
a slightly earlier version was published in: From Animals to Animats 2: Proceedings of the Second International Conference on Simulation of
 Adaptive Behavior (SAB92), Meyer, Roitblat and Wilson editors, ISBN 0-262-63149-0, MIT Press, Cambridge, Massachusetts, pages 384-392.

On the web at h t t p : / / w w w . r e d 3 d . c o m / c w r / p a p e r s / 1 9 9 3 / s a b 9 2 . h t m l

An Evolved, Vision-Based Behavioral Model of Coordinated Group Motion

Craig W. Reynolds

cwr@red.com now: cwr@red3d.com
Electronic Arts / 1450 Fashion Island Boulevard / San Mateo, CA 94404 / USA

Abstract

Coordinated motion in a group of simulated critters can
evolve under selection pressure from an appropriate fit-
ness criteria. Evolution is modeled with the Genetic
Programming paradigm. The simulated environment
consists of a group of critters, some static obstacles,
and a predator. In order to survive, the critters must
avoid collisions (with obstacles as well as with each
other) and must avoid predation. They must steer a safe
path through the dynamic environment using only in-
formation received through their visual sensors. The ar-
rangement of visual sensors, as well as the mapping
from sensor data to motor action is determined by the
evolved controller program. The motor model assumes
an innate constant forward velocity and limited steering.
The predator preferentially targets isolated “stragglers”
and so encourages aggregation. Fitness is based on the
sum of all critter lifetimes.

1 Introduction

In the work described here, a behavioral controller for a 2d
critter (animat, artificial animal, autonomous agent, robot,
or what-have-you) is obtained through simulated evolution.
A stimulus-response controller for a type of coordinated
group motion begins to emerge under selection pressure from
an appropriate fitness measure. The evolutionary process
starts with primitive computational elements that provide
simulated perception and motor control, as well as the con-
nections between them. The fitness of an individual control-
ler is determined by installing it in a group of simulated
critters, placing them in a simulated world and judging their
collective performance.

The critters move forward at a constant rate and the control-
ler must “steer” to avoid collisions with static obstacles,
moving critters, and a pursuing predator. All collisions are
considered fatal. A controller's fitness is based on the total

number of simulation steps taken by all of the critters prior
to their demise. Over time, under the patient guidance of
fitness testing, the evolutionary process constructs an in-
creasingly effective mapping from perception to motor con-
trol which allows the critters to get increasingly effective at
avoiding the dangers in their simulated world.

This work is not intended to be a realistic model of the evo-
lution of coordinated group motion in natural animals. In-
stead it provides an abstract example of how such behavior
can arise in an evolutionary process. It provides a computa-
tional model for examining theories about how specific se-
lection pressures and various environmental factors affect the
evolution of coordinated group motion. This model pro-
vides a framework which can be used to investigate more so-
phisticated forms of coordinated group motion. The experi-
ments reported here are a first step towards an eventual goal
of evolving behavior reminiscent of the fluid, graceful, and
visually fascinating motion seen in large groups of natural
animals.

In nature, here are many reasons why animals congregate in
groups, such as increased access to mates and the group’s
ability to forage over larger areas. This work focuses on
simulating just one aspect of herding: the highly aligned,
tightly packed, closely synchronized motion seen when a
herd is exposed to a predator. The aim is to have this be-
havior emerge through artificial evolution given the con-
flicting selection pressures to: evade predators, avoid obsta-
cles, and coordinate with herd-mates. At one extreme a crit-
ter could attempt to avoid everything in its world since all
collisions are fatal. Predation pressure confers a survival ad-
vantage on those that cluster together. As a result the crit-
ters will tend to move close to their herd-mates while collec-
tively avoiding obstacles and collectively evading the preda-
tor. Since all critters have the same behavior, coordinating
motion is based on the principle that “if I don't run into my
herd-mates, they won't run into me”. This cooperation is a
form of evolved altruism [McFarland 1981].

While admittedly unconnected to natural evolution of corre-
sponding behaviors in real animals, this work aspires to a
certain level of plausibility by the closed nature of its
simulated world. The controller's action is fully determined
by the information it obtains about the simulated world
through its simulated perceptions. The fitness of a control-
ler is fully determined by the performance of its simulated
behavior in the simulated world. The critter's behavior is
grounded in its perception of the world, and its perception
directly reflect the consequences of its behavior.

2 Previous Work

Coordinated group motion exists in many forms in the natu-
ral world: flocks of birds, schools of fish, herds of mam-
mals, and colonies of social insects. These behaviors pre-
sumably arose through the process of evolution. The work
presented here seeks to investigate aspects of the relationship
between various selection pressures and the evolution of co-
ordinated group motion.

Zoologists and other scientists have studied coordinated
group motion in nature for a long time, see for example
[Partridge 1982] and [Potts 1984]. These phenomena are
very difficult to study in an objective yet non-invasive way.
In recent years, as computer modeling and simulation has
provided a concrete way to test theories, many researchers
have implemented models of certain aspects of natural coor-
dinated group motion: [Amkraut 1985], [Meyers 1985],
[Reynolds 1987], [Girard 1990], [Heppner 1990], [Drake
1991], and [Durkin 1991]. These behavior models were
“written by hand” (not evolved) and were based on some type
of global knowledge about the environment which is an un-
natural model for an autonomous agent.

In contrast, Olivier Renault developed a vision-based behav-
ioral model for obstacle avoidance in [Renault 1990]. Law-
rence Dill described a model of coordinated animal motion
based on abstracted visual signals in [Dill 1991]. And Hel-
mut Lorek created a vision-based model of flocking that ran
on a large parallel computer in real time [Lorek 1992].
These three were non-evolved vision-based implementations.

An evolved, vision-based approach similar to the work de-
scribed in this paper was used to address the single-critter
obstacle avoidance problem in [Reynolds 1993?]. Larry
Yaeger's PolyWorld [Yaeger 1993?] is a conceptually vast
Artificial Life simulator based (in part) on visual perception
and non-goal-directed evolution. In some PolyWorld runs,
species have evolved which display locomotion behavior
similar to coordinated herding.

Maja Mataric has investigated (non-evolved) coordinated

group motion in a group of 20 small robots based on the
subsumption architecture [Mataric 1992]. Ronald Arkin has
researched strategies for collective robotic action inspired by
cooperation in ant colonies [Arkin 1992].

Evolved collective behavior for “central place foraging” in a
type of grid-based artificial ant, has been investigated by
Robert Collins and David Jefferson [Collins 1991] and by
John Koza (see chapter 12 in [Koza 1992]).

A classical work in behavioral modeling is [Braitenberg
1984] which touched on many of the ideas here, but as
thought experiments whose implementation was somewhat
fanciful. The behavioral controllers described in this paper
are very much in the spirit of the subsumption architecture
described by Rodney Brooks [Brooks 1986]. These reactive
agents base their behavior directly on the world as perceived
through their sensors. They have little or no higher cogni-
tion and do not bother with complex mental models of their
environment, preferring to use “the world is its own map”
[Brooks 1991]. The work reported here is strongly influ-
enced by Dave Cliff's manifesto on computational neuro-
ethology [Cliff 1991a] as well as his hoverfly simulation
[Cliff 1991b]. While the models described here are not based
on neurons, the principles of using a closed, grounded simu-
lation to test behavioral models are fundamental to this pro-
ject.

This work grew out of conversations the author had with
Andy Kopra at the Artificial Life II meeting in Santa Fe in
February 1990. Many of the basic ideas presented here
(evolved coordinated motion, using the 2d case, vision bas-
ing, the predator, evaluation in closed and grounded simula-
tion) came directly from those talks. At almost the same
time (or perhaps a little earlier) Stephen Smith and Johnny
Ornelas of Thinking Machines Inc. were having amazing
similar conversations, and had envisioned strikingly similar
experiments. Unfortunately neither groups was able to pur-
sue the project back then due to more immediately pressing
matters.

3 Genetic Algorithms, Genetic
 Programming and the Steady State

At the heart of the work described here is the notion of
simulated evolution. The basic evolution model used here is
the venerable Genetic Algorithms (“GA”), originally devel-
oped by Holland [Holland 1975]. The Genetic Algorithm
has been widely studied by many authors and applied to a
myriad of practical problems in many different fields
[Holland 1992]. Over the years many variations on the ba-
sic Genetic Algorithms have been proposed. A hybrid of
two such variations are used to implement the simulated
evolution described in this paper.

John Koza forged a link between the Genetic Algorithm and
computer programming technology with his Genetic Pro-
gramming paradigm [Koza 1989], [Koza 1992]. Genetic
Programming (“GP”) is a technique for automatically creat-
ing computer programs (traditionally, but not necessarily, in
the Lisp language) that satisfy a specified fitness criteria.
There is a very strong analogy between the operation of the
Genetic Algorithm and Genetic Programming. The main
difference is in the representation of genetic information: bit
strings in GA, fragments of Lisp code in GP. The use of
fitness-proportionate selection, reproduction, crossover, and
mutation are all directly analogous. One significant differ-
ence is that while classic Genetic Algorithms work on fixed
length bit strings, Genetic Programming deals with objects
of inherently varying size. The complexity of programs cre-
ated by GP tend to correspond to the complexity of the
problem being solved. If simple programs do not satisfy the
fitness function, the Genetic Programming paradigm creates
larger programs that do. As a result, Genetic Programming
does not require that the user know, or even estimate, the
complexity of the problem at hand. This was an important
consideration for the goal of coevolving sensor arrays and
coordinated group motion. We did not want to specify how
many sensors should be used. Genetic Programming did not
require such a specification, instead that implicit parameter
could be left to evolve its own preferred value.

(Karl Sims independently developed the idea of using Lisp
code as genetic material. He used the concept in combina-
tion with a system much like The Blind Watchmaker
(“BW”) [Dawkins 1986]. An apt analogy might be to say
that GP is to GA as Sims work is to BW. A discussion of
crossover and mutation operations can be found in [Sims
1991]. These mutation operations were incorporated into
the GP system described in this paper, but the experiments
described here did not use mutation.)

Gilbert Syswerda described a variation on traditional GA he
called Steady State Genetic Algorithms (“SSGA”) in Ap-
pendix A of [Syswerda 1989], an analysis of their perform-
ance can be found in [Syswerda 1991] and [Davis 1991]. A
similar technique had previously used in classifier systems
and is described on pages 147-148 of [Holland 1975]. Dar-
rell Whitley independently discovered this variation and de-
scribed it in [Whitley 1989]. While the term “steady state”
has apparently become accepted, the comparison of
“traditional GA” versus “steady state GA” suggests terms
like “batch” versus “continuous” to this author. In any case,
the basic idea is to do away with the synchronized genera-
tions of traditional GAs. Instead there is a continuously up-
dated population (“gene pool”) of evolved individuals. Each
step of the SSGA consists of fitness proportionate selection
of two parents from the population, creation of new individ-
ual(s) through crossover and (occasional) mutation, removal
of individual(s) from the population to make room, and fi-

nally insertion of the new individual(s) back into the popu-
lation. An additional requirement is that all individuals in
the population are required to be unique. (The step of creat-
ing new individuals loops until unique offspring are found.)
The general observation is that SSGAs are more efficient
than traditional GAs in terms of the number of fitness tests
required before a given problem is solved. There seems to
be some evidence that SSGAs are less prone to premature
convergence on suboptimal solutions. In the work reported
here, the concept of SSGA was applied to GP to produce a
system for “Steady State Genetic Programming”.

4 Coordinated Group Motion
 as Genetic Programming

In order to solve a problem with Genetic Programming we
must restate the problem in a canonical form. We must
specify a list of functions, a list of terminals, and a fitness
function. The Genetic Programming paradigm will evolve
programs according to the judgment of the fitness function.
The programs themselves are nested Lisp expressions: a
function applied to subexpressions. The subexpressions are
either one of the terminals or (recursively) another such ex-
pression. (These hierarchies are known variously as “s-ex-
pressions”, “lists”, “Lisp fragments”, “parse trees” and so
on.)

The terminals used in the evolved group motion problem are
just an assortment of numerical constants: 0, 0.01, 0.1, 0.5,
and 2. The list of functions is:

+
-
*
%
abs
iflte
turn
look-for-friend
look-for-obstacle
look-for-predator

The functions + , -, and * are the standard Common Lisp
[Steel 1990] arithmetic functions for addition, subtraction,
and multiplication. Each of them take an arbitrary number
of arguments. The function abs is the standard Common
Lisp absolute value function which take one argument. The
functions % and iflte are suggested in [Koza 1992]. Koza
calls % “protected divide”, a function of two arguments (A
and B) which returns 1 if B=0 and A/B otherwise. The con-
ditional iflte combines the standard Common Lisp func-
tions if and <= into “if less than or equal”. In the imple-
mentation described here, iflte is a Lisp macro which
makes this source-level transformation:

(iflte a b c d) ‘ (if (<= a b) c d)

Using iflte instead of if and <= produces a set of functions
which are easily interchangeable: all of the values being
passed around are numeric. The Boolean value returned by
<= would cause an error if supplied where a number was ex-
pected. These “nonviable” programs would not survive to
reproduce. Evolution could eventually discover how to plug
<= into if by itself, but by smoothing off this rough edge
beforehand, we can get GP to focus its effort more directly
on the problem at hand. We want survival to be based on
increases in fitness rather than details of syntax.

The functions turn, look-for-obstacle, look-for-friend,
and look-for-predator are specific to the coordinated group
motion problem. (Note that “friend” refers to another
critter.) Each of them take a single argument, an angle rela-
tive to the current heading. Angles are specified in units of
revolutions, a normalized angle measure: 1 revolution
equals 360 degrees or 2� radians. These functions will be
explained more fully below, but basically: turn steers the
critter by altering its heading by the specified angle (which
is returned as the function's value). The look-for-... func-
tions “look” in the given direction and return a measure of
how strongly (if at all) a friend, obstacle, or predator is “seen
through the fog”.

We must also provide the fitness function that the Genetic
Programming paradigm will use to judge the quality of the
programs it creates. The fitness function takes one argu-
ment, an evolved program, and returns a numerical fitness
value. In the implementation described here, fitness values
are normalized to lie in the range between zero and one in-
clusively. A fitness of zero means “totally unfit”, a cate-
gory that can include programs that get errors during execu-
tion. A fitness of one signifies a perfect solution to the
problem at hand. For more details see the “Fitness” section
below.

Finally there are a few other parameters required to specify a
Genetic Programming run. The maximum size of programs
in the initial random generation is set to 50. The size of the
“steady-state gene pool” (which is roughly comparable to the
population in a traditional “batch” generation GA) was set to
various values for different runs, but ranged between 20 and
200 individual programs. The mutation rate is zero.

5 The Critter and its World

The critter model used in these experiments is a computer
simulation based on widely-used principles of computational
geometry and computer graphics. Its simplicity and abstrac-
tion make it an equally good (or by the same token, equally
bad) model of a living creature, a physical robot, or simply

an abstract synthetic creature.

The critter moves on a two dimensional surface. It is essen-
tially equivalent to the LOGO turtle [Abelson 1981]. Its
state consists of a position and an orientation. In the ac-
companying illustrations, the critter's body is depicted as a
triangle to indicate its heading. For purposes of collision
detection, however, its body is modeled as a disk of unit di-
ameter.

Figure 1: the critter’s world

The simulated world consists of a group of critters, some
static obstacles, and a predator. A critter will die if it col-
lides with another critter, an obstacle, or the predator. Col-
lision is defined by a simple distance criteria. In the case of
critter/critter or critter/predator collisions, the criteria is
overlap of the two bounding disks. In the case of
critter/obstacle collisions, the criteria is overlap of the crit-
ter's bounding disk with any of the line segments that make
up an obstacle. Figure 1 shows some critters, the predator,
and the obstacle course (named “Box-and-Fences”) which was
used in all of the experiments described here.

There are two kinds of motor actions in the critter's reper-
toire: move forward and turn. In the particular problem be-
ing studied here, we will assume that forward motion is con-
stant and innate. The critter will always move forward (that
is, along its own heading) by one half of its body length
each simulation step.

Beyond these fixed innate properties, the critter's volition
comes from its evolved control program. Typically the con-
troller will use the perception primitives (look-for-obsta-
cle, look-for-friend, and look-for-predator) to get in-
formation about the environment, do some conditional and
arithmetic processing, and then a turn based on the result.

Various schemes have been used in these experiments to en-
force the idea of a non-zero turning radius. In some cases,
turning too much is considered fatal. In other cases, large
turning angles are allowed but are truncated to a “reasonable”
range. Hybrids of these two approaches have also been tried.
The maximum per-step turning angle threshold used in these
runs is ±0.08 revolutions (29 degrees or 0.50 radians). Both
of these approaches will ensure that turning rates are
bounded, but the more forgiving “truncation” approach
seems less likely to block evolutionary progress by ruth-
lessly killing off promising new variations which happen to
turn a little too much.

The predator is controlled by a hand-crafted program which
does not evolve. In general, the predator will select the
nearest critter as its prey. The “targeting criteria” is actually
a combination of three factors: distance, relative heading, and
isolation. Critters that are heading away from the predator
are harder to catch and so are considered less desirable.
Similarly, the predator prefers isolated “stragglers” and so
considers critters in close proximity to others to be less de-
sirable. The predator chases its prey trying to get close
enough to “kill” it. Because the predator is only 95% as fast
as the critters, they can escape by running directly away
from the predator. Rather than heading towards its prey's
current location, the predator uses a simple linear predictor
and heads to where it “thinks” the prey will be at the time of
capture, based on the prey's current heading.

6 Perception

The look-for-obstacle, look-for-friend, and look-for-
predator functions simulates the critter's perception and so
are the controller's only source of information about its
world. All adaptive, time-varying behavior must be derived
somehow from the variations of these perceptions as the
critter moves through the world. When (for example) look-
for-obstacle is called, a ray-tracing operation is per-
formed. That is, a geometric ray (“half line”) is constructed
from the critter's position in the direction specified by the
sum of the critter's heading and the argument to look-for-
obstacle. The intersection (if any) of that ray with each
object in the environment is calculated. The object whose
ray intersection is closest to the critter's center is deemed the
visible object. Note that all objects are treated as opaque
and so for example, a critter can “hide” from the predator by
moving behind an obstacle. Similarly, a critter that is sur-
rounded by other critters can see only them and not any ob-
stacles or predators that lie beyond them.

In order to provide the controller with an indirect clue about
distances, we have postulated that the critter's world is a very
foggy place. Visual stimuli are attenuated by distance. Cer-
tainly this aspect of the simulation can be criticized as being
ad hoc . But the alternatives are daunting: without attenua-

tion, a critter surrounded by obstacles is in a featureless en-
vironment, whatever direction it looks it sees an obstacle.
Postulating more complicated sensory mechanisms (such as
stereo vision or texture recognition) seemed too complex and
would have introduced a new crop of ad hoc details to be ex-
plained away. The “foggy world” model is somewhat plau-
sible: real fish in murky water face a similar perceptual
realm, and the phenomenon known as “aerial perspective”
refers to attenuation in air caused by dust and water vapor. If
desired, say for robotic experimentation, technology exists
(in the special effects industry) for filling rooms with
“smoke” of precisely controlled density. The last rationali-
zation for the foggy world model is that it is only slightly
different in effect from perception based on active sonar as
used by bats and dolphins.

It has been assumed that the critter's visual system can im-
mediately distinguish between the three kinds of object
(obstacles, friends, and predators) in its world. While this
provides a vast simplification, one plausible explanation is
to assume that critters have a form of color vision and that
obstacles, friends, and predators all have unique primary
hues. The implementation described here glosses over these
details, but we can imagine that perceived color is decom-
posed into hue (indicating the type of object) and saturation
(indicating distance through the fog).

The value returned from (for example) look-for-obstacle is
a number between zero and one. A value of one would indi-
cate that the obstacle is coincident with the critter, but this
does not occur in practice since this would imply a collision
had occurred. As the distance between the critter and the ob-
stacle increases, the visual signal drops off quadratically in
strength. At a certain threshold value (15 body lengths in
these experiments) the signal will have reached zero. Hence
a value of zero returned from look-for-obstacle indicates
that the closest obstacle in the given direction (if any) is at
least 15 units away.

Note that the argument to the look-for-... functions are not
restricted to be constants and so the process of evolution
will often derive bizarre formulations that calculate a dy-
namic value and use that to specify the direction in which to
look. Originally the author had assumed that evolution
would create a sort of retina, with fixed sensors pointed in
the directions of interest. In hindsight it becomes clear that
a better model is a simple form of animate vision [Cliff
1991b] where the controller “aims” its visual fovea at the
area of interest.

7 Fitness

In order to test the fitness of a newly evolved control pro-
gram we place the critters in the world, start them running
and measure how long they can avoid collisions and preda-

tion. Specifically, the critters are told to take 200 steps.
The number of steps taken by each critter (before it dies) is
divided by 200 and those values are averaged together to pro-
duce the controller's normalized raw score.

The raw score is modified by multiplication by some “style
points” (less objective criteria). In order to encourage crit-
ters to use generally smooth paths they are penalized for
“excessive turning”. In order to encourage symmetrical be-
havior and discourage looping paths, the critters are penal-
ized for “unbalanced turning”. Statistics on turning are ac-
cumulated during the run, a sum of all turn angle magni-
tudes, a sum of signed turn angles, and a count of left-ver-
sus-right steps. A controller that made the maximum legal
turn each time step would receive the “most harsh” excessive
turn penalty of 0.5, whereas a controller that never turned
would get value of 1.0 (i.e.: no penalty). The penalty for
“unbalanced turning” is analogous.

Using a single fitness test will produce a controller for solv-
ing the one exact situation represented by the fitness test.
However this solution may turn out to be very fragile and
opportunistic. It may well have incorporated expectations of
incidental properties of the specific fitness test.

To strive for robust behavior we need an alternative to a sin-
gle fitness test. One solution would be to randomize some
aspect of the world. This is an appealing approach since fit-
ness trials in nature are effectively randomized. When ran-
domization was attempted in these experiments, it became
clear that the noise injected into the fitness values made it
very hard for both the human experimenter and for the evo-
lution software to determine if progress was actually being
made. Instead each controller was tested on two sets of ini-
tial conditions, the starting positions and orientations of the
critters and predator are “randomized” using a restartable
pseudo-random number generator which is reset for each new
controller being tested. This has the effect of discouraging
fragile solutions, without introducing uncorrelated noise into
the fitness measure.

8 Results

The results of two runs of cooperative group motion evolu-
tion are discussed below. Note that the fitness values speci-
fied below are normalized to the size of the herd and so are
not directly comparable except for identical herd sizes.

In the run called Herd-D there were 20 critters in the herd.
The SSGP “gene pool” had a population of 200 programs.
Minimum turn radius was enforced by the strict method:
critters died if the turned too much. After about 6600 new
individuals were created and fitness tested, the program that
had attained the best fitness of 12% was:

(- (look-for-obstacle 0.01)
 (look-for-predator (turn (look-for-obstacle 0.01)))
 (iflte (turn (look-for-friend 0.1))
 (look-for-predator 0)
 (- (look-for-friend (turn (look-for-obstacle 0.1)))
 (look-for-obstacle 0.1)
 (look-for-friend 0.5))
 0))

Astonishingly this program has not been “cleaned up” to
make it more readable as is often done when using the Ge-
netic Programming paradigm. This is the unretouched pro-
gram exactly as evolved. Despite this program’s apparent
simplicity, analyzing its operation is challenging. Its is ap-
parently trying to avoid collisions with obstacles and
friends, based somehow on its relative perception of friends
and predators. Figures 2 and 3 show the “trail” of all simu-
lation steps for this program for the two sets of initial con-
ditions.

Figure 2: Herd-D, after 6600 runs, first of two trials

The opaque symbols are laid down sequentially, so when
two paths cross the one that appears to be on top happened
later in time. The wider path is the predator. Sharp turns in
the predator's path generally correspond to a “prey capture
and retarget” event. Wide, smooth turn usually indicate it is
in “prowl mode”.

Figure 3: Herd-D, after 6600 runs, second of two trials

It can be seen (in animation if not in these static diagrams)
that most of the critters parish early due to collisions or pre-
dation while two or three survivors manage to escape into
the upper right hand corner and swoop around out of sight of
the predator. Figure 4 shows a plot of best-of-run fitness
and population-average fitness after every 200 individuals.

Figure 4: Herd-D, fitness versus time

In the run called Herd-G there were 16 critters in the herd.
The SSGP “gene pool” had a population of 30 programs
which is quite small. Minimum turn radius was enforced by
the permissive method: critters could “ask” for any amount
of turn angle, but they would be allowed only a certain

amount each simulation step. After about 2000 new indi-
viduals were created and fitness tested, the program that had
attained the best fitness of 13% was:

(iflte (look-for-obstacle (iflte (look-for-obstacle 0.1) (look-
for-friend (look-for-friend 0)) (turn (look-for-friend (+ (iflte
(look-for-friend 0.1) (look-for-obstacle (look-for-friend 0))
(look-for-predator (look-for-obstacle (turn (+ 0.01 (look-
for-obstacle 0.1))))) (turn (turn 0))) (look-for-predator
(look-for-obstacle 0.1))))) 0)) (* 0.001 (look-for-friend
0.01)) (+ 1 (iflte (look-for-obstacle (iflte (look-for-obstacle
0.1) (look-for-friend (look-for-friend 0)) (turn (look-for-
friend (+ (iflte (look-for-friend 0.1) (look-for-obstacle (look-
for-friend 0)) (look-for-predator (look-for-obstacle (turn (+
0.01 (look-for-obstacle 0.1))))) (turn (turn 0))) (look-for-
predator 0)))) 0)) (* 0.001 (look-for-friend 0.01)) 0 (turn
(look-for-obstacle 0.1)))) (turn (look-for-obstacle 0.1)))

This code is pretty convoluted and essentially impossible to
understand. It was not clear to the author that it could be
simplified significantly. Worth noting perhaps is that it
contains several small “core” strategies such as:

(turn (look-for-obstacle 0.1))
(turn (+ 0.01 (look-for-obstacle 0.1)))
(turn (look-for-friend ...))

These fragments implement interacting obstacle and critter
avoidance. (For example, the first fragment causes turning
in the positive direction based on how strongly an obstacle
is perceived at an angle of 0.1 revolutions from the current
heading. The closer the obstacle is, the sharper the turn will
be.) It is not immediately clear if this controller imple-
ments predator evasion at all. Figures 5 and 6 show the
“trail” of all simulation steps for this program for the two
sets of initial conditions.

Figure 5: Herd-G, after 2000 runs, first of two trials

Note that in Figure 5 the predator becomes wedged in the
concavity at the top center. Since the predator does not die

when it collides with an obstacle, it continues to “tunnel
through” to the other side of the obstacle. This is not an
evolution problem, it is just a bug in the author’s design of
the predator's control program.

Figure 6: Herd-G, after 2000 runs, second of two trials

Figure 7 shows a plot of best-of-run fitness and population-
average fitness after every 30 individuals.

Figure 7: Herd-G, fitness versus time

9 Conclusions

The preliminary results reported here represent only partial
solutions to the problem of robust coordinated group motion
in the presence of obstacles and under threat of predation.
None of the behaviors evolved in this work are anywhere
near as robust and general purpose as herding behaviors seen

in natural animals. Thoughts about how to proceed beyond
these limitations are given in the next section.

On the other hand, there is no question that vision-based co-
ordinated group motion strategies have begun to emerge,
given only the requisite primitives, an appropriate fitness
measure, and the action of Darwinian evolution through
natural selection and survival of the fittest.

10 Future Work

Generally the future goals of this work are to find increas-
ingly competent, robust, and graceful coordinated group mo-
tion. In the current model, where the predator is slower than
the prey, a herd of really skillful critters should be able to
evade the predator indefinitely. We would like to see critters
that can form into groups (and so discourage predation)
while coordinating their motion to avoid collisions with
each others. In the results presented here we can see the be-
ginnings of these behaviors, but they are not nearly as vivid
and graceful as the examples seen in natural herds.

One problem with the current model is that while critters
can perceive the position of herd-mates and the predator, they
can not sense the other’s orientation. Presumably this
would be very significant information. One simple way to
provide this cue would be to consider the “front” and “rear”
of the critters (and predator) to have distinct colors. This
would allow critters to evolve a different reaction to seeing a
herd-mate directly ahead based on its orientation. If a critter
sees another critter’s “front” directly ahead, it indicates a po-
tential collision which must be avoided. Whereas seeing an-
other critter’s “back” directly ahead is normal while herding
and requires no reaction.

It is anticipated that better, more robust, coordinated group
motion could be be obtained by pitting the critters sequence
of ever more sophisticated predators. But that approach puts
a significant burden on the human designer of the predators.
As the critters become proficient at predator avoidance, it
would become increasingly difficult to come up with preda-
tors that would challenge them. These considerations sug-
gest that perhaps the predator should coevolve with the
critters. This kind of coevolution of problem-solvers and
problem-poser has been examined in [Hillis 1990]. The fit-
ness of an evolved predator would be judged by how well it
could catch the critters. In the confrontation between a
given critter and predator, a capture early in the simulation
would reflect poorly on the critter and well on the predator.
Conversely, a capture late in the simulation (or an escape)
reflects well on the critter and poorly on the predator.

Acknowledgments

The research reported here was pure amateur science. It was
not an officially sanctioned project of any corporation, uni-
versity, or other funding agency. The individuals and com-
panies listed below helped the author out of the goodness of
their hearts and their interest in the subject matter. For gen-
erous grants of computer facilities, I am deeply indebted to
Tom McMahon and Bart Gawboy of Information Interna-
tional Incorporated, Koichi Kobayashi of Nichimen Graphics
Incorporated, and Richard Hollander of Video Image Associ-
ates. Special thanks go to Andrea Lackey whose worksta-
tion I repeatedly commandeered. Heartfelt thanks to Andy
Kopra who cheerfully put up with my intrusions to his busy
production schedule, and who helped brainstorm many of
these ideas back at ALife II. Thanks to: Larry Malone, Dave
Dyer, Jay Sloat, Dave Aronson, Joseph Goldstone, Glen
Neufeld, DJ, Antoine Durr, and whoever else I forgot. And
finally, this work would probably not have happened with-
out John Koza's trail-blazing work on the Genetic Program-
ming paradigm. Many thanks to John and to James Rice for
their helpful and encouraging comments during this project.

I’d also like to thank Electronic Arts for ending that stint of
“unsupported research” by hiring me recently.

References

Harold Abelson and Andrea diSessa (1981) Turtle Geome-
try: The Computer as a Medium for Exploring Mathemat-
ics, MIT Press, Cambridge, Massachusetts.

Susan Amkraut, Michael Girard, and G. Karl (1985)
“Motion studies for a work in progress entitled Eurhythmy”
in SIGGRAPH Video Review, Issue 21.

Ronald C. Arkin (1992) Cooperation Without Commu-nica-
tion: Multi-Agent Schema Based Robot Navigation, in
Journal of Robotic Systems, 9(3), pages 351-364.

Valentino Braitenberg (1984) Vehicles: Experiments in Syn-
thetic Psychology, MIT Press, Cambridge, Massachusetts.

Rodney Brooks (1986) A Robust Layered Control System
for a Mobile Robot, in IEEE Journal of Robotics and Auto-
mation, 2(1).

Rodney A. Brooks (1991) Intelligence Without Representa-
tion, in Artificial Intelligence 47, pages 139-160.

Dave Cliff (1991a) Computational Neuroethology: A Provi-
sional Manifesto, in From Animals To Animats proceedings
of SAB90, Meyer and Wilson editors, MIT Press, Cam-
bridge, Massachusetts.

Dave Cliff (1991b) The Computational Hoverfly; a Study in
Computational Neuroethology, in From Animals To Ani-
mats proceedings of SAB90, Meyer and Wilson editors, MIT
Press, Cambridge, Massachusetts.

Robert Collins and David Jefferson (1991) AntFarm: To-
wards Simulated Evolution, in Artificial Life II , Langton et
al. editors, Addison-Wesley.

Lawrence Davis, editor (1991) Handbook of Genetic Algo-
rithms, Van Nostrand Reinhold.

Richard Dawkins (1986) The Blind Watchmaker , Harlow
Logman.

Lawrence Dill (1991) Predicting the 3D Structure of Animal
Aggregations from Function Considerations: the Role of In-
formation, (not yet published) presented at the NSF work-
shop on Animal Aggregations: 3D Measurement and Mod-
eling, Monterey Bay Aquarium, October 1991.

Tom Drake and Julia Parrish (1991) Computer Simulation
of Fish Schooling, (not yet published) presented at the NSF
workshop on Animal Aggregations: 3D Measurement and
Modeling, Monterey Bay Aquarium, October 1991.

James Durkin (1991) An Implementation of a Behavioral
Model of Aggregate Animal Motion, (not yet published)
presented at the NSF workshop on Animal Aggregations: 3D
Measurement and Modeling , Monterey Bay Aquarium, Oc-
tober 1991.

Michael Girard and Susan Amkraut (1990) Eurhythmy:
Concept and Process, The Journal of Visualization and
Computer Animation, 1:15-17.

Frank Heppner and Ulf Grenander (1990) A Stochastic Non-
Linear Model for Coordinated Bird Flocks, in the Ubiquity
of Chaos (Saul Krasner editor), AAAS Publications, Wash-
ington, pages 233-238.

W. Daniel Hillis (1990) Co-Evolving Parasites Improve
Simulated Evolution as an Optimization Procedure, in
Emergent Computation, Stephanie Forrest editor (a special
issue of Physica D 42) pages 228-234, MIT Press/North-
Holland.

John Holland (1975) Adaptation in Natural and Artificial
Systems, The University of Michigan Press, Ann Arbor,
Michigan.

John Holland (1992) Genetic Algorithms, in Scientific
American, July 1992.

John R. Koza (1989) Hierarchical Genetic Algorithms Oper-
ating on Populations of Computer Programs, in Proceed-
ings of the 11th International Joint Conference on Artificial
Intelligence, Morgan Kaufmann, San Mateo, California.

John R. Koza (1992) Genetic Programming, MIT Press,
Cambridge, Massachusetts.

Helmut Lorek (1992) personal communication, publication
anticipated, contact lorek@informatik.uni-oldenburg.de for
details.

David McFarland (1981) The Oxford Companion to Animal
Behavior, page 102, Oxford University Press, Oxford.

Maja J. Mataric (1992) Minimizing Complexity in Control-
ling a Mobile Robot Population, Proceedings, IEEE Inter-
national Conference on Robotics and Automation , pages
830-835.

Rob Meyers, Peter Broadwell, and R. Schaufler (1985)
PLASM: Fish Sample, an installation piece at the acm
SIGGRAPH 1985 Art Show.

Brian L. Partridge (1982) The Structure and Function of
Fish Schools, in Scientific American , June 1982, pages
114-123.

Wayne K. Potts (1984) The Chorus-Line Hypothesis of Ma-
neuver Coordination in Avian Flocks, letter in Nature, vol-
ume 30, pages 344-345.

Olivier Renault, Nadia Magnenat Thalmann, and Daniel
Thalmann (1990) A Vision-Based Approach to Behavioral
Animation, The Journal of Visualization and Computer
Animation, 1:18-21.

Craig W. Reynolds (1987) Flocks, Herds, and Schools: A
Distributed Behavioral Model, in Computer Graphics, 21(4)
(SIGGRAPH '87 Conference Proceedings) pages 25-34.

Craig W. Reynolds (1993?) An Evolved, Vision-Based
Model of Obstacle Avoidance Behavior, submitted to Artifi-
cial Life III, forthcoming.

Karl Sims (1991) Artificial Evolution for Computer Graph-
ics, in Computer Graphics, 25(4) (SIGGRAPH '91 Confer-
ence Proceedings) pages 319-328.

Guy L. Steele Jr. (1990) Common Lisp the Language, sec-
ond edition, ISBN 1-55558-042-4, Digital press.

Gilbert Syswerda (1989) Uniform Crossover in Genetic Al-
gorithms, in Proceedings of the Third International Con-
ference on Genetic Algorithms, pages 2-9, Morgan Kauf-

mann Publishers.

Gilbert Syswerda (1991) A Study of Reproduction in Gen-
erational and Steady-State Genetic Algorithms, in Founda-
tions of Genetic Algorithms , pages 94-101, Morgan Kauf-
mann Publishers.

Darrell Whitley (1989) The GENITOR Algorithm and Se-
lection Pressure: Why Rank Based Allocation of Reproduc-
tive Trials is Best, in Proceedings of the Third Interna-
tional Conference on Genetic Algorithms, pages 116-121,
Morgan Kaufmann Publishers.

Larry Yaeger (1993?) Computational Genetics, Physiology,
Metabolism, Neural Systems, Learning, Vision, and Behav-
ior or PolyWorld: Life in a New Context, submitted to Ar-
tificial Life III, forthcoming.

[revised January 10, 1993]

