we have proved that d∗n ≤ a2d∗n−1 + a1δ
n−1D0.

Let’s define the following: α1 := a2 and bn := a1D0δ
n−1. Since δ <

1

s
< 1 and

a2 ∈ [0, 1), then apply (Lemma 2) from [5] with the particular case when k = 1, we
get that lim

n→∞
d∗n = 0.

Now, we give a proof for expansive-type mappings under the new assumption
such that the mapping f is onto and we shall use the ’inverse’ Picard iterative process.

Theorem 2.13. Let (X, d) be a complete b-rectangular metric space and f : X → X a
mapping satisfying

d(fx, fy) ≥ αd(x, y) + βd(x, fx) + γd(y, fy).

Let f continuous and onto. Suppose that

(i) β < 1, α+ γ > 0 and 1− β < α+ γ

s
.

Also, suppose the following additional assumptions
Case (E1), i.e. α > 0: Suppose that the following assumptions are satisfied:

(ii) α > 1
Case (E2), i.e. α < 0: Suppose the following assumptions are satisfied:

(ii) α < −1, γ > 0

(iii) s

(
1− α

γ

)
< 1 +

1

α
Then, the mapping f has a fixed point in X.
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Proof. Here, we know that f is continuous and onto. Let x0 be an arbitrary point.
As we have shown in the previous theorem, i.e. (Theorem 2.9), we reduce the con-
tractive condition to

d(fx, fy) ≥ αd(x, y) + βd(x, fx) + γd(y, fy).

Because f is an onto mapping, by definition, we have that for each y ∈ X, there exists
x ∈ X, such that y = fx.
Now, for x0 ∈ X, there exists x1 ∈ X, such that x0 = fx1. Also, for x1 ∈ X, there
exists x2 ∈ X, such that x1 = fx2. Inductively, we get that xn = fxn+1, for each
n ∈ N.
Applying the contractive condition on the pair (xn+1, xn), it follows that:

d(fxn+1, fxn) ≥ αd(xn, xn+1) + βd(xn, fxn) + γd(xn+1, fxn+1)

d(xn, xn−1) ≥ αd(xn, xn+1) + βd(xn, xn−1) + γd(xn+1, xn)

=⇒ (α+ γ)d(xn+1, xn) ≤ (1− β)d(xn−1, xn)

=⇒ d(xn, xn+1) ≤ θd(xn−1, xn),

where θ :=
1− β
α+ γ

. From the hypothesis,we know that θ ∈
[
0,

1

s

)
, because β < 1,

α+γ > 0 and 1−β < α+ γ

s
. Furthermore, we have that dn+1 := d(xn+1, xn) ≤ θnd1.

For simplicity, let’s denote by D0 := d1 = d(x1, x0).
Furthermore, as in the previous theorem, let d∗n := d(xn, xn+2), for each n ∈ N.
Now, we shall analyze two different cases for estimation of d(xn, xn+2)

Case (E1): When α > 0, or with the original notation,
k

c
> 0. Since c < 0, we get

that k < 0.
Applying the expansive-type condition on the pair (xn, xn+2), it follows that

d(xn−1, xn+1) = d(fxn, fxn+2) ≥ αd(xn, xn+2) + βd(xn, fxn) + γd(xn+2, fxn+2)

= αd(xn, xn+2) + βd(xn, xn−1) + γd(xn+1, xn+2) =⇒
αd(xn, xn+2) ≤ d(xn−1, xn+1)− βd(xn−1, xn)− γd(xn+1, xn+2)

d(xn, xn+2) ≤ 1

α
d∗n−1 +

(
−β
α

)
dn +

(
−γ
α

)
dn+2

d(xn, xn+2) ≤ 1

α
d∗n−1 +

(∣∣∣β
α

∣∣∣) dn +
(∣∣∣γ
α

∣∣∣) dn+2

Since dn+1 ≤ θnD0, so dn ≤ θn−1D0, it follows that

d∗n ≤
1

α
d∗n−1 + θn−1QD0, where Q :=

∣∣∣β
α

∣∣∣+
∣∣∣γ
α

∣∣∣θ3.
Since θ ∈

[
0,

1

s

)
⊂ [0, 1) and α > 1, we get, by (Lemma 2) in [5] and by (Lemma

2.11), that lim
n→∞

d∗n = 0. Now, as in the proof of (Theorem 2.9), we give a constructive

approach for the upper bound of d(xn, xn+p). Furthermore, we shall omit the details.

We know that d∗n ≤ a2d
∗
n−1 + a1θ

n−1D0, briefly d∗n ≤ an2d
∗
0 +

θn − an2
θ − a2

a1D0, where
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a1 := Q and a2 :=
1

α
. When p = 2m+ 1, then d(xn, xn+2m+1) ≤ 1 + θ

1− sθ2
sθnD0, and,

by hypothesis, sθ2 < 1, then d(xn, xn+2m+1) converges to 0.

When p = 2m, then d∗n+2m ≤ an+2m
2 d∗0 +

θn+2m − an+2m
2

θ − a2
a1D0. Since θ <

1

s
< 1 and

a2 < 1, by theorem’s assumptions, then d∗n+2m converges to 0.

Moreover, d(xn, xn+2m) ≤ 1 + θ

1− sθ2
sθnD0 + sm−1d∗n+2m.

Case (E2): When α < 0. We shall use (Lemma 2.7):
We know that d(xn, xn+1) ≤ θd(xn−1, xn), for each n ≥ 1.
As in the previous case, with the remark that we divide by α < 0, we get that

d(xn, xn+2) ≥ Ad∗n−1 +Bdn + Cdn+1, where A :=
1

α
, B :=

β

|α|
and C :=

γ

|α|
.

By (Lemma 2.7), we get that

Cdn+1 ≥ ϕ(C)d∗n+1 + ψ(C)dn+3 + ψ(C)d∗n

d∗n ≥ Ad∗n−1 +Bdn + ϕ(C)d∗n+1 + ψ(C)dn+3 + ψ(C)d∗n

ϕ(C)d∗n+1 ≤ d∗n [1− ψ(C)] + (−A) d∗n−1 − ϕ(C)dn+3 −Bdn
Since, by theorem’s assumptions, ϕ(C) > 0, we get that

d∗n+1 ≤
1− ψ(C)

ϕ(C)
d∗n −Ad∗n−1 − [ϕ(C)dn+3 +Bdn]

d∗n+1 ≤
1− ψ(C)

ϕ(C)
d∗n −Ad∗n−1 + [|ϕ(C)|dn+3 + |B|dn]

d∗n+1 ≤
1− ψ(C)

ϕ(C)
d∗n −Ad∗n−1 +

[
|ϕ(C)|θ2 + |B|

]
θnD0

On the other hand, let’s denote by bn :=
[
|ϕ(C)|θ2 + |B|

]
θnD0, α1 :=

1− ψ(C)

ϕ(C)
and

by α2 := −A. Since γ > 0 and C =
γ

|α|
> 0, then ϕ(C) =

C

s
> 0. Also, from C > 0,

then ψ(C) = −C < 0. Now, α1 > 0 requires that −C < 1 and this is true since C > 0.

Moreover, α2 = −A = − 1

α
> 0, because α < 0 and so

1

α
< 0. This means that α1

and α2 are positive, so the sum of these two is positive. Now, we want to validate if
the sum of α1 and α2 is less than 1.

α1 + α2 =
1− ψ(C)

ϕ(C)
−A =

1 + C
C

s

− 1

α
.

So α1 + α2 < 1 is equivalent to s

(
1 + C

C

)
< 1 +

1

α
. Since C =

γ

|α|
=

γ

−α
, then

s

(
1− α

γ

)
< 1 +

1

α
. Now, we have two sub-cases.

If 1− α

γ
< 0, then α− γ > 0, i.e. α > γ, so this is false, because α < 0 and γ > 0.
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So, the only valid case is when 1 − α

γ
> 0, so α < γ. Since α and γ have different

signs, this is also valid. Now, because s

(
1− α

γ

)
< 1 +

1

α
and by the fact that the

right hand side is positive, it follows that 1 +
1

α
> 0, i.e. α < −1, which is valid by

hypothesis assumptions. Since θ ∈
[
0,

1

s

)
⊂ [0, 1), then lim

n→∞
bn = 0.

Also, since α1 + α2 ∈ [0, 1), α1 ∈ [0, 1) and α2 ∈ [0, 1), then lim
n→∞

d∗n = 0. The rest of

the proof follows as usual. �

Now, we give an example of a b-rectangular metric space, which is b-rectangular
and validate (Theorem 2.13) through another example, showing that the hypotheses
and conclusion of the already mentioned theorem are true also in b-metric spaces.

Example 2.14. Let X = [0,∞), endowed with d : X ×X → R+, such that d(x, y) =
(x− y)2, for each x, y ∈ X. Then (X, d) is a complete b-metric space, with coefficient
s = 2. Then, it is also a complete b-rectangular metric space, with coefficient s = 4.

Example 2.15. Let X = [0,∞), where d is the above b-rectangular metric, with

s = 4. Define f : X → X as f(x) =
x+ δ1
δ2

, with δ1, δ2 ≥ 0. It is easy to see that f is

continuous. Also, for each y ∈ X, there exists x = yδ2 − δ1 ≥ 0,, since δ1 and δ2 are
positive, so f is onto. Moreover:

d(fx, fy) = (fx− fy)2 =
∣∣∣x+ δ1

δ2
− y + δ1

δ2

∣∣∣ =
1

δ2
|x− y|2 =

1

δ2
d(x, y).

Let’s take β = 0, γ = 0 and α = 10. Also, let δ <
1

s
, i.e. δ2 <

1

4
. For example: δ2 =

1

10
and δ1 = 1.
Then f satisfies d(fx, fy) ≥ 10d(x, y), for each x, y ∈ X.

As an open problem with respect to generalized contractions in b-rectangular
metric spaces, we give the following.

Open Problem. Following [3], consider a self-mapping f defined on a complete b-
rectangular space (X, d) with coefficient s ≥ 1, that satisfy

ad(x, fx) + bd(y, fy) + cd(fx, fy) + ed(x, fy) + gd(y, fx) ≤ kd(x, y).

Develop fixed point theorems for the self-mapping above, in the context of b-
rectangular metric spaces, with suitable conditions on the coefficients a, b, c, e, g, k.

Acknowledgments. The author is grateful to the referees for their suggestions that
contributed to the improvement of the paper.
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