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Abstract number of simulation steps taken by all of the critters prior
to their demise. Over time, under the patient guidance of
Coordinated motion in a group of simulatitters can fitness testing, the evolutionary process constructs an in-

evolve under selection pressure from an appropriate fit- creasingly effective mapping from perception to motor con-
ness criteria. Evolution is modeled with the Genetic trol which allows the critters to get increasingly effective at
Programming paradigm. The simulated environment avoiding the dangers in their simulated world.
consists of a group of critters, some static obstacles,
and a predator. In order to survive, the critters must This work is not intended to be a realistic model of the evo-
avoid collisions (with obstacles as well as with each lution of coordinated group motion in natural animals. In-
other) and must avoid predation. They must steer a safestead it provides an abstract example of how such behavio
path through the dynamic environment using only in- can arise in an evolutionary process. It provides a computa-
formation received through their visual sensors. The ar- tional model for examining theories about how specific se-
rangement of visual sensors, as well as the mappinglection pressures and various environmental factors affect the
from sensor data to motor action is determined by the evolution of coordinated group motion. This model pro-
evolved controller program. The motor model assumes vides a framework which can be used to investigate more so-
an innate constant forward velocity and limited steering. phisticated forms of coordinated group motion. The experi-
The predator preferentially targets isolated “stragglers” ments reported here are a first step towards an eventual goi
and so encourages aggregation. Fitness is based on thef evolving behavior reminiscent of the fluid, graceful, and
sum of all critter lifetimes. visually fascinating motion seen in large groups of natural
animals.
1 Introduction
In nature, here are many reasons why animals congregate i
In the work described here, a behavioral controller for a 2droups, such as increased access to mates and the grouf
critter (animat, artificial animal, autonomous agent, robot,ability to forage over larger areas. This work focuses on
or what-have-you) is obtained through simulated evolutiorsimulating just one aspect of herding: the highly aligned,
A stimulus-response controller for a type afordinated  tightly packed, closely synchronized motion seen when a
group motion begins to emerge under selection pressure frorherd is exposed to a predator. The aim is to have this be-
an appropriate fitness measure. The evolutionary procekavior emerge through artificial evolution given the con-
starts with primitive computational elements that providdlicting selection pressures to: evade predators, avoid obsta
simulated perception and motor control, as well as the coreles, and coordinate with herd-mates. At one extreme a crit-
nections between them. The fitness of an individual controlter could attempt to avoid everything in its world since all
ler is determined by installing it in a group of simulatedcollisions are fatal. Predation pressure confers a survival ad:
critters, placing them in a simulated world and judging theivantage on those that cluster together. As a result the crit-
collective performance. ters will tend to move close to their herd-mates while collec-
tively avoiding obstacles and collectively evading the preda-
The critters move forward at a constant rate and the controter. Since all critters have the same behavior, coordinating
ler must “steer” to avoid collisions with static obstaclesmotion is based on the principle that “if | don't run into my
moving critters, and a pursuing predator. All collisions aréherd-mates, they won't run into me”. This cooperation is a
considered fatal. A controller's fitness is based on the totébrm of evolved altruism [McFarland 1981].



group motion in a group of 20 small robots based on the
While admittedly unconnected to natural evolution of corre-subsumption architecture [Mataric 1992]. Ronald Arkin has
sponding behaviors in real animals, this work aspires to mesearched strategies for collective robotic action inspired by
certain level of plausibility by thelosed nature of its cooperation in ant colonies [Arkin 1992].
simulated world. The controller's action is fully determined
by the information it obtains about the simulated worldEvolved collective behavior for “central place foraging” in a
through its simulated perceptions. The fitness of a controltype of grid-based artificial ant, has been investigated by
ler is fully determined by the performance of its simulatedRobert Collins and David Jefferson [Collins 1991] and by
behavior in the simulated world. The critter's behavior islohn Koza (see chapter 12 in [Koza 1992]).
grounded in its perception of the world, and its perception
directly reflect the consequences of its behavior. A classical work in behavioral modeling is [Braitenberg
1984] which touched on many of the ideas here, but as
thought experiments whose implementation was somewha
fanciful. The behavioral controllers described in this paper
) ) o ) are very much in the spirit of treibsumption architecture
Coordinated group motion exists in many forms in the natugegcribed by Rodney Brooks [Brooks 1986]. Thesetive
ral world: flocks of birds, schools of fish, herds of mam- yyents hase their behavior directly on the world as perceived
mals, and colonies of social insects. These _behawors pr?ﬁrough their sensors. They have little or no higher cogni-
sumably arose through the process of evolution. The wor,, and do not bother with complex mental models of their
presented here seeks to investigate aspects of the relationsg'm/ironment, preferring to use “the world is its own map”

between various selection pressures and the evolution of CfBrooks 1991]. The work reported here is strongly influ-

ordinated group motion. enced by Dave Cliff's manifesto momputational neuro-

] o ] ) ethology [CIliff 1991a] as well as his hoverfly simulation
Zoologists and other scientists have studied coordinatggitt 1991h]. While the models described here are not based
group motion in nature for a long time, see for exampleyn neyrons, the principles of using a closed, grounded simu-

[Partridge 1982] and [Potts 1984]. These phenomena af&ion 1o test behavioral models are fundamental to this pro-
very difficult to study in an objective yet non-invasive way. o

In recent years, as computer modeling and simulation has

provided a concrete way to test theories, many researcheffis \ork grew out of conversations the author had with
have implemented models of certain aspects of natural COOkhdy Kopra at the Artificial Life Il meeting in Santa Fe in

dinated group motion: [Amkraut 1985], [Meyers 1985],repryary 1990, Many of the basic ideas presented here
[Reynolds 1987], [Girard 1990], [Heppner 1990], [Drakeyglyed coordinated motion, using the 2d case, vision bas-

1991], and [Durkin 1991]. These behavior models wergyy the predator, evaluation in closed and grounded simula-
written by hand” (not evolved) and were based on some typgy) came directly from those talks. At almost the same
of global knowledge about the environment which is an UNtime (or perhaps a little earlier) Stephen Smith and Johnny
natural model for an autonomous agent. Ornelas of Thinking Machines Inc. were having amazing

similar conversations, and had envisioned strikingly similar

In contrast, Olivier Renault developed a vision-based beha‘{e‘xperiments. Unfortunately neither groups was able to pur-
ioral model for obstacle avoidance in [Renault 1990]. Law-

) : ] : "sue the project back then due to more immediately pressing
rence Dill described a model of coordinated animal motioR +iers.

based on abstracted visual signals in [Dill 1991]. And Hel-

mut Lorek created a vision-based model of flocking that ra® Genetic Algorithms, Genetic

on a large parallel computer in real time [Lorek 1992].

These three were non-evolved vision-based implementations.

2 Previous Work

Programming and the Steady State

An evolved, vision-based approach similar to the work def\t the heart of the work described here is the notion of
scribed in this paper was used to address the single-critigfnulated evolution. The basic evoll‘utlop model used here is
obstacle avoidance problem in [Reynolds 19937?]. Larr§l'® venerable Genetic Algorithms ("GA”), originally devel-
Yaeger's PolyWorld [Yaeger 19937] is a conceptually vastPed by Holland [Holland 1975]. The Genetic Algorithm
Artificial Life simulator based (in part) on visual perception "as been widely studied by many authors and applied to ¢
and non-goal-directed evolution. In some PolyWorld runghy'iad of practical problems in many different fields

species have evolved which display locomotion behaviorr'f|0|IanOI 1992]. Over the years many variations on the ba-
similar to coordinated herding. sic Genetic Algorithms have been proposed. A hybrid of

two such variations are used to implement the simulated
Maja Mataric has investigated (non-evolved) coordinate@volution described in this paper.



John Koza forged a link between the Genetic Algorithm andally insertion of the new individual(s) back into the popu-
computer programming technology with his Genetic Prodation. An additional requirement is that all individuals in
gramming paradigm [Koza 1989], [Koza 1992]. Genetidhe population are required to be unique. (The step of creat-
Programming (“GP”) is a technique for automatically creat-ing new individuals loops until unique offspring are found.)
ing computer programs (traditionally, but not necessarily, imMhe general observation is that SSGAs are neffieient

the Lisp language) that satisfy a specified fitness criterighan traditional GAs in terms of the number of fitness tests
There is a very strong analogy between the operation of thequired before a given problem is solved. There seems t(
Genetic Algorithm and Genetic Programming. The maitbe some evidence that SSGAs are less prone to prematut
difference is in the representation of genetic information: bitonvergence on suboptimal solutions. In the work reported
strings in GA, fragments of Lisp code in GP. The use ofere, the concept of SSGA was applied to GP to produce ¢
fitness-proportionate selection, reproduction, crossover, argystem for “Steady State Genetic Programming’”.

mutation are all directly analogous. One significant differ-

ence is that while classic Genetic Algorithms work on fixedd ~ Coordinated Group Motion

length bit strings, Genetic Programming deals with objects as Genetic Programming

of inherently varying size. The complexity of programs cre-

ated by Gl:.) tend to corrgspond to the complexny. of the, order to solve a problem with Genetic Programming we
problem being solved. If simple programs do not satisfy th?nust restate the problem in a canonical form. We must

fitness function, the Genetic Programming paradigm creates . . . . i .
) . specify a list offunctions, a list of terminals, and &fitness
larger programs that do. As a result, Genetic Programmi . . . : .
. X nction. The Genetic Programming paradigm will evolve
does not require that the user know, or even estimate, the

complexity of the problem at hand. This was an importa fograms according to the judgment of the fithess function.

X . . he programs themselves are nested Lisp expressions:
consideration for the goal of coevolving sensor arrays an ; . ) )
: 4 . : unction applied to subexpressions. The subexpressions ar
coordinated group motion. We did not want to specify how_; ) .
) . . either one of the terminals or (recursively) another such ex-
many sensors should be used. Genetic Programming did not. . . : . -\
d AR 2 ression. (These hierarchies are known variously as “s-ex-
require such a specification, instead that implicit parameter .

could be left to evolve its own preferred value. grne)ssmns , "lists”, “Lisp fragments

, “parse trees” and so

(Karl Sims independently developed the idea of using LISFf‘he terminals used in the evolved group motion problem are

ggﬂevsi?hgzngggt;nrﬁtilﬁth |_I|i?< é_urS]:dBtnﬁ dco\?v;?gt";?aﬁgrmbmﬁ_st an assortment of numerical constants: 0, 0.01, 0.1, 0.5

(“BW") [Dawkins 1986]. An apt analogy might be to say and 2. The list of functions is:
that GP is to GA as Sims work is to BW. A discussion of
crossover and mutation operations can be found in [Sims

1991]. These mutation operations were incorporated into *
the GP system described in this paper, but the experiments %
described here did not use mutation.) abs
iflte
Gilbert Syswerda described a variation on traditional GA he turn
called Steady State Genetic Algorithms (“SSGA”) in Ap- look-for-friend
pendix A of [Syswerda 1989], an analysis of their perform- look-for-obstacle

ance can be found in [Syswerda 1991] and [Davis 1991]. A look-for-predator

similar technique had previously used in classifier systems ) _
and is described on pages 147-148 of [Holland 1975]. Dar[he functions+, -, and * are the standard Common Lisp
rell Whitley independently discovered this variation and de{Steel 1990] arithmetic functions for addition, subtraction,
scribed it in [Whitley 1989]. While the term “steady state”@nd multiplication. Each of them take an arbitrary number
has apparently become accepted, the comparison @farguments. The functioabs is the standard Common
“traditional GA” versus “Steady state GA” suggests termé_isp absolute value function which take one argument. The
like “batch” versus “continuous” to this author. In any casefunctions% andifite are suggested in [Koza 1992]. Koza
the basic idea is to do away with the synchrongatkra-  calls% “protected divide”, a function of two arguments (A
tions of traditional GAs. Instead there is a continuously up-and B) which returns 1 if B=0 and A/B otherwise. The con-
dated population (“gene pool”) of evolved individuals. Eaclditional iflte combines the standard Common Lisp func-
step of the SSGA consists of fitness proportionate selectiafbns if and<= into “if less than or equal”. In the imple-
of two parents from the population, creation of new individ-mentation described herdjte is a Lispmacro which
ual(s) through crossover and (occasional) mutation, remov@hakes this source-level transformation:

of individual(s) from the population to make room, and fi-



(fteabcd) ‘ (f(<=ab)cd) an abstract synthetic creature.

Using ifite instead ofif and<= produces a set of functions The critter moves on a two dimensional surface. Itis essen-
which are easily interchangeable: all of the values beindally equivalent to the LOGQurtle [Abelson 1981]. Its
passed around are numeric. The Boolean value returned $igte consists of a position and an orientation. In the ac-
<= would cause an error if supplied where a number was exe0mpanying illustrations, the critter's body is depicted as a
pected. These “nonviable” programs would not survive tdfiangle to indicate its heading. For purposes of collision
reproduce. Evolution could eventually discover how to plugletection, however, its body is modeled as a disk of unit di-
<= into if by itself, but by smoothing off this rough edge aMeter.

beforehand, we can get GP to focus its effort more directlv
on the problem at hand. We want survival to be based c
increases in fithess rather than details of syntax.

The functionsturn, look-for-obstacle, look-for-friend,
andlook-for-predator are specific to the coordinated group
motion problem. (Note that “friend” refers to another
critter.) Each of them take a single argument, an angle relz
tive to the current heading. Angles are specified in units o ~ < &7
revolutions, a normalized angle measure: 1 revolution p

equals 360 degrees ox 2adians. These functions will be
explained more fully below, but basicallurn steers the 4
critter by altering its heading by the specified angle (whict
is returned as the function's value). Tbek-for-... func- v a
tions “look” in the given direction and return a measure of 4
how strongly (if at all) a friend, obstacle, or predator is “seer:
through the fog”.

Figure 1: the critter's world

We must also provide thigtness function that the Genetic
Programming paradigm will use to judge the quality of theThe simulated world consists of a group of critters, some
programs it creates. The fitness function takes one argstaticobstacles, and apredator. A critter will die if it col-
ment, an evolved program, and returns a numerical fitnesigles with another critter, an obstacle, or the predator. Col-
value. In the implementation described here, fitness valudiion is defined by a simple distance criteria. In the case of
are normalized to lie in the range between zero and one igritter/critter or critter/predator collisions, the criteria is
clusively. A fitness of zero means “totally unfit”’, a cate- overlap of the two bounding disks. In the case of
gory that can include programs that get errors during execuritter/obstacle collisions, the criteria is overlap of the crit-
tion. A fitness of one signifies a perfect solution to theter's bounding disk with any of the line segments that make
problem at hand. For more details see the “Fitness” sectiayp an obstacle. Figure 1 shows some critters, the predatol
below. and the obstacle course (named “Box-and-Fences”) which wa:

used in all of the experiments described here.
Finally there are a few other parameters required to specify a
Genetic Programming run. The maximum size of program$here are two kinds of motor actions in the critter's reper-
in the initial random generation is set to 50. The size of thire: move forward andturn. In the particular problem be-
“steady-state gene pool” (which is roughly comparable to thing studied here, we will assume that forward motion is con-
population in a traditional “batch” generation GA) was set tagstant and innate. The critter will always move forward (that
various values for different runs, but ranged between 20 arid, along its own heading) by one half of its body length
200 individual programs. The mutation rate is zero. each simulation step.

5 The Critter and its World Beyond these fixed innate properties, the crittedStion
comes from its evolved control program. Typically the con-
The critter model used in these experiments is a computgbller will use the perception primitivesopk-for-obsta-
simulation based on widely-used principles of computational|e | |ook-for-friend, andlook-for-predator) to get in-
geometry and computer graphics. Its simplicity and abstragprmation about the environment, do some conditional and

tion make it an equally good (or by the same token, equallysihmetic processing, and thetuan based on the result.
bad) model of a living creature, a physical robot, or simply



Various schemes have been used in these experiments to ¢ion, a critter surrounded by obstacles is in a featureless en-
force the idea of a non-zero turning radius. In some casesronment, whatever direction it looks it sees an obstacle.
turning too much is considered fatal. In other cases, largeostulating more complicated sensory mechanisms (such a
turning angles are allowed but are truncated to a “reasonablstereo vision or texture recognition) seemed too complex anc
range. Hybrids of these two approaches have also been triebuld have introduced a new cropaofhoc details to be ex-
The maximum per-step turning angle threshold used in thegtained away. The “foggy world” model is somewhat plau-
runs is +0.08 revolutions (29 degrees or 0.50 radians). Bo#ible: real fish in murky water face a similar perceptual
of these approaches will ensure that turning rates arealm, and the phenomenon known as “aerial perspective’
bounded, but the more forgiving “truncation” approactrefers to attenuation in air caused by dust and water vapor. |
seems less likely to block evolutionary progress by ruthdesired, say for robotic experimentation, technology exists
lessly killing off promising new variations which happen to(in the special effects industry) for filling rooms with
turn a little too much. “smoke” of precisely controlled density. The last rationali-
zation for the foggy world model is that it is only slightly
The predator is controlled by a hand-crafted program whictifferent in effect from perception based on active sonar as
does not evolve. In general, the predator will select thaesed by bats and dolphins.
nearest critter as its prey. The “targeting criteria” is actually
a combination of three factors: distance, relative heading, althas been assumed that the critter's visual system can im
isolation. Critters that are heading away from the predatonediately distinguish between the three kinds of object
are harder to catch and so are considered less desiralddstacles, friends, and predators) in its world. While this
Similarly, the predator prefers isolated “stragglers” and sprovides a vast simplification, one plausible explanation is
considers critters in close proximity to others to be less deto assume that critters have a formcofor vision and that
sirable. The predator chases its prey trying to get closgbstacles, friends, and predators all have unique priman
enough to “kill” it. Because the predator is only 95% as fashues. The implementation described here glosses over thes
as the critters, they can escape by running directly awaletails, but we can imagine that perceived color is decom-
from the predator. Rather than heading towards its preysed into hue (indicating the type of object) and saturation
current location, the predator uses a simple linear predict@indicating distance through the fog).
and heads to where it “thinks” the prey will be at the time of

capture, based on the prey's current heading. The value returned from (for examplepk-for-obstacle is
) a number between zero and one. A value of one would indi-
6 Perception cate that the obstacle is coincident with the critter, but this

does not occur in practice since this would imply a collision
The look-for-obstacle, look-for-friend, andlook-for-  had occurred. As the distance between the critter and the ob
predator functions simulates the critter's perception and sstacle increases, the visual signal drops off quadratically in
are the controller's only source of information about itstrength. At a certain threshold value (15 body lengths in
world. All adaptive, time-varying behavior must be derivedthese experiments) the signal will have reached zero. Henci
somehow from the variations of these perceptions as ttevalue of zero returned frofnok-for-obstacle indicates
critter moves through the world. When (for exampdek-  that the closest obstacle in the given direction (if any) is at
for-obstacle is called, aray-tracing operation is per- least 15 units away.
formed. That is, a geometric ray (“half line”) is constructed
from the critter's position in the direction specified by theNote that the argument to theok-for-... functions are not
sum of the critter's heading and the argumenbtik-for- restricted to be constants and so the process of evolutiol
obstacle. The intersection (if any) of that ray with each will often derive bizarre formulations that calculate a dy-
object in the environment is calculated. The object whos@amic value and use that to specify the direction in which to
ray intersection is closest to the critter's center is deemed tiR9K. Originally the author had assumed that evolution
visible object. Note that all objects are treated amque would create a sort oktina, with fixed sensors pointed in
and so for example, a critter can “hide” from the predator bi,he directions of interest. In hindsight it becomes clear that
moving behind an obstacle. Similarly, a critter that is sura better model is a simple form ahimate vision [CIiff
rounded by other critters can see only them and not any 08991b] where the controller “aims” its visual fovea at the
stacles or predators that lie beyond them. area of interest.

In order to provide the controller with an indirect clue about/  Fitness

distances, we have postulated that the critter's world is a very

foggy place. Visual stimuli are attenuated by distance. Cefn order to test the fitness of a newly evolved control pro-

tainly this aspect of the simulation can be criticized as beingram we place the critters in the world, start them running
ad hoc. But the alternatives are daunting: without attenua@nd measure how long they can avoid collisions and preda-



tion. Specifically, the critters are told to take 200 steps. (- (look-for-obstacle 0.01)
The number of steps taken by each critter (before it dies) is ~ (look-for-predator (turn (look-for-obstacle 0.01)))
divided by 200 and those values are averaged together to pro- (iflté (turn (look-for-friend 0.1))

duce the controller's normalized raw score. (look-for-predator 0)
(- (look-for-friend (turn (look-for-obstacle 0.1)))

(look-for-obstacle 0.1)

The raw score is modified by multiplication by some “style (look-for-friend 0.5))

points” (less objective criteria). In order to encourage crit- 0)
ters to use generally smooth paths they are penalized for

“excessive turning”. In order to encourage symmetrical beAstonishineg this program has not been “cleaned up” to

havior and discourage looping paths, the critters are penglyaie it more readable as is often done when using the Ge
ized for “unbalanced turning”. Statistics on turning are ac

netic Programming paradigm. This is the unretouched pro-

cumulated during the run, a sum of all turn angle magniy am exactly as evolved. Despite this program’s apparent

tude;, a sum of signed turn angles, and a counF of Ie'ct'vegimplicity, analyzing its operation is challenging. Its is ap-
sus-right steps. A controller that made the maximum lega{yently trying to avoid collisions with obstacles and

turn each time step would receive the “most harsh” excessiYfenqs "hased somehow on its relative perception of friends

turn penalty of 0.5, whereas a controller that never turneg,,4 predators. Figures 2 and 3 show the “trail” of all simu-

would get value of 1.0 (i.e.: no penalty). The penalty fofj5tion steps for this program for the two sets of initial con-
“unbalanced turning” is analogous. ditions.

Using a single fitness test will produce a controller for solv-
ing the one exact situation represented by the fithess te
However this solution may turn out to be very fragile anc
opportunistic. It may well have incorporated expectations ¢
incidental properties of the specific fithess test.

To strive forrobust behavior we need an alternative to a sin-
gle fitness test. One solution would be to randomize som
aspect of the world. This is an appealing approach since fi
ness trials in nature are effectively randomized. When rar
domization was attempted in these experiments, it becan
clear that the noise injected into the fitness values made
very hard for both the human experimenter and for the evc
lution software to determine if progress was actually bein
made. Instead each controller was tested on two sets of ir
tial conditions, the starting positions and orientations of th¢
critters and predator are “randomized” using a restartable Figure 2: Herd-D, after 6600 runs, first of two trials
pseudo-random number generator which is reset for each new

controller being tested. This has the effect of discouraginghe opaque symbols are laid down sequentially, so wher
fragile solutions, without introducing uncorrelated noise intawo paths cross the one that appears to be on top happene

the fitness measure. later in time. The wider path is the predator. Sharp turns in
the predator's path generally correspond to a “prey capture
8 Results and retarget” event. Wide, smooth turn usually indicate it is

in “prowl mode”.
The results of two runs of cooperative group motion evolu-

tion are discussed below. Note that the fitness values speci-
fied below are normalized to the size of the herd and so are
not directly comparable except for identical herd sizes.

In the run called Herd-D there were 20 critters in the herd.
The SSGP “gene pool” had a population of 200 programs.
Minimum turn radius was enforced by the strict method:
critters died if the turned too much. After about 6600 new
individuals were created and fitness tested, the program that
had attained the best fithess of 12% was:



amount each simulation step. After about 2000 new indi-

STy, S A viduals were created and fitness tested, the program that ha
L . e, SRR . )
A SN . R B vl attained the best fitness of 13% was:
2 qﬁ"ﬁ svn b)‘lh"...".'.i-::-':‘.’e«vf:“ $§2
S i OO LT S v . .
f‘@ f . "!J,ﬁy)’}}?},)v)‘)% TH (ifite (look-for-obstacle (iflte (look-for-obstacle 0.1) (look-
A R ;;3?" s o for-friend (look-for-friend 0)) (turn (look-for-friend (+ (ifite
X f ’g,’ %"?“@ s gg’ "é (look-for-friend 0.1) (look-for-obstacle (look-for-friend 0))
5& E ;55‘,‘377')"‘,# ; 5: o (look-for-predator (look-for-obstacle (turn (+ 0.01 (look-
%ﬁ "4,‘@"‘ % g 225 5vpbY) §’§ for-obstacle 0.1)))) ) (turn (turn 0))) (look-for-predator
.‘;ﬁ ‘«F(; Y “g t (look-for-obstacle 0.1))))) 0)) (* 0.001 (look-for-friend
E’fé «‘Jf(«(&’«(ﬁ% i W 0.01)) (+ 1 (ifite (look-for-obstacle (iflte (look-for-obstacle
g@ %_ g T 0.1) (look-for-friend (look-for-friend 0)) (turn (look-for-
a’f;\; (f(‘(; \% g friend (+ (iflte (look-for-friend 0.1) (look-for-obstacle (look-
’;% [ é kg for-friend 0)) (look-for-predator (look-for-obstacle (turn (+
12 S aaN ! % 0.01 (look-for-obstacle 0.1) )))) (turn (turn 0))) (look-for-
K S O N e Y . .
N S et predator 0)))) 0)) (* 0.001 (look-for-friend 0.01)) O (turn

(look-for-obstacle 0.1)))) (turn (look-for-obstacle 0.1)))
Figure 3: Herd-D, after 6600 runs, second of two trials

This code is pretty convoluted and essentially impossible to
It can be seen (in animation if not in these static diagrams)nderstand. It was not clear to the author that it could be
that most of the critters parish early due to collisions or presimplified significantly. Worth noting perhaps is that it
dation while two or three survivors manage to escape inteontains several small “core” strategies such as:
the upper right hand corner and swoop around out of sight of
the predator. Figure 4 shows a plot of best-of-run fitness (turn (look-for-obstacle 0.1))

and population-average fitness after every 200 individuals. (turn (+ 0.01 (look-for-obstacle 0.1)))
(turn (look-for-friend ...))

These fragments implement interacting obstacle and critter
avoidance. (For example, the first fragment causes turning
in the positive direction based on how strongly an obstacle
is perceived at an angle of 0.1 revolutions from the current
heading. The closer the obstacle is, the sharper the turn wil
be.) It is not immediately clear if this controller imple-
ments predator evasion at all. Figures 5 and 6 show the
“trail” of all simulation steps for this program for the two
sets of initial conditions.
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Figure 4: Herd-D, fitness versus time

In the run called Herd-G there were 16 critters in the herc:
The SSGP “gene pool” had a population of 30 programs Figure 5: Herd-G, after 2000 runs, first of two trials
which is quite small. Minimum turn radius was enforced by

the permissive method: critters could “ask” for any amouniote that in Figure 5 the predator becomes wedged in the
of turn angle, but they would be allowed only a certairconcavity at the top center. Since the predator does not dit



when it collides with an obstacle, it continues to “tunnelin natural animals. Thoughts about how to proceed beyond
through” to the other side of the obstacle. This is not athese limitations are given in the next section.

evolution problem, it is just a bug in the author’s design of

the predator's control program. On the other hand, there is no question that vision-based co
ordinated group motion strategies have begun to emerge
given only the requisite primitives, an appropriate fitness
measure, and the action of Darwinian evolution through
natural selection and survival of the fittest.

10 Future Work

Generally the future goals of this work are to find increas-
ingly competent, robust, and graceful coordinated group mo-
tion. In the current model, where the predator is slower than
the prey, a herd of really skillful critters should be able to
evade the predator indefinitely. We would like to see critters
that can form into groups (and so discourage predation]
while coordinating their motion to avoid collisions with
each others. In the results presented here we can see the b
ginnings of these behaviors, but they are not nearly as vivid
and graceful as the examples seen in natural herds.

Figure 6: Herd-G, after 2000 runs, second of wo trials One problem with the current model is that while critters

. i . __can perceive the position of herd-mates and the predator, the
Figure 7 shows a plot of best-of-run fithess and population- ) . . .

. o can not sense the other’'s orientation. Presumably this
average fitness after every 30 individuals. o . . .

would be very significant information. One simple way to

provide this cue would be to consider the “front” and “rear”
of the critters (and predator) to have distinct colors.  This
would allow critters to evolve a different reaction to seeing a
herd-mate directly ahead based on its orientation. If a critter
sees another critter's “front” directly ahead, it indicates a po-
tential collision which must be avoided. Whereas seeing an-
other critter’s “back” directly ahead is normal while herding
and requires no reaction.

It is anticipated that better, more robust, coordinated group
motion could be be obtained by pitting the critters sequence
of ever more sophisticated predators. But that approach put:
a significant burden on the human designer of the predators
As the critters become proficient at predator avoidance, it
would become increasingly difficult to come up with preda-
tors that would challenge them. These considerations sug
gest that perhaps the predator shoatitvolve with the
critters. This kind of coevolution of problem-solvers and
problem-poser has been examined in [Hillis 1990]. The fit-
Figure 7: Herd-G, fitness versus time ness of an evolved predator would be judged by how well it
could catch the critters. In the confrontation between a
) given critter and predator, a capture early in the simulation
9 Conclusions would reflect poorly on the critter and well on the predator.

o _Conversely, a capture late in the simulation (or an escape
solutions to the problem of robust coordinated group motion

in the presence of obstacles and under threat of predation.
None of the behaviors evolved in this work are anywhere
near as robust and general purpose as herding behaviors seen
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