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Abstract  

Many industrial facilities utilize pressure control gradients to prevent migration of hazardous species 

from containment areas to occupied zones, often using Proportional-Integral-Derivative (PID) control. 

Within these facilities, PID control is often inadequate to maintain desired performance due to 

changing operating conditions. As the goal of the Heating, Ventilation and Air-Conditioning (HVAC) 

control system is to optimize the pressure gradients and associated flows for the plant, Linear 

Quadratic Tracking (LQT) provides a time-based approach to guiding plant interactions. However, 

LQT methods are susceptible to modeling and measurement errors, and therefore a hybrid design using 

the integration of soft control methods with hard control methods is developed and demonstrated to 

account for these errors and nonlinearities. 
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1. INTRODUCTION

The control of pressure gradients in industrial facilities, such as those found in the Heating, Ventilation 

and Air-Conditioning (HVAC) plant in the Department of Energy (DOE) complex, is key to 

preventing the migration of hazardous species from containment areas to normally occupied areas. 

When hatches or doors are opened to access these areas, in some cases for an extended period, the 

ventilation control system is expected to respond promptly to maintain the required pressure gradients. 
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When the disturbance is maintained for extended periods, operator involvement is often required to 

rebalance a large portion of the plant to achieve the desired condition. Since these control systems 

often use individual Proportional-Integral-Derivative (PID) or PI controllers, there is no consideration 

given to the obvious interactions that occur across the plant. To account for these interactions, a control 

method must provide an optimal solution to the model of an HVAC plant. The LQT method provides 

such a solution to optimally track a time-based reference, given that the reference is known and that the 

model is well known [1, 2]. As the ventilation profiles and pressure gradients through an industrial 

facility can be quite complex, the presence of modeling and measurement errors must be considered in 

the final control method.  

Soft computing methods using Fuzzy logic (FL), Neural Networks (NN), Genetic Algorithms (GA) 

provide an avenue to incorporate variations in the model compared to plant operation and the ability to 

closely model nonlinear situations [3]-[6]. With the LQT method, simulation techniques are available 

that allow the simple incorporation of any plant model in state space form [7]. However, the 

implementation of a controller would normally involve the storing of data in the form of a function or 

lookup table. If multiple tracking references are desired for an individual controller, multiple functions 

or lookup tables would be required that are activated based on conditions. With a NN, the data for 

multiple tracking references can be captured through initial training. With the addition of an integral 

controller at the local control variable, steady-state offset can be achieved and corrected for variations 

between the model and plant operations. This design is beneficial in that the model for the LQT can 

remain simple while still providing an optimized path for the controller to follow. 

Soft computing methods also provide for consideration of operator experience. When a ventilation 

system requires rebalance by an operator, the most experienced will provide the smoothest transition of 

the plant. As the condition of the plant that mandates the rebalance can change, i.e., doors or hatches 

that are maintained open in the building can vary, a rule base formed from operator experience is key 
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to controller implementation. This experience can be captured in a FL predictor of the most effective 

tracking references to implement in desired areas of the plant, depending on desired set point.  

In this paper, a linearized state-space model for an HVAC plant with three cells and a corridor is 

obtained using differential form of the idea gas law in terms of pressure and flow. A traditional PID 

controller is first used and found to be inadequate for changes in plant parameters. Therefore, a hybrid 

design using the integration (fusion) of soft control methods (such as using neural networks (NN), 

fuzzy logic (FL)) with hard control methods (such as PID, LQT) is proposed for demonstration to 

account for the errors and nonlinearities. The performance of the resulting hybrid control strategy is 

demonstrated through simulation and experimental testing as compared to a representative PID 

controller. The proposed hybrid control strategy resulted in the development of attractive and useful 

software for the analytical solution of matrix differential Riccati equation arising in LQT methodology 

that is not currently available in commercial software packages such as MATLAB
1®

. 

2. Design of Hybrid Controller  

2.1 HVAC Model 

Fig. 1 depicts a simplified flow diagram of a HVAC plant with three cells and a corridor, a Supervisory 

Controller (SC), and local controllers (LC). The development of an LQT controller for maintaining 

pressure gradients starts with the development of a model for the HVAC system. Consider the three 

cell ventilation situation depicted in Fig. 1. A simple state-space model for pressure and flow was 

developed using a differential form of the ideal gas law [7]-[9].  

                                                        
1
 MATLAB is registered trademarks of The MathWorks, Inc. 
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Figure 1 A Simplified HVAC Plant  

Assuming little change in temperature, then linearizing for each cell: 

a b(t) (t) (t)

(t) (t)

x   K x   K u ,

y Cx ,

= +

=

�

 (1) 

where: 

  x(t) - state vector, pressure, 

  u(t) - input vector, flow,  

  Ka, Kb - constants, and 

 For the overall 3-cell system: 

 
ta tb o(t) (t) (t)

(t) (t)

x  K x   K u ,

y Cx ,

= +

=

�

 (2) 

 where: 

  uo - linear combination of cell inputs 

  Kta, Ktb - constants 

Although only pressure has been mentioned as it is the primary state of concern in this paper, 

temperature must also be considered in the final hybrid controller. Wide swings in the temperature can 

cause discomfort and unacceptable working conditions for those that enter containment areas for work, 

especially considering the fact that those persons are often wearing personal protective equipment 
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(PPE). While many works have developed models for temperature control, the application of 

constrains for temperature in this work will be included in the FL tracking method [2, 10, 11].  

The final state-space model for the ventilation system is obtained as follows: 
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2.2 Linear Quadratic Tracking (LQT) 

The block diagram in Fig. 2 represents the hybrid controller scheme for controlling an HVAC system. 

The design involves the development of a global LQT controller, training of a NN with the LQT data, 

development of global FL tracking reference, and final combination with an integrator for local 

control.  

 
Figure 2 Hybrid Controller Design Structure for HVAC Plant  

The resulting plant model is used to develop an LQT controller using recent results by the authors 

[7]. The normal state-space representation of a system is provided below 

( ) ( ) ( )

( ) ( ),

,t t t

t t

x Ax Bu

y Cx

= +

=

�

  (4) 

where x is the n-dimensional state vector, u is the r-dimensional input vector, and y is the m-

dimensional output vector, and A (nxn), B (nxr) and C (mxn) are matrices of appropriate dimensions 

and time invariant. 



 

 

 

6 

 The objective is to minimize the error (e) between a time-varying tracking reference (z) and the 

output (y) [1, 12, 13]. The error vector is therefore defined as 

( ) ( ) ( ) ( ) ( ).t t t t te z y z Cx= − = −   (5) 

To minimize the tracking error and the expenditure of control effort, a performance index is chosen 

as 

0

( ) ( ) ( ) ( ) ( ) ( )
1 1

' [ ' ' ] ,
2 2

ft

tf tf t t t t

t

J e Fe e Qe u Ru dt= + +∫   (6) 

where F (nxn) is the positive semidefinite terminal cost weighted matrix, and Q (nxn) are the positive 

semidefinite error weighted matrices, and R (rxr) is the positive definite control weighted matrix. 

The Hamiltonian canonical representation takes the form 

1
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where λ is the n-dimensional costate vector, and the corresponding Riccati equation as 

1
( ) ( ) ( ) ( ) ( )' ' 't t t t tP P A A P P BR B P C QC−= − − + −� F  (8) 

with boundary condition at final time t,f, ( ) ( ) ( )'tf tf tfP C FC= , and the LQT vector differential equation 

1
( ) ( ) ( ) ( )[ ' '] ' ,t t t tg P BR B A g C Qz−= − −�   (9) 

with boundary condition at final time tf ( ) ( ) ( )' .tf tf tfg C Fz=  

Solutions of these equations for the Riccati coefficient (P) and vector (g) are dependent on design 

parameters Q, R and F defined in the performance index. The resulting optimal closed loop LQT 

controller (u) takes the form 

1 1
( ) ( ) ( ) ( )' ' .t t t tu R B P x R B g− −= − +   (10) 

Using the analytical solution to the matrix differential Riccati Equation and extending it to the LQT 

problems provides a technique for providing the controller and outputs for a given time period [7].  
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A special feature of the proposed work in this paper is the development of attractive and useful 

software for the analytical solution of matrix differential Riccati equation arising in LQT methodology 

that is not currently available in commercial software packages such as MATLAB
®
. 

2.3 Neural Network Based LQT 

The output and controller data can be used as training data set for a predictive controller. The resulting 

controller provides a useful and flexible alternative to developing a lookup table for the LQT data, 

which can accept different reference inputs and provide an LQT output. However, it must be noted that 

delays in the NN implementation make the resulting controller suboptimal [14].  

With the cause-effect relationship between the inputs and outputs allows them to be paired, the NN 

will be implemented as local controllers [7, 15]. The NN technique used is based on the receding 

horizon technique. The NN model provides a control output over a specified time horizon, and is built 

into the MATLAB
®
 control toolbox. The predictions are used by a numerical optimization program to 

determine the control signal that minimizes a given performance criterion shown below: 

2

1

2

1
( ( ) ( )) ( '( 1) '( 2)),

N Nu

r m
j N j

y t j y t j u t j u t jρ
= =
Σ + − + + Σ + − − + −  (11) 

where N1, N2, and Nu define the horizons over which the tracking error and the control increments are 

evaluated. The u' variable is the tentative control signal, yr is the desired response and ym is the 

network model response. The ρ value determines the contribution that the sum of the squares of the 

control increments has on the performance index. 

The proposed NN is composed of three delayed inputs, three delayed outputs and three hidden layer 

neurons. Figures 3 and 4 depict the input and output data of the LQT and LQT-trained NN without 

disturbances, respectively. Note that the plant outputs are smooth at the beginning and endpoints, 

resulting from the NN optimization scheme smoothing LQT controller response. This is a positive 

result from the use of a NN for modeling of the LQT data, as compared to a lookup table, providing a 

better transition on startup and removing an undesired transition at the end. This is of more importance 
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when considering limitations on the scale of instruments and movement of field devices with an 

experimental system, not to mention excessive wear of field devices. 

 
Figure 3 Three Cell Plant Outputs with LQT Controller 

 
Figure 4 Three Cell Plant Outputs with NN Controller 

For experimental implementation of the NN, a user developed add-on to Labview
®
 is used, which is 

called aNETka and developed at Cardiff University [16]. The multilayer perceptron is fundamental NN 

that is applicable to modeling or mapping inputs to outputs, in similar vane to the simulation 

implementation, while providing a nonlinear activation function that is intended to replicate firing 

within the brain [17]. 

2.4 Fuzzy Logic Based Tracking Reference 

Normally the reference trajectories that will be implemented for each control variable would be 

dependent solely on the layout of the HVAC flow balance. This method requires a significant 
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modeling effort to account for plant nonlinearities that occur during many potential disturbance 

conditions. A much easier approach is to embed plant operations knowledge into a FL controller, 

which will also ensure that temperature control is factored in to the overall control scheme. This is 

crucial when plants have an upstream air-handling unit (AHU), which provides a single set point for 

the discharge temperature that feeds all the cells. For ease of implementation in MATLAB
®
, a 

Mamdani scheme is chosen.  

The Mamdani FL scheme used has three outputs and six inputs, which includes for each cell, the 

error between the pressure and the desired set point and the same for temperature [18]. Triangular 

membership functions (MF) were used, with three MF on each of the three pressure error inputs, three 

MF on each of the three derivatives of pressure error inputs, five MF on the temperature error inputs 

and five MF on the three outputs. This arrangement allows for creating a rule base that grades the 

relative importance of pressure over temperature control, as any shift in pressure requires correction 

but small changes in temperature do not.     

The rule base is designed to place higher priority on pressure error. In the case of simulations, the 

FL controller allows for multiple outputs and hence cell-to-cell interactions could also be tested. 

Therefore, an additional rule base was established to place priority on cell 1 pressure gradients over 

that of the other cells. In this way the control response to disturbances that affect each cell, such as the 

incoming pressure, would affect cells 2 and 3 more than cell 1. Tables 1 and 2 provide a listing of the 

21 rules used. 

Table 1 Fuzzy Rule Base, Each Cell 

Cell 

Pressure 

Error 

Cell 

Pressure 

Derivative 

Error 

Cell 

Temperature

Error 

Out 

Low Low Ok Low 

Low High Ok Ok 

Ok Low Ok ~Low 

Ok Ok Ok Ok 

Ok High Ok ~High 
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High Low Ok Ok 

High High Ok High 

Low Ok Low High 

Ok Ok Low ~High 

Low Ok High ~High 

Low Ok Ok ~High 

Ok N/A ~Low Ok 

Ok N/A ~High Ok 

High Ok Low ~Low 

High Ok Ok ~Low 

Ok Ok High ~Low 

High Ok High Low 

Table 2 Fuzzy Rule Base, Cell-to-cell Interactions 

Cell 1 

Pres. 

Error 

Cell 2 

Pres. 

Error 

Cell 3 

Pres. 

Error 

Cell 1 

Temp. 

Error 

Cell 2 

Temp. 

Error 

Cell 3 

Temp. 

Error 

Out1 Out2 Out3 

Low Low Ok N/A N/A N/A High ~High Ok 

Low Ok Low N/A N/A N/A High Ok ~High 

High High Ok N/A N/A N/A Low ~Low Ok 

High Ok High N/A N/A N/A Low Ok ~Low 

~High = Somewhat High 

~Low= Somewhat Low 

2.5 Integral Controller 

An integral controller is placed on each cell to provide a zero steady-state offset. The contribution of 

this controller and the local NN controller is the input to the HVAC plant. The integral constant used is 

the same or smaller than that used with a PI implementation in a reference DOE plant, providing less 

integral “action.” Note that these same PI implementations provide the baseline for comparison to the 

hybrid design. 

3. Simulation Results and Discussion 

The results that follow are provided by a MATLAB
®
 representation and simulation of the hybrid 

controller depicted in Fig. 2 [19]. LQT controller data and training of the NN occurred before the 

simulation of the hybrid controller. Step disturbances are injected into the system, which include two 

pressure step disturbances in cell 1, and two temperature step disturbances, also in cell 1. The set point 

for control is 100 kPa absolute (abs). The pressure disturbances are 50% of the normal gauge pressure 
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and the temperature disturbances are 25% of normal. These were selected based on the type of 

disturbances expected in a reference DOE plant, albeit the pressure disturbances correlate better to a 

step than the temperature, which would more often be expected to be a ramp when a heat-generating 

process goes into operation. However, a step response provides a more effective tool at determining 

the performance of the controller. For this simulation it is assumed that the supply air is hotter than the 

cell air, such as in winter conditions. 

Fig. 5 depicts the fuzzy tracker output based on the startup differential and disturbances. Due to the 

size of the error, the pressure gradient on the initial startup and the temperature disturbances cause a 

transition in the tracking output of the fuzzy tracker. The initial transition affects all cells, but the latter 

affects only cell 1 in line with the disturbance. 

 
Figure 5 Three Cell Fuzzy Tracker Output 

As the fuzzy tracker is essentially providing a supervisory or master controller design, the set points 

provided to the NN is important to guiding the actions of the plant. Between 2 and 10 seconds the 

fuzzy tracker does not give a response, which is desirable and prevents the NN controller from tracking 

unnecessary changes and minimizes control energy. Also note that the response for cell 1 is reduced 

from the other cells as a result of the prioritization relative to cells 2 and 3 to keep the pressure lower. 

For comparison with the hybrid design, the same plant was simulated with PI controllers configured 

the same as a reference DOE plant. As the simple PI controller system is designed to look at pressure 
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only on a local level, and therefore this scheme lacks the capability of the hybrid controller to consider 

temperature. Performance indicators for the response given by the PI and hybrid controller are 

provided in Table 3. These standard error measures include both the Integral of the Squared Error 

(ISE) and Integral of the offset Time multiplied by the Absolute Error (ITAE). The hybrid controller 

provided notable improvements over simple PI control, leveling off quicker on startup and quicker 

leveling for pressure variations. In response to the FL rule base, minor disturbances do not impact the 

tracking reference. This is also an appropriate application of the integral controller in the hybrid 

design, which ensures a zero steady state offset with minimal control energy. Similar offsets would be 

expected for modeling and measurement errors, and the primary reason for its inclusion in the hybrid 

controller design. 

Table 3 Simulation Controller Performance Indicators 

Controller Location ISE ITAE 

Cell 1 12400 11300 PI Controller 

(Startup) Cells 2&3 12400 10900 

Cell 1 .05 83 PI Controller  

(Disturbances) Cells 2&3 0 0 

Cell 1 4500 28 Hybrid Controller 

(Startup) Cells 2&3 5300 16 

Cell 1 1.1 13 Hybrid Controller  

(Disturbances) Cells 2&3 0 0 

Figures 6-8 depict the pressure data for the three cell plant. As the fuzzy tracker rule base favors cell 

1 pressure and therefore has a more aggressive response to out-of- specification conditions, it is noted 

that the initial response peak for cell 1 is somewhat reduced compared to the peaks for the other two 

cells. The pressure disturbances into cell 1, caused by an increase then decrease in flow, create an 

expected increase in pressure, then decrease. Temperature disturbances in cell 1 causes a direct 

response from the fuzzy tracker, as mentioned earlier, causing an immediate decrease in flow of hot air 

to the room resulting in cooling and a synonymous reduction in pressure. As the temperature 

disturbance goes away, the flow increases and the pressure immediately increases before stabilizing. 
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Figure 6 Initial Hybrid Controller Response 

 
Figure 7 Hybrid Controller Response for Pressure Disturbances 

 
Figure 8 Hybrid Controller Response for Temperature Disturbances 
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4. Experimental Results and Discussion 

An experimental system designed and instrumented after Fig. 1 was constructed to test performance of 

the hybrid controller, and is shown in Fig. 9. The set point for the three cells is 0.08 kPa vacuum (vac). 

The disturbances in these experiments are generated on cell 2, and comparable in size to the 

simulation. Typical experimental responses from the hybrid controller are provided in Figures 10-12. 

They indicate a quick transition for the startup and correction from the disturbances. Referring to Table 

4, this result is confirmed, and the performance indicators suggest a large reduction in settling time 

from the PI controller for both the startup and pressure disturbances. The initial benefit of the startup 

gain from the NN LQT is minimized during the disturbance, as a larger portion of the control output 

response is provided by integral action.  

The response from the temperature disturbances is subtle compared to the simulation, and the 

controller response necessary is minimal and stable. Therefore as long as the error in the pressure 

differential is maintained within the range of importance, adjustments can be made in the temperature 

of the cell through variation of airflow. The pressure affect of the FL rule change is small, but the 

actual change in the damper position can be 10% or greater. If greater regulation of air temperature 

from one AHU is quite limiting, a finer control would be achieved through a separate AHU for the 

areas of interest. As an option, higher airflow rates can be used in general to increase the heat transfer 

in the cell, and then the adjustments necessary for maintaining the desired occupancy temperature 

could be achieved with the FL design shown. 
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Figure 9 Experimental HVAC System 
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Figure 10 Initial Hybrid Controller Response 

 
Figure 11 Hybrid Controller Response for Pressure Disturbances 

 
Figure 12 Hybrid Controller Response for Temperature Disturbances 
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Table 4 Experimental Controller Performance Indicators 

Measure Cell Mean ISE Mean 

ITAE 

PID Controller 

Startup 1 2 4650 

Startup 2 1.41 1786 

Startup 3 1.44 2226 

P Disturbance 1 .083 668 

P Disturbance 2 .24 1170 

P Disturbance 3 .13 1110 

Hybrid Controller 

Startup 1 .59 62 

Startup 2 .71 90 

Startup 3 .73 78 

P Disturbance 1 .083 331 

P Disturbance 2 .26 608 

P Disturbance 3 .14 479 

T Disturbance 1 .024 159 

T Disturbance 2 .029 216 

T Disturbance 3 .025 202 

For the purposes of achieving better control for traditional HVAC systems, several combinations of 

advanced control theory have resulted in a form of hybrid controller [2, 20]. By hybrid, combinations 

of soft computing and hard computing are used to achieve better comfort or efficiency, or in some 

cases the desire to regulate two process variables [21]. The hard computing methods include optimal 

control methods that attempt multi-input multi-output robust control designs that have been extended 

from simulation to experimental designs [22, 23]. Considering the traditional HVAC system from a 

reference DOE plant, the desire to capture what can be perceived as a better method of controlling 

these systems is clear, as are the limitations of PID control. While the benefits of each control 

technique in the form of a hybrid controller have been described in this paper, testing of the individual 

techniques was also performed. The results and comparisons of this testing is provided in Table 5, 

which provide a summary of startup and disturbance performance results for simulation and 

experimental testing of PID, fuzzy logic with and without derivative action, neural network and hybrid 

control methodologies. Reviewing the performance for the fuzzy, neural, and hybrid controller designs, 

it is clear that all provide advantages over the PID tuned as in the DOE facility. While it is possible 
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that better tuning of an individual controller may improve performance of the individual cell, the cell-

to-cell dynamics are a primary reason this is often avoided in these designs. Only with the 

consideration of the plant as a whole in a supervisory capacity can individual changes at the local level 

be considered and implemented, accommodating individual improvement without compromising the 

stability of the overall HVAC system [21, 23].  

Table 5 Experimental Testing Results of Intermediate and Final Hybrid Controller Design 

Controller Location ISE ITAE 

Cell 1 12400 11400 
PID Controller (Startup & Disturbances) 

Cells 2&3 12400 10900 

Cell 1 0.05 83 
PID Controller  (Disturbances) 

Cells 2&3 0 0 

Cell 1 28 138 Fuzzy Controller w/o derivative (Startup 

& Disturbances) Cells 2&3 31 151 

Cell 1 14.8 62 Fuzzy Controller w/o derivative 

(Disturbances) Cells 2&3 17.7 67 

Cell 1 28 138 Fuzzy Controller with derivative (Startup 

& Disturbances) Cells 2&3 31 151 

Cell 1 15.2 62 Fuzzy Controller with derivative 

(Disturbances) Cells 2&3 18 67 

Cell 1 4878 14.4 Neural Controller (Startup & 

Disturbances) Cells 2&3 4878 12.6 

Cell 1 0.085 0.23 
Neural Controller  (Disturbances) 

Cells 2&3 0 0 

Cell 1 4544 40.5 Hybrid Controller (Startup & 

Disturbances) Cells 2&3 5326 15.5 

Cell 1 1.06 12.8 
Hybrid Controller  (Disturbances) 

Cells 2&3 0 0 

 

 

The neural controller design implemented provides a unique method for implementing an LQT 

design. The performance improvement achieved on startup is most noticeable. The benefit of this 

design is to consider HVAC system interactions within the model design. If greater interactions are 

recognized, the framework for implementing the resulting LQT controller is provided. The primary 

cost in developing a neural design is in the development of the plant model that is the basis for the 

LQT, and not the normal training required for plant dynamics for a traditional neural implementation 
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[20]. However, the traditional neural implementation does not result in an optimal controller, only a 

characterization of the current nonlinearities for the system. 

The results confirm the benefits of a fuzzy logic design that can consider temperature and human 

comfort where differential pressure is the primary control characteristic. Like all plant designs, 

whether HVAC or another operation, the initial design of the plant equipment and associated 

parameters is important. If the air flow and heating/cooling capacity of the ventilation through a cell 

have been considered for the heat load of the equipment in the cell, such use of a fuzzy logic design 

could be beneficial. When available within an industrial controller design, fuzzy logic controllers that 

provide for multiple outputs to individual local controllers can be used to consider many cell-to-cell 

interactions and to prioritize the interactions. As the fuzzy logic is the supervisor in the hybrid 

controller, its ability to characterize operator knowledge is most appropriate. With existing HVAC 

plants and diverse unconnected PID controllers, an operator’s knowledge is the only way to assure 

smooth transitions for major disruptions in HVAC changes, such as a hatch pull. 

The hybrid design implemented in this research considers not only the benefit of these designs, but 

the practicality of implementation. The hybrid controller implemented in this research has two 

significant differences in that the NN controller is effectively an optimal design and the FL controller 

is implemented as a method of supervisory control. The implementation of the hybrid controller is 

performed using Labview
®
, which although is used for small control systems is used on full scale 

plants.  

5. Conclusions 

While energy efficiency is key to many advanced control designs in the area of HVAC, industrial 

facilities such as those in the DOE complex focus on pressure controls to prevent migration of 

hazardous substances. However, temperature controls must also be considered in the design, as 

personnel with PPE must enter these areas to perform maintenance tasks. Simple PID or PI designs do 

not consider the performance of the plant as a whole, or provide a global control. However, LQT 
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controls can provide outstanding control for an entire plant. Implementation using a NN and FL 

inference system providing a tracking reference, the data provided have demonstrated that a hybrid 

controller can be implemented which focuses on the need to optimize global pressure control while 

still providing consideration of temperature effects [24]. Proper application of a rule base can ensure 

that the fuzzy tracker prioritizes the control responses to key control variables, while minimizing 

control energy. Inclusion of an integral controller can offset small disturbances and modeling errors in 

the LQT design, reducing the overall effort required by the hybrid controller.  
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