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Abstract

Coordinated motion in a group of simulated critters can 
evolve under selection pressure from an appropriate fit-
ness criteria.  Evolution is modeled with the Genetic 
Programming paradigm.  The simulated environment 
consists of a group of critters, some static obstacles, 
and a predator.  In order to survive, the critters must 
avoid collisions (with obstacles as well as with each 
other) and must avoid predation.  They must steer a safe 
path through the dynamic environment using only in-
formation received through their visual sensors.  The ar-
rangement of visual sensors, as well as the mapping 
from sensor data to motor action is determined by the 
evolved controller program.  The motor model assumes 
an innate constant forward velocity and limited steering.  
The predator preferentially targets isolated “stragglers” 
and so encourages aggregation.  Fitness is based on the 
sum of all critter lifetimes.

1   Introduction

In the work described here, a behavioral controller for a 2d 
critter (animat, artificial animal, autonomous agent, robot, 
or what-have-you) is obtained through simulated evolution.  
A stimulus-response controller for a type of coordinated 
group motion begins to emerge under selection pressure from 
an appropriate fitness measure.  The evolutionary process 
starts with primitive computational elements that provide 
simulated perception and motor control, as well as the con-
nections between them. The fitness of an individual control-
ler is determined by installing it in a group of simulated 
critters, placing them in a simulated world and judging their 
collective performance.

The critters move forward at a constant rate and the control-
ler must “steer” to avoid collisions with static obstacles, 
moving critters, and a pursuing predator.  All collisions are 
considered fatal.  A controller's fitness is based on the total 

number of simulation steps taken by all of the critters prior 
to their demise.  Over time, under the patient guidance of 
fitness testing, the evolutionary process constructs an in-
creasingly effective mapping from  perception to motor con-
trol which allows the critters to get increasingly effective at 
avoiding the dangers in their simulated world.

This work is not intended to be a realistic model of the evo-
lution of coordinated group motion in natural animals.  In-
stead it provides an abstract example of how such behavior 
can arise in an evolutionary process.  It provides a computa-
tional model for examining theories about how specific se-
lection pressures and various environmental factors affect the 
evolution of coordinated group motion.  This model pro-
vides a framework which can be used to investigate more so-
phisticated forms of coordinated group motion.  The experi-
ments reported here are a first step towards an eventual goal 
of evolving behavior reminiscent of the fluid, graceful, and 
visually fascinating motion seen in large groups of natural 
animals.

In nature, here are many reasons why animals congregate in 
groups, such as increased access to mates and the group’s 
ability to forage over larger areas.  This work focuses on 
simulating just one aspect of herding: the highly aligned, 
tightly packed, closely synchronized motion seen when a 
herd is exposed to a predator.  The aim is to have this be-
havior emerge through artificial evolution given the con-
flicting selection pressures to: evade predators, avoid obsta-
cles, and coordinate with herd-mates.  At one extreme a crit-
ter could attempt to avoid everything in its world since all 
collisions are fatal. Predation pressure confers a survival ad-
vantage on those that cluster together.  As a result the crit-
ters will tend to move close to their herd-mates while collec-
tively avoiding obstacles and collectively evading the preda-
tor.  Since all critters have the same behavior, coordinating 
motion is based on the principle that “if I don't run into my 
herd-mates, they won't run into me”.  This cooperation is a 
form of evolved altruism [McFarland 1981].



While admittedly unconnected to natural evolution of corre-
sponding behaviors in real animals, this work aspires to a 
certain level of plausibility by the closed nature of its 
simulated world.  The controller's action is fully determined 
by the information it obtains about the simulated world 
through its simulated perceptions.  The fitness of a control-
ler is fully determined by the performance of its simulated 
behavior in the simulated world.  The critter's behavior is 
grounded in its perception of the world, and its perception 
directly reflect the consequences of its behavior.

2   Previous Work

Coordinated group motion exists in many forms in the natu-
ral world: flocks of birds, schools of fish, herds of mam-
mals, and colonies of social insects.  These behaviors pre-
sumably arose through the process of evolution.  The work 
presented here seeks to investigate aspects of the relationship 
between various selection pressures and the evolution of co-
ordinated group motion.

Zoologists and other scientists have studied coordinated 
group motion in nature for a long time, see for example 
[Partridge 1982] and [Potts 1984].  These phenomena are 
very difficult to study in an objective yet non-invasive way.  
In recent years, as computer modeling and simulation has 
provided a concrete way to test theories, many researchers 
have implemented models of certain aspects of natural coor-
dinated group motion: [Amkraut 1985], [Meyers 1985], 
[Reynolds 1987], [Girard 1990], [Heppner 1990], [Drake 
1991], and [Durkin 1991].  These behavior models were 
“written by hand” (not evolved) and were based on some type 
of global knowledge about the environment which is an un-
natural model for an autonomous agent.

In contrast, Olivier Renault developed a vision-based behav-
ioral model for obstacle avoidance in [Renault 1990].  Law-
rence Dill described a model of coordinated animal motion 
based on abstracted visual signals in [Dill 1991].  And Hel-
mut Lorek created a vision-based model of flocking that ran 
on a large parallel computer in real time [Lorek 1992].  
These three were non-evolved vision-based implementations.

An evolved, vision-based approach similar to the work de-
scribed in this paper was used to address the single-critter 
obstacle avoidance problem in [Reynolds 1993?].  Larry 
Yaeger's PolyWorld [Yaeger 1993?] is a conceptually vast 
Artificial Life simulator based (in part) on visual perception 
and non-goal-directed evolution.  In some PolyWorld runs, 
species have evolved which display locomotion behavior 
similar to coordinated herding.

Maja Mataric has investigated (non-evolved) coordinated 

group motion in a group of 20 small robots based on the 
subsumption architecture [Mataric 1992].  Ronald Arkin has 
researched strategies for collective robotic action inspired by 
cooperation in ant colonies [Arkin 1992]. 

Evolved collective behavior for “central place foraging” in a 
type of grid-based artificial ant, has been investigated by 
Robert Collins and David Jefferson [Collins 1991] and by 
John Koza (see chapter 12 in [Koza 1992]).

A classical work in behavioral modeling is [Braitenberg 
1984] which touched on many of the ideas here, but as 
thought experiments whose implementation was somewhat 
fanciful.  The behavioral controllers described in this paper 
are very much in the spirit of the subsumption architecture 
described by Rodney Brooks [Brooks 1986].  These reactive 
agents base their behavior directly on the world as perceived 
through their sensors.  They have little or no higher cogni-
tion and do not bother with complex mental models of their 
environment, preferring to use “the world is its own map” 
[Brooks 1991].  The work reported here is strongly influ-
enced by Dave Cliff's manifesto on computational neuro-
ethology [Cliff 1991a] as well as his hoverfly simulation 
[Cliff 1991b].  While the models described here are not based 
on neurons, the principles of using a closed, grounded simu-
lation to test behavioral models are fundamental to this pro-
ject.

This work grew out of conversations the author had with 
Andy Kopra at the Artificial Life II meeting in Santa Fe in 
February 1990.  Many of the basic ideas presented here 
(evolved coordinated motion, using the 2d case, vision bas-
ing, the predator, evaluation in closed and grounded simula-
tion) came directly from those talks.  At almost the same 
time (or perhaps a little earlier) Stephen Smith and Johnny 
Ornelas of Thinking Machines Inc. were having amazing 
similar conversations, and had envisioned strikingly similar 
experiments.  Unfortunately neither groups was able to pur-
sue the project back then due to more immediately pressing 
matters. 

3 Genetic Algorithms, Genetic  
   Programming and the Steady State

At the heart of the work described here is the notion of 
simulated evolution.  The basic evolution model used here is 
the venerable Genetic Algorithms (“GA”), originally devel-
oped by Holland [Holland 1975].  The Genetic Algorithm 
has been widely studied by many authors and applied to a 
myriad of practical problems in many different fields 
[Holland 1992].  Over the years many variations on the ba-
sic Genetic Algorithms have been proposed.  A hybrid of 
two such variations are used to implement the simulated 
evolution described in this paper.



John Koza forged a link between the Genetic Algorithm and 
computer programming technology with his Genetic Pro-
gramming paradigm [Koza 1989], [Koza 1992].  Genetic 
Programming (“GP”) is a technique for automatically creat-
ing computer programs (traditionally, but not necessarily, in 
the Lisp language) that satisfy a specified fitness criteria.  
There is a very strong analogy between the operation of the 
Genetic Algorithm and Genetic Programming.  The main 
difference is in the representation of genetic information: bit 
strings in GA, fragments of Lisp code in GP.  The use of 
fitness-proportionate selection, reproduction, crossover, and 
mutation are all directly analogous.  One significant differ-
ence is that while classic Genetic Algorithms work on fixed 
length bit strings, Genetic Programming deals with objects 
of inherently varying size.  The complexity of programs cre-
ated by GP tend to correspond to the complexity of the 
problem being solved.  If simple programs do not satisfy the 
fitness function, the Genetic Programming paradigm creates 
larger programs that do.  As a result, Genetic Programming 
does not require that the user know, or even estimate, the 
complexity of the problem at hand.  This was an important 
consideration for the goal of coevolving sensor arrays and 
coordinated group motion.  We did not want to specify how 
many sensors should be used.  Genetic Programming did not 
require such a specification, instead that implicit parameter 
could be left to evolve its own preferred value.

(Karl Sims independently developed the idea of using Lisp 
code as genetic material.  He used the concept in combina-
tion with a system much like The Blind Watchmaker  
(“BW”) [Dawkins 1986].  An apt analogy might be to say 
that GP is to GA as Sims work is to BW.  A discussion of 
crossover and mutation operations can be found in [Sims 
1991].  These mutation operations were incorporated into 
the GP system described in this paper, but the experiments 
described here did not use mutation.)

Gilbert Syswerda described a variation on traditional GA he 
called Steady State Genetic Algorithms (“SSGA”) in Ap-
pendix A of [Syswerda 1989], an analysis of their perform-
ance can be found in [Syswerda 1991] and [Davis 1991].  A 
similar technique had previously used in classifier systems 
and is described on pages 147-148 of [Holland 1975].  Dar-
rell Whitley independently discovered this variation and de-
scribed it in [Whitley 1989].  While the term “steady state” 
has apparently become accepted, the comparison of 
“traditional GA” versus “steady state GA” suggests terms 
like “batch” versus “continuous” to this author.  In any case, 
the basic idea is to do away with the synchronized genera-
tions of traditional GAs.  Instead there is a continuously up-
dated population (“gene pool”) of evolved individuals.  Each 
step of the SSGA consists of fitness proportionate selection 
of two parents from the population, creation of new individ-
ual(s) through crossover and (occasional) mutation, removal 
of individual(s) from the population to make room, and fi-

nally insertion of the new individual(s) back into the popu-
lation.  An additional requirement is that all individuals in 
the population are required to be unique.  (The step of creat-
ing new individuals loops until unique offspring are found.)  
The general observation is that SSGAs are more efficient 
than traditional GAs in terms of the number of fitness tests 
required before a given problem is solved.  There seems to 
be some evidence that SSGAs are less prone to premature 
convergence on suboptimal solutions.  In the work reported 
here, the concept of SSGA was applied to GP to produce a 
system for “Steady State Genetic Programming”.

4   Coordinated Group Motion 
     as Genetic Programming

In order to solve a problem with Genetic Programming we 
must restate the problem in a canonical form.  We must 
specify a list of functions, a list of terminals, and a fitness 
function.  The Genetic Programming paradigm will evolve 
programs according to the judgment of the fitness function.  
The programs themselves are nested Lisp expressions: a 
function applied to subexpressions.  The subexpressions are 
either one of the terminals or (recursively) another such ex-
pression.  (These hierarchies are known variously as “s-ex-
pressions”, “lists”, “Lisp fragments”, “parse trees” and so 
on.)

The terminals used in the evolved group motion problem are 
just an assortment of numerical constants: 0, 0.01, 0.1, 0.5, 
and 2.  The list of functions is:

+
-
*
%
abs
iflte
turn
look-for-friend
look-for-obstacle
look-for-predator

The functions + , -, and * are the standard Common Lisp 
[Steel 1990] arithmetic functions for addition, subtraction, 
and multiplication.  Each of them take an arbitrary number 
of arguments. The function abs is the standard Common 
Lisp absolute value function which take one argument.  The 
functions % and iflte are suggested in [Koza 1992].  Koza 
calls % “protected divide”, a function of two arguments (A 
and B) which returns 1 if B=0 and A/B otherwise.  The con-
ditional iflte combines the standard Common Lisp func-
tions if and <= into “if less than or equal”.  In the imple-
mentation described here, iflte is a Lisp macro  which 
makes this source-level transformation:



(iflte a b c d)  ‘  (if (<= a b) c d)

Using iflte instead of if and <= produces a set of functions 
which are easily interchangeable: all of the values being 
passed around are numeric.  The Boolean value returned by 
<= would cause an error if supplied where a number was ex-
pected.  These “nonviable” programs would not survive to 
reproduce.  Evolution could eventually discover how to plug 
<= into if by itself, but by smoothing off this rough edge 
beforehand, we can get GP to focus its effort more directly 
on the problem at hand.  We want survival to be based on 
increases in fitness rather than details of syntax.

The functions turn, look-for-obstacle, look-for-friend, 
and look-for-predator are specific to the coordinated group 
motion problem.  (Note that “friend” refers to another 
critter.)  Each of them take a single argument, an angle rela-
tive to the current heading.  Angles are specified in units of 
revolutions, a normalized angle measure: 1 revolution 
equals 360 degrees or 2�  radians.  These functions will be 
explained more fully below, but basically: turn steers the 
critter by altering its heading by the specified angle (which 
is returned as the function's value).  The look-for-... func-
tions “look” in the given direction and return a measure of 
how strongly (if at all) a friend, obstacle, or predator is “seen 
through the fog”.

We must also provide the fitness function that the Genetic 
Programming paradigm will use to judge the quality of the 
programs it creates.  The fitness function takes one argu-
ment, an evolved program, and returns a numerical fitness 
value.  In the implementation described here, fitness values 
are normalized to lie in the range between zero and one in-
clusively.  A fitness of zero means “totally unfit”, a cate-
gory that can include programs that get errors during execu-
tion.  A fitness of one signifies a perfect solution to the 
problem at hand.  For more details see the “Fitness” section 
below.

Finally there are a few other parameters required to specify a 
Genetic Programming run.  The maximum size of programs 
in the initial random generation is set to 50.  The size of the 
“steady-state gene pool” (which is roughly comparable to the 
population in a traditional “batch” generation GA) was set to 
various values for different runs, but ranged between 20 and 
200 individual programs.  The mutation rate is zero.

5   The Critter and its World

The critter model used in these experiments is a computer 
simulation based on widely-used principles of computational 
geometry and computer graphics.  Its simplicity and abstrac-
tion make it an equally good (or by the same token, equally 
bad) model of a living creature, a physical robot, or simply 

an abstract synthetic creature.

The critter moves on a two dimensional surface.  It is essen-
tially equivalent to the LOGO turtle [Abelson 1981].  Its 
state consists of a position and an orientation.  In the ac-
companying illustrations, the critter's body is depicted as a 
triangle to indicate its heading.  For purposes of collision 
detection, however, its body is modeled as a disk of unit di-
ameter.

Figure 1:  the critter’s world

The simulated world consists of a group of critters, some 
static obstacles, and a predator.  A critter will die if it col-
lides with another critter, an obstacle, or the predator.  Col-
lision is defined by a simple distance criteria.  In the case of 
critter/critter or critter/predator collisions, the criteria is 
overlap of the two bounding disks.  In the case of 
critter/obstacle collisions, the criteria is overlap of the crit-
ter's bounding disk with any of the line segments that make 
up an obstacle.  Figure 1 shows some critters, the predator, 
and the obstacle course (named “Box-and-Fences”) which was 
used in all of the experiments described here.

There are two kinds of motor actions in the critter's reper-
toire: move forward  and turn.  In the particular problem be-
ing studied here, we will assume that forward motion is con-
stant and innate.  The critter will always move forward (that 
is, along its own heading) by one half of its body length 
each simulation step.

Beyond these fixed innate properties, the critter's volition 
comes from its evolved control program.  Typically the con-
troller will use the perception primitives (look-for-obsta-
cle, look-for-friend, and look-for-predator) to get in-
formation about the environment, do some conditional and 
arithmetic processing, and then a turn based on the result.



Various schemes have been used in these experiments to en-
force the idea of a non-zero turning radius.  In some cases, 
turning too much is considered fatal.  In other cases, large 
turning angles are allowed but are truncated to a “reasonable” 
range.  Hybrids of these two approaches have also been tried.  
The maximum per-step turning angle threshold used in these 
runs is ±0.08 revolutions (29 degrees or 0.50 radians).  Both 
of these approaches will ensure that turning rates are 
bounded, but the more forgiving “truncation” approach 
seems less likely to block evolutionary progress by ruth-
lessly killing off promising new variations which happen to 
turn a little too much.

The predator is controlled by a hand-crafted program which 
does not evolve.  In general, the predator will select the 
nearest critter as its prey.  The “targeting criteria” is actually 
a combination of three factors: distance, relative heading, and 
isolation.  Critters that are heading away from the predator 
are harder to catch and so are considered less desirable.  
Similarly, the predator prefers isolated “stragglers” and so 
considers critters in close proximity to others to be less de-
sirable.  The predator chases its prey trying to get close 
enough to “kill” it.  Because the predator is only 95% as fast 
as the critters, they can escape by running directly away 
from the predator.  Rather than heading towards its prey's 
current location, the predator uses a simple linear predictor 
and heads to where it “thinks” the prey will be at the time of 
capture, based on the prey's current heading.

6   Perception

The look-for-obstacle, look-for-friend, and look-for-
predator functions simulates the critter's perception and so 
are the controller's only source of information about its 
world.  All adaptive, time-varying behavior must be derived 
somehow from the variations of these perceptions as the 
critter moves through the world. When (for example) look-
for-obstacle is called, a ray-tracing operation is per-
formed.  That is, a geometric ray (“half line”) is constructed 
from the critter's position in the direction specified by the 
sum of the critter's heading and the argument to look-for-
obstacle.  The intersection (if any) of that ray with each 
object in the environment is calculated.  The object whose 
ray intersection is closest to the critter's center is deemed the 
visible object.  Note that all objects are treated as opaque 
and so for example, a critter can “hide” from the predator by 
moving behind an obstacle.  Similarly, a critter that is sur-
rounded by other critters can see only them and not any ob-
stacles or predators that lie beyond them.

In order to provide the controller with an indirect clue about 
distances, we have postulated that the critter's world is a very 
foggy place.  Visual stimuli are attenuated by distance.  Cer-
tainly this aspect of the simulation can be criticized as being 
ad hoc .  But the alternatives are daunting: without attenua-

tion, a critter surrounded by obstacles is in a featureless en-
vironment, whatever direction it looks it sees an obstacle.  
Postulating more complicated sensory mechanisms (such as 
stereo vision or texture recognition) seemed too complex and 
would have introduced a new crop of ad hoc details to be ex-
plained away.  The “foggy world” model is somewhat plau-
sible: real fish in murky water face a similar perceptual 
realm, and the phenomenon known as “aerial perspective” 
refers to attenuation in air caused by dust and water vapor.  If 
desired, say for robotic experimentation, technology exists 
(in the special effects industry) for filling rooms with 
“smoke” of precisely controlled density.  The last rationali-
zation for the foggy world model is that it is only slightly 
different in effect from perception based on active sonar as 
used by bats and dolphins.

It has been assumed that the critter's visual system can im-
mediately distinguish between the three kinds of object 
(obstacles, friends, and predators) in its world.  While this 
provides a vast simplification, one plausible explanation is 
to assume that critters have a form of color vision  and that 
obstacles, friends, and predators all have unique primary 
hues.  The implementation described here glosses over these 
details, but we can imagine that perceived color is decom-
posed into hue (indicating the type of object) and saturation 
(indicating distance through the fog).

The value returned from (for example) look-for-obstacle is 
a number between zero and one.  A value of one would indi-
cate that the obstacle is coincident with the critter, but this 
does not occur in practice since this would imply a collision 
had occurred.  As the distance between the critter and the ob-
stacle increases, the visual signal drops off quadratically in 
strength.  At a certain threshold value (15 body lengths in 
these experiments) the signal will have reached zero.  Hence 
a value of zero returned from look-for-obstacle indicates 
that the closest obstacle in the given direction (if any) is at 
least 15 units away.

Note that the argument to the look-for-... functions are not 
restricted to be constants and so the process of evolution 
will often derive bizarre formulations that calculate a dy-
namic value and use that to specify the direction in which to 
look.  Originally the author had assumed that evolution 
would create a sort of retina, with fixed sensors pointed in 
the directions of interest.  In hindsight it becomes clear that 
a better model is a simple form of animate vision  [Cliff 
1991b] where the controller “aims” its visual fovea at the 
area of interest.

7   Fitness

In order to test the fitness of a newly evolved control pro-
gram we place the critters in the world, start them running 
and measure how long they can avoid collisions and preda-



tion.  Specifically, the critters are told to take 200 steps.  
The number of steps taken by each critter (before it dies) is 
divided by 200 and those values are averaged together to pro-
duce the controller's normalized raw score.

The raw score is modified by multiplication by some “style 
points” (less objective criteria).  In order to encourage crit-
ters to use generally smooth paths they are penalized for 
“excessive turning”.  In order to encourage symmetrical be-
havior and discourage looping paths, the critters are penal-
ized for “unbalanced turning”.  Statistics on turning are ac-
cumulated during the run, a sum of all turn angle magni-
tudes, a sum of signed turn angles, and a count of left-ver-
sus-right steps.  A controller that made the maximum legal 
turn each time step would receive the “most harsh” excessive 
turn penalty of 0.5, whereas a controller that never turned 
would get value of 1.0 (i.e.:  no penalty).  The penalty for 
“unbalanced turning” is analogous.

Using a single fitness test will produce a controller for solv-
ing the one exact situation represented by the fitness test.  
However this solution may turn out to be very fragile and 
opportunistic.  It may well have incorporated expectations of 
incidental properties of the specific fitness test.

To strive for robust behavior we need an alternative to a sin-
gle fitness test.  One solution would be to randomize some 
aspect of the world. This is an appealing approach since fit-
ness trials in nature are effectively randomized.  When ran-
domization was attempted in these experiments, it became 
clear that the noise injected into the fitness values made it 
very hard for both the human experimenter and for the evo-
lution software to determine if progress was actually being 
made. Instead each controller was tested on two sets of ini-
tial conditions, the starting positions and orientations of the 
critters and predator are “randomized” using a restartable 
pseudo-random number generator which is reset for each new 
controller being tested.  This has the effect of discouraging 
fragile solutions, without introducing uncorrelated noise into 
the fitness measure.

8   Results

The results of two runs of cooperative group motion evolu-
tion are discussed below.  Note that the fitness values speci-
fied below are normalized to the size of the herd and so are 
not directly comparable except for identical herd sizes.

In the run called Herd-D there were 20 critters in the herd.  
The SSGP “gene pool” had a population of 200 programs.  
Minimum turn radius was enforced by the strict method: 
critters died if the turned too much. After about 6600 new 
individuals were created and fitness tested, the program that 
had attained the best fitness of 12% was:

(-  (look-for-obstacle 0.01)
    (look-for-predator (turn (look-for-obstacle 0.01)))
    (iflte (turn (look-for-friend 0.1))
            (look-for-predator 0)
            (-  (look-for-friend (turn (look-for-obstacle  0.1)))
                (look-for-obstacle 0.1)
                (look-for-friend 0.5))
            0))

Astonishingly this program has not been “cleaned up” to 
make it more readable as is often done when using the Ge-
netic Programming paradigm.  This is the unretouched pro-
gram exactly as evolved.  Despite this program’s apparent 
simplicity, analyzing its operation is challenging.  Its is ap-
parently trying to avoid collisions with obstacles and 
friends, based somehow on its relative perception of friends 
and predators.  Figures 2 and 3 show the “trail” of all simu-
lation steps for this program for the two sets of initial con-
ditions.

Figure 2:  Herd-D, after 6600 runs, first of two trials

The opaque symbols are laid down sequentially, so when 
two paths cross the one that appears to be on top happened 
later in time.  The wider path is the predator.  Sharp turns in 
the predator's path generally correspond to a “prey capture 
and retarget” event.  Wide, smooth turn usually indicate it is 
in “prowl mode”.  



Figure 3:  Herd-D, after 6600 runs, second of two trials

It can be seen (in animation if not in these static diagrams) 
that most of the critters parish early due to collisions or pre-
dation while two or three survivors manage to escape into 
the upper right hand corner and swoop around out of sight of 
the predator.  Figure 4 shows a plot of best-of-run fitness 
and population-average fitness after every 200 individuals.

Figure 4:  Herd-D, fitness versus time

In the run called Herd-G there were 16 critters in the herd.  
The SSGP “gene pool” had a population of 30 programs 
which is quite small. Minimum turn radius was enforced by 
the permissive method: critters could “ask” for any amount 
of turn angle, but they would be allowed only a certain 

amount each simulation step.  After about 2000 new indi-
viduals were created and fitness tested, the program that had 
attained the best fitness of 13% was:

(iflte (look-for-obstacle (iflte (look-for-obstacle 0.1) (look-
for-friend (look-for-friend 0)) (turn (look-for-friend (+ (iflte 
(look-for-friend 0.1) (look-for-obstacle (look-for-friend 0)) 
(look-for-predator (look-for-obstacle (turn (+ 0.01 (look-
for-obstacle 0.1)))) ) (turn (turn 0))) (look-for-predator 
(look-for-obstacle 0.1))))) 0)) (* 0.001 (look-for-friend 
0.01)) (+ 1 (iflte (look-for-obstacle (iflte (look-for-obstacle 
0.1) (look-for-friend (look-for-friend 0)) (turn (look-for-
friend (+ (iflte (look-for-friend 0.1) (look-for-obstacle (look-
for-friend 0)) (look-for-predator (look-for-obstacle (turn (+ 
0.01 (look-for-obstacle 0.1) )))) (turn (turn 0))) (look-for-
predator 0)))) 0)) (* 0.001 (look-for-friend 0.01)) 0 (turn 
(look-for-obstacle 0.1)))) (turn (look-for-obstacle 0.1)))

This code is pretty convoluted and essentially impossible to 
understand. It was not clear to the author that it could be 
simplified significantly.  Worth noting perhaps is that it 
contains several small “core” strategies such as:

(turn (look-for-obstacle 0.1))
(turn (+ 0.01 (look-for-obstacle 0.1)))
(turn (look-for-friend ...))

These fragments implement interacting obstacle and critter 
avoidance.  (For example, the first fragment causes turning 
in the positive direction based on how strongly an obstacle 
is perceived at an angle of 0.1 revolutions from the current 
heading.  The closer the obstacle is, the sharper the turn will 
be.)  It is not immediately clear if this controller imple-
ments predator evasion at all.  Figures 5 and 6 show the 
“trail” of all simulation steps for this program for the two 
sets of initial conditions.  

Figure 5:  Herd-G, after 2000 runs, first of two trials

Note that in Figure 5 the predator becomes wedged in the 
concavity at the top center.  Since the predator does not die 



when it collides with an obstacle, it continues to “tunnel 
through” to the other side of the obstacle.  This is not an 
evolution problem, it is just a bug in the author’s design of 
the predator's control  program.

Figure 6:  Herd-G, after 2000 runs, second of two trials

Figure 7 shows a plot of best-of-run fitness and population-
average fitness after every 30 individuals.

Figure 7:  Herd-G, fitness versus time

9   Conclusions

The preliminary results reported here represent only partial 
solutions to the problem of robust coordinated group motion 
in the presence of obstacles and under threat of predation.  
None of the behaviors evolved in this work are anywhere 
near as robust and general purpose as herding behaviors seen 

in natural animals.  Thoughts about how to proceed beyond 
these limitations are given in the next section.

On the other hand, there is no question that vision-based co-
ordinated group motion strategies have begun to emerge, 
given only the requisite primitives, an appropriate fitness 
measure, and the action of Darwinian evolution through 
natural selection and survival of the fittest.

10   Future Work

Generally the future goals of this work are to find increas-
ingly competent, robust, and graceful coordinated group mo-
tion.  In the current model, where the predator is slower than 
the prey, a herd of really skillful critters should be able to 
evade the predator indefinitely.  We would like to see critters 
that can form into groups (and so discourage predation) 
while coordinating their motion to avoid collisions with 
each others.  In the results presented here we can see the be-
ginnings of these behaviors, but they are not nearly as vivid 
and graceful as the examples seen in natural herds.

One problem with the current model is that while critters 
can perceive the position of herd-mates and the predator, they 
can not sense the other’s orientation.  Presumably this 
would be very significant information.  One simple way to 
provide this cue would be to consider the “front” and “rear” 
of the critters (and predator) to have distinct colors.    This 
would allow critters to evolve a different reaction to seeing a 
herd-mate directly ahead based on its orientation.  If a critter 
sees another critter’s “front” directly ahead, it indicates a po-
tential collision which must be avoided. Whereas seeing an-
other critter’s “back” directly ahead is normal while herding 
and requires no reaction.

It is anticipated that better, more robust, coordinated group 
motion could be be obtained by pitting the critters sequence 
of ever more sophisticated predators. But that approach puts 
a significant burden on the human designer of the predators.  
As the critters become proficient at predator avoidance, it 
would become increasingly difficult to come up with preda-
tors that would challenge them.  These considerations sug-
gest that perhaps the predator should coevolve with the 
critters.  This kind of coevolution of problem-solvers and 
problem-poser has been examined in [Hillis 1990].  The fit-
ness of an evolved predator would be judged by how well it 
could catch the critters.  In the confrontation between a 
given critter and predator, a capture early in the simulation 
would reflect poorly on the critter and well on the predator.  
Conversely, a capture late in the simulation (or an escape) 
reflects well on the critter and poorly on the predator.
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