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Chapter 13

Spectral Processing in Auditory Cortex

Christoph E. Schreiner, Robert C. Froemke, and Craig A. Atencio

Abbreviations

AAF anterior auditory field
ADF anterior dorsal field
AI primary auditory cortex
AII second auditory cortical field
AL antero-lateral field
BF best frequency
BW bandwidth
CF characteristic frequency
CL caudolateral field
CM caudal medial field
DC dorsal-caudal field
DCB dorsocaudal belt
DRB dorsorostral belt
DZ dorsal zone
EP ectosylvian fields
FRA frequency response area
FSU fast-spiking unit
FTC frequency tuning curve
GABA gamma-aminobutyric acid
MGB medial geniculate body
MI mutual information
MID maximally informative dimension
ML medial-lateral field
MM middle medial field
MTF modulation transfer function
P postnatal day
PAF posterior auditory field
PDF posterior dorsal field
PPF posterior pseudosylvian field
PSF posterior suprasylvian field
Q quality factor
R rostral field

C.E. Schreiner (�)
Coleman Memorial Laboratory, Department of Otolaryngology,
W.M. Keck Center for Integrative Neuroscience, University of
California, School of Medicine, San Francisco, CA 94143–0732, USA
e-mail: chris@phy.ucsf.edu

RF receptive field
RM rostro-medial field
RSS random spectral stimulus
RSU regular-spiking unit
RT rostro-temporal field
SRAF suprarhinal auditory field
STA spike-triggered average
STRF spectro-temporal receptive field
TORC temporally orthogonal ripple combinations
VCB ventrocaudal belt
VPAF ventroposterior auditory field
VRB ventrorostral belt

1 Introduction

Historically, the main purpose of the auditory system has
been interpreted as a frequency analyzer (Ohm 1843; von
Helmholtz 1863) that provides a faithful spectral representa-
tion of the received acoustic waveform. Analysis and charac-
terization of spectral processing, beginning with the principle
of parallel signal processing in narrow, partially overlapping
frequency channels in the cochlea, has provided a frame-
work for all subsequent stages of computation, information
extraction and encoding in the auditory system, including
the auditory cortex. This still evolving bottom-up charac-
terization around the concept of a set of parallel frequency
filters has been significantly enhanced by including tempo-
ral or dynamic and nonlinear aspects of spectral processing.
Quantitative and rigorous systems and information analysis
approaches have resulted in more complete characterizations
of spectral encoding and decoding abilities throughout the
auditory system.

However, the view of the ear as a mere frequency analyzer,
even a nonlinear, dynamic one, is an incomplete characteriza-
tion of the auditory system, especially when it comes to more
central stations, including the auditory cortex. Firstly, the
ability to process complex, natural acoustic environments,
including transmission of communication sounds in the
presence of background noise or competing signals in a
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complex or reverberant auditory environment, is likely to
require special mechanisms that may not be apparent using
simple spectral analysis methods.

Secondly, and perhaps more importantly, our experience
of the world around us is not simply an accurate reflection
of its physical features. Determining the meaning of stim-
uli, and generating behaviors that lead us to successfully and
efficiently achieve our immediate and long-term goals, is an
inherent aspect of sensory processing. Consequently, sensory
stimuli often need to be grouped according to their category
membership in behaviorally equivalent classes of sounds. For
interpretational purposes, sound classes require a grouping
process into categories along various dimensions that can
be perceptual, in that stimuli share perceivable attributes, or
interpretational, in that stimuli share a behavioral response.
A purely spectrally based solution to this problem seems
unlikely.

Conceptually, cortical stimulus representations must
employ mechanisms to compensate for natural variations in
stimuli, such as intensity, timing, vocal tract length, noise
interference and speed of presentation, that otherwise may
hamper if not preclude efficient and robust sound classifica-
tion and categorization tasks essential for speech perception
(King and Nelken 2009; Winkler et al. 2009). Potential
auditory cortical stimulus encoding principles that differ
from subcortical stations have been proposed: (i) shifts from
temporal coding to rate-coding (Wang et al. 2008); (ii) non-
isomorphic transformations of acoustic features (Barbour
and Wang 2003b; Wang 2007); (iii) emphasis of natural
sound statistics (David et al. 2009; Mesgarani et al. 2009;
Nagel and Doupe 2008; Sen et al. 2001; Theunissen and
Shaevitz 2006; Woolley et al. 2006); (iv) creation of fea-
ture combinations toward an “object”-based representation
(Bar-Yosef and Nelken 2007; King and Nelken 2009); and
(v) creation of representational invariances, e.g., for intensity
(Billimoria et al. 2008; Sadagopan and Wang 2009), back-
ground noise robustness (Mesgarani et al. 2009; Nagarajan
et al. 2002), or sound source properties (Grana et al. 2009;
Margoliash and Fortune 1992; Theunissen and Shaevitz
2006). These cortical processes may include stimulus trans-
formations into internal representations that may no longer
be faithful to their physical structure (Wang 2007) and have
to reflect influences from behavioral states, such as atten-
tion and vigilance, in the context of optimal behavioral task
performance (Edeline 2003; Fritz et al. 2007a, b).

While spectral analysis aspects alone may seem inade-
quate in addressing these issues, new estimation methods
of dynamic spectral processing (Atencio et al. 2008, 2009;
Bruno and Simons 2002) indicate that emergent processing
aspects do exist in auditory cortex and that they may con-
tribute to some of these proposed encoding principles of
auditory stimuli.

The types and spatial distribution of physiological
response properties have provided crucial information for

deciphering principles and mechanisms underlying process-
ing in cat and primate visual cortex (Callaway 1998; Henry
1991; Hirsch 2003; Lund 1990). Similarly, in auditory cor-
tex, non-uniform spatial distributions of functional properties
have been found for many basic response properties reflect-
ing regional specializations.

Expansion of the central auditory representation of a given
frequency from a point in the cochlea to many neurons tuned
to the same frequency in cortex introduces the ability to
treat many different aspects of required multiple analyses
in parallel. This is further reflected in a reduction of redun-
dancy between different stations: cortical neurons are less
redundant than subcortical neurons suggesting that different
cortical neurons, even when tuned to the same frequency,
can convey different perceptual or interpretational aspects of
stimuli (Chechik et al. 2006; Nelken and Bar-Yosef 2008).

Spectral processing in the auditory forebrain appears to
undergo major transformations relative to the initial coding
of acoustic information in the cochlea and compared to vari-
ous principles that shape brainstem processing. However, our
knowledge of the nature, purpose and mechanisms of these
cortical transformations, especially in light of the dual pur-
pose of stimulus representation and stimulus interpretation,
is still rather rudimentary. The need for profound changes
in the way spectral information must be processed becomes
evident from the very diverse roles that auditory cortex has to
play. In the following sections, we review some of the emerg-
ing and emergent properties of auditory cortical processing
following a largely historical development in the sophistica-
tion of the employed spectral analysis methods. The focus
is on more recent accomplishments. Several recent reviews
(Escabí and Read 2003; Escabí and Read 2005; Schreiner
et al. 2000; Sutter 2005; Young 2008) and other chapters in
this book complement and often expand on aspects of spec-
tral auditory cortical processing. If data are available, we
consider spectral processing at different structural levels of
cortical organization, such as cell types, cortical layers, and
cortical fields and subfields, especially within the framework
of general divisions such as primary and non-primary areas
or auditory core, belt and parabelt areas – connectionally
differentiated by thalamic input sources and cortico-cortical
projection patterns (Hackett 2008; Hackett and Schroeder
2009; Kaas and Hackett 2000).

2 Spectral Analysis of Tonal Stimuli

2.1 Frequency Specificity

The most basic approach to characterize the excitatory
spectral response of auditory neurons has been to present
single tones of different frequencies and intensities to the
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ear and record the evoked neuronal responses. From the
responses, different response profiles, such as the frequency
tuning curve (FTC), frequency response area (FRA), or iso-
intensity frequency profile of excitatory responses can be
reconstructed. Two main aspects of response characteriza-
tion commonly have been extracted. The first is the frequency
preference or sensitivity of a neuron as captured by the char-
acteristic frequency (CF), the tone that produces a response at
the lowest intensity of any tested frequency, or the best fre-
quency (BF), the tone that produces the strongest response
for a given sound intensity. The second is the frequency
selectivity or sharpness of tuning, often expressed as the
bandwidth (BW) or range of frequencies, at a given sound
intensity, that produce an excitatory response. Alternatively,
a relative measure of sharpness of tuning, the Q-factor, is
used which is defined as CF/BW and stated for a given sound
intensity above minimum response threshold, such as Q10,
Q20, or Q40.

Areal Organization: Many neurons in early auditory cor-
tical stations, such as primary auditory cortex (AI), appear to
have fairly simple, often V-shaped FRAs (Fig. 13.1), espe-
cially in various anesthetized preparations (e.g., rats: Gaese
and Ostwald 2001; Sally and Kelly 1988; cats: Brugge and
Reale 1985; Phillips and Irvine 1981; monkeys: Merzenich
and Brugge 1973; Recanzone et al. 2000). Frequency speci-
ficity of cortical neurons, i.e., the presence of frequency-
specific channels, is reflected in a wide range of CFs for
many cortical fields and is largely independent of the partic-
ular cell type such as excitatory pyramidal cells or inhibitory
interneurons (Atencio and Schreiner 2008). For many cor-
tical areas, the full range of CFs, corresponding to the
species-specific cochlear frequency extent, is present.

Convergent frequency information from the two ears is
usually matched in auditory cortex, resulting in similar CFs
for the two inputs. CFs derived from contralateral stim-
ulation can be, on average, slightly higher (0.06 octave;
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Fig. 13.1 Examples of cortical frequency response areas (FRAs; cat
AI). The firing rate during the presentation of tones of different fre-
quency and intensity are displayed. a Broadly tuned V-shaped FRA. b
Narrowly tuned, I-shaped FRA. c Non-monotonic, O-shaped FRA. d
Multipeaked FRA. e Diffuse FRA. f Single-tone FRA. g, h Two-tone
FRAs. One tone is varied in frequency and intensity, similar to the

single-tone FRAs in a–e. A second, constant tone at CF and at mod-
erate to low levels (black dot) is presented conjointly with the varying
tone to create an increase in baseline activity. This allows distinction of
excitatory regions (firing rate above baseline) and suppressive regions
(firing rate below baseline, gray area in H). Adapted from Sutter et al.
(1999)
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squirrel monkey (Cheung et al. 2009)). The significance of
interaural CF asymmetry in normal hearing animals, how-
ever, is unlikely to be physiologically meaningful. Aurally
asymmetric hearing loss can result in mismatch of conver-
gent frequency information in cortical neurons with potential
perceptual consequences (Cheung et al. 2009).

Stimulus information is distributed across a wide range of
cortical neuron types, laminae, and areas. Knowledge of the
spatial layout of information processing is important because
it can provide crucial insights into the local functional
tasks and algorithms (Eggermont 2001; Schreiner and Winer
2007). In primary/core cortical areas, neighboring neurons
often have similar CF values. Spatial analysis of cortical
frequency distributions obtained with extracellular, action
potential-based mapping reveals that local clustering of sim-
ilar functional properties, i.e., exceeding the expectations
from random parameter distributions, is a general feature
of many response and receptive field parameters (Schreiner
and Winer 2007). Only few parameters, however, show a

systematic spatial gradient across an entire cortical field. For
CF, such functional gradients have been shown for many
auditory cortical areas across many different species (e.g.,
Table 13.1). For classifying the degree of local clustering and
global CF gradients, little quantitative information is avail-
able although precise measures have been used (Imaizumi
et al. 2010; Bandyopadhyay et al. 2010; Rothschild et al.
2010). A coarse classification can, however, be derived
for some of the more completely assessed animal models
based on general descriptions of their CF organization in
primary/core and non-primary/belt areas. Fields can be con-
sidered to have “strong” tonotopy if they show both local and
global frequency organization, commensurate with a smooth
CF gradient across most of the cochlear frequency range
(e.g., cat AI, Merzenich et al. 1975; Fig. 13.2). “Weak” tono-
topic fields are considered to have considerable variability
in local clustering and neighborhood relationships but show
evidence of a global gradient (e.g., cat PAF; Loftus and Sutter
2001; Reale and Imig 1980). “Non-tonotopic” areas may still

Table 13.1 Tonotopy and spectral bandwidth properties across cortical fields in six species. Classification of the fields into primary/core and
non-primary/belt regions was based on a survey of several studies

Species Field Field class Tonotopy Spectral tuning Species Field Field class Tonotopy Spectral tuning

Carnivores
Cat Ferret

AI P Strong Narrow AI P Strong Narrow
AAF P Strong Medium AAF Np Strong Medium
PAF P Weak Medium ADF Np No Medium
VPAF P Weak Medium PPF Np Weak Medium
DZ Np No Broad PSF Np Weak Medium
AII Np No Broad PDF Np No Medium
EP Np No Broad

Rodents
Rat Guinea Pig

AI P Strong Narrow AI P Strong Narrow
AAF P Weak Medium DC P Strong Narrow
PAF P Weak Medium DRB Np No Medium
VAF Np Weak Broad VRB Np No Broad
SRAF Np Weak Medium DCB Np No Broad

VCB Np No Broad
Primates
Macaque Marmoset

AI P Strong Narrow AI P Strong Narrow
R P Strong Narrow R P Strong Narrow
RT P Weak Medium RT P Strong Narrow
CL Np Weak Broad CM Np Weak Medium
ML Np Weak Broad
AL Np Weak Medium
CM Np Weak Broad
MM Np Weak Broad
RM Np Weak Medium

Areas with some uncertainty regarding this classification are indicated in italic. Classification of tonotopy and spectral tuning was based largely on
verbal description of these properties, since uniform quantitative measures (see text) are rare beyond primary fields. Among the studies that were
surveyed are: Bendor and Wang (2008), Bizley et al. (2005), Imaizumi et al. (2004), Hackett et al. (1998), Hackett (2008, 2010), Kajikawa et al.
(2008), Kowalski et al. (1995), Kusmierek and Rauschecker (2009), Loftus and Sutter (2001), Merzenich and Brugge (1973), Nishimura et al.
(2007), Polley et al. (2007), Rauschecker and Tian (2004), Recanzone (2000, 2008), Rutkowski et al. (2002), Sally and Kelly (1988), Schreiner
and Cynader (1984), and Tian and Rauschecker (2004).
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Fig. 13.2 Spatial distribution of
CF and sharpness of tuning (Q)
across cat AI and AAF. a
Schematic view of cat auditory
cortex. Recording locations of
example maps are superimposed
on AI and AAF, respectively. b
Cat AI CF map. c Cat AI Q40
map. d Cat AAF CF map. e Cat
AAF Q40 map. f Cumulative
cortical area as a function of CF.
Solid lines (gray, purple; no data
symbols) are two cat AI
cumulative area functions for two
AI maps. The area functions with
data symbols are from four cat
AAF maps. Adapted from
Imaizumi et al. (2004)

contain some local CF clustering but show no indication
of a single spatial gradient covering significant portions of
the cochlear frequency range (e.g., cat AII; Reale and Imig
1980; Schreiner and Cynader 1984). For two primates, two
carnivores, and two rodents, with fairly advanced characteri-
zations of several cortical fields, 11 of 16 (70%, Table 13.1)
primary/core fields exhibit strong tonotopy while only 1 of 21
(5%) non-primary/belt areas show this trait. Conversely, none
of the primary/core fields lacks tonotopy whereas 9 of 21
(43%, Table 13.1) non-primary/belt areas are non-tonotopic.
Differences in map structure may reflect differences in under-
lying intracortical circuits, related to differences in input
statistics, local algorithms, or in behavioral tasks require-
ments (Chklovskii and Koulakov 2004; Schreiner and Winer
2007).

Even in primary/core areas, the frequency representa-
tion of sounds, as reflected in the distribution of CFs,
is not a faithful replica of the cochlear frequency map.
Fine-grain electrophysiological cortical frequency mapping

usually shows a clear CF gradient in cat AI (Fig.13.2). The
mean gradient changes as a function of CF with the steepest
slope below 5 kHz and differs from the cochlear frequency
gradient. The steep section corresponds to a smaller mag-
nification factor and a relative under-representation of those
frequencies (Merzenich et al. 1975). However, the AI tono-
topic gradient is relatively smooth compared to that in other
primary fields, such as the anterior auditory field (AAF).
Cat, gerbil, and ferret AAF all express gross local distor-
tions and apparent omissions in their CF representations that
appear to be unique to each individual animal and species
(Bizley et al. 2005; Imaizumi et al. 2004; Thomas et al.
1993; Fig. 13.2). The functional implications of these uneven
frequency representations remain unclear but likely reflect
specific environmental or task-specific adaptations of corti-
cal or subcortical processing that benefit from non-uniform
spectral emphasis.

A further reduction or even elimination of tonotopy
is often connected to a loss of neuronal frequency
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selectivity near response threshold. This is the main cause for
the virtual absence of frequency organization in cat auditory
field AII (Schreiner and Cynader 1984) and ferret ante-
rior dorsal field (Bizley et al. 2005) and is suggestive of
different types of information transformation between cor-
tical stations. The computational goals and advantage of
these variations and their proper functional interpretation
are difficult to assess without clear hypotheses about the
implemented perceptually and behaviorally relevant tasks.

Systematic degradations in the fidelity of auditory cortex
tonotopy across areas seem related to other hierarchical area
classifications, such as in the core, belt, and parabelt scheme
(Rauschecker 1998). However, tonotopy alone cannot serve
as the single functional parameter to classify fields regarding
their status as primary/core of non-primary or belt, which
requires additional information based on source and target
connectivity of its projections (e.g., Hackett 2010; Hackett
et al. 1998; Kaas and Hackett 1999).

Anatomical studies of auditory cortex have revealed that
all extrinsic areal connections, whether tonotopic, non-
tonotopic, multisensory, or limbic, show a high degree of
connectional topography (Lee and Winer 2005; Schreiner
and Winer 2007). Local topographies in convergent inputs
create distinct conditions for functional processing and it is
not surprising to see topographic principles expressed by sev-
eral functional aspects in auditory cortex. It is conceivable
that spatial orders similar to the CF organization are present
in areas outside the primary/core areas although it is not
clear, at this time, what the functional parameters are that
may be organized and where they fall along a spatial order
hierarchy.

Laminar Organization: Evidence in support of a precise
anatomical lamination of auditory cortex is manifold and
compelling (Kelly and Wong 1981; Mitani and Shimokouchi
1985; Mitani et al. 1985; Winer 1984a, c; Winguth and
Winer 1986). Laminar borders, defined by cell structure, con-
nections, or chemical anatomy, are precise to within a few
micrometers, as is the spatial segregation of afferents (Winer
1992). Each layer differs in its neuronal architecture and
cytoarchitecture, GABAergic organization, thalamic input,
commissural input and output, cortico-cortical input and out-
put, and corticofugal projections to the telencephalon and
brainstem (Winer 1992; see Chapter 2).

In AI, cells are vertically arranged in a more conspicuous
manner than in other sensory systems (Jones 2000; Winer
1984b). This vertical arrangement is accompanied by highly
specific interlaminar connections (Barbour and Callaway
2008; Mitani and Shimokouchi 1985; Mitani et al. 1985;
Wallace et al. 1991). This vertical microcircuitry has been
considered a key element of cortical processing (Mountcastle
1997). Thus, the connections between layers follow a precise
and characteristic pattern that offers the opportunity to com-
pare the function of specific components of the cortical

microcircuit (Martinez et al. 2005). Functionally defined
columns may not be a fundamental (canonical) building
block or provide a transcendent principle given their variabil-
ity in presence and appearance in some species (Horton and
Adams 2005). However, the vertical circuit – influenced by
horizontal inputs and feedbacks – does provide a more robust
organizational principle that may contain the key to under-
standing the local transformations and output patterns that
emerge from every point in the horizontal sheet of cortical
cells (Atencio and Schreiner 2010a,b; Atencio et al. 2009).

A basic feature of sensory cortex is that certain response
parameters are conserved across cortical depth, especially
with regard to the location of the receptor surface (Linden
and Schreiner 2003). In auditory cortex, the evidence is com-
pelling that this is also the case for frequency sensitivity.
Vertical electrode penetrations across all cortical layers often
show a clear and moderately tight alignment and corre-
spondence of CFs, supporting a strong columnar organiza-
tion principle, at least in primary/core areas (Abeles and
Goldstein 1970; Phillips and Irvine 1981; Shen et al. 1999;
Wallace and Palmer 2008; Atencio and Schreiner 2010a,b;
Atencio et al. 2009). Similar studies in non-primary/belt
areas are still lacking. In some subregions of cat AI, e.g., in
the central narrowly tuned section, the average deviation of
CFs in an orthogonal penetration across all cortical layers is
only 0.1–0.2 octaves (Fig. 13.3) (Abeles and Goldstein 1970;
Atencio and Schreiner 2010a,b). CF variations of similar
magnitude across depth have been observed in unanesthe-
sized mice (Shen et al. 1999). Other regions in cat AI proper,
such as near the ventral or dorsal borders, can show a larger
CF scatter across layers with some CFs within a penetra-
tion deviating by as much as 1 octave (Abeles and Goldstein
1970; Schreiner and Sutter 1992; Phillips and Irvine 1981;
Atencio and Schreiner 2010a). This indicates that a strict
columnar frequency organization, preserving close func-
tional neighborhood relations across different layers, may
be common, especially in cortical core areas, but is not a
universal principle of auditory cortex organization. In fact,
recent studies of the fidelity of the tonotopic organization
in mouse AI, using two-photon calcium imaging techniques,
have revealed evidence for a highly fractured local frequency
organization in the horizontal domain of the upper cortical
layers (Bandyopadhyay et al. 2010; Rothschild et al. 2010).
At a fine spatial scale, local CFs differed by up to an octave
creating a highly diffuse local frequency organization, while
maintaining a rather coarse tonotopic gradient on a global
scale. By contrast, mapping in the thalamic input layers has
demonstrated a reasonably strong tonotopic organization in
mouse AI (Stiebler et al. 1997). These discrepancies in the
observed fine and global frequency organization, such as
tight alignment across layers in some cases and large local
CF scatter within a cortical layer in other cases, require
further attention because it has profound consequences on
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Fig. 13.3 Laminar distribution
of spectral response properties. a,
b Vertical electrode penetrations
in cat AI with low and high
variability in the CF distribution.
c,d Depth profile of spectral
tuning width (Q; high values
correspond to more narrow
tuning) for the same penetrations
shown in (a) and (b). e, f Laminar
profile of best spectral
modulation frequency
distribution for the same
penetrations shown in (a, c) and
(b, d), respectively. Data based
on Atencio and Schreiner (2010b)
and unpublished observations by
Atencio and Schreiner

our understanding of cortical processing principles. Issues
that certainly play a significant role in accounting for
these differences are related to methodologically determined
selectivity biases toward cell types, spatial integration, and
anesthesia influences. Further biases arise from uncertain-
ties regarding developmental stage, environmental properties
and demands, and species-specific organization and process-
ing principles. Species-, areal-, laminar-, and cell-specific
computational tasks are not stereotypic but likely involve
many different algorithms and serve different goals. The
main limitation in interpreting any of the auditory cortex
organizational features is, for many species, a lack in under-
standing the purposes served by individual processing steps.
Together, these points emphasize the need for thorough com-
parative studies and highlight the limits of interpretational
generalizations.

2.2 Frequency Selectivity

For tonotopy, quite precise maps can be derived from near-
threshold pure-tone responses, especially in primary/core
areas, but the validity of an interpretation of the frequency
sensitivity for suprathreshold stimuli is limited without con-
sidering other aspects of stimulus parameter covariations,

such as the spread of excitation across the receptor sur-
face with sound intensity and systematic changes in filter
bandwidth in the cochlea and in subcortical processing sta-
tions, as well as behavioral task relevance. Thus, frequency
specificity does not reflect the actual frequency selectiv-
ity of neurons and, consequently, is a poor substrate for
understanding spectral processing, especially of broad-band
sounds.

Areal Organization: Excitatory bandwidths of neurons
have generally been assessed by varying pure-tone stimuli
over a large range of frequencies and intensities (Fig. 13.1).
For many cortical neurons this results in a single, circum-
scribed frequency/intensity region of elevated activity. The
differences in upper and lower frequency limits of the exci-
tatory region serve as a measure of excitatory bandwidth,
although one has to take into consideration that the range
can strongly depend on sound intensity. As a consequence,
frequency selectivity measures are often expressed with ref-
erence to a specific stimulus intensity, such as 10 or 40 dB
above minimum response threshold. In primary/core areas,
many neurons show a fairly narrow excitatory range, espe-
cially in the anesthetized preparation. Other fields show low
frequency selectivity for all neurons and across all stimulus
intensities. Even in primary/core areas, the range of Q and
BW values can span 1–1.5 orders of magnitude (Phillips and
Irvine 1981; Schreiner and Sutter 1992; Cheung et al. 2001a;
Kowalski et al. 1995; Recanzone et al. 1999). This means
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that the range of potential spectral integration – as reflected
in the neurons output – can be as narrow as one tenth of an
octave or wider than five octaves.

At least in primary/core fields, there is a tendency for Q to
increase as a function of CF indicating that excitatory FRAs
are relatively narrower (on a logarithmic frequency scale) at
high frequencies (Aitkin 1976; Batzri-Izraeli and Wollberg
1992; Cheung et al. 2001a; Pelleg-Toiba and Wollberg 1989;
Phillips and Irvine 1981; Recanzone et al. 1999).

While a quantitative description of the frequency selec-
tivity of neurons across many auditory fields and species
is still not possible due to lack of sufficient data, a coarse
classification can be attempted for some of the more com-
pletely assessed animal models based on general descriptions
of their frequency tuning properties in primary/core and
non-primary/belt areas. Fields can be classified according
to narrow, medium, or broad frequency tuning/selectivity.
For our purpose, this corresponds for highly selective neu-
rons to bandwidth values below ∼0.5 and ∼1.5 octaves at
sound intensities 10 and 40 dB above threshold, respec-
tively, and for low selectivity neurons to bandwidths above
∼1.5 and ∼4 octaves, respectively. Among the six model
species (Table 13.1), ∼60% of the primary/core fields can
be classified as highly frequency selective (narrow), while
none were found to have low selectivity (broad). Conversely,
52% of the non-primary/belt areas have low frequency selec-
tivity (broad) and none were classified as highly selective.
Similar to the classification based on tonotopy, frequency
selectivity alone does not provide a functional differentia-
tion of fields that accurately corresponds to that based on
anatomical/connectivity aspects. Relating frequency selec-
tivity to tonotopy estimates strengthens the global field
classification. All ten narrowly tuned fields (Table 13.1) are
primary/core areas and have strong tonotopy. Conversely, all
eleven broadly tuned areas are non-primary/belt and 55% of
these show no evidence of a tonotopic gradient. Eleven areas
with weak tonotopy and medium frequency selectivity split
nearly evenly between primary/core and non-primary/belt
regions underscoring that basic frequency processing aspects
alone cannot align functional and anatomical cortical field
classifications.

In some primary/core fields, clusters of neurons sharply
or broadly tuned to frequency are segregated along the
iso-frequency axis of the tonotopic map. Cortico-cortical
connectivity in cat AI finds that broad or narrow spectral
bandwidth clusters predominantly are connected with other
clusters of the same property (Imaizumi et al. 2004; Read
et al. 2001), thus creating a functional and connectional
mosaic of interconnected, interleaved modules of differ-
ent spectral integration. This topographic arrangement can
be interpreted as an iterated map of spectral integration
(Schreiner et al. 2000) that is independent of, or orthogo-
nal to, the frequency decomposition domain of the receptor

surface. A clear functional, task-directed interpretation of
these modules is still elusive but they may enhance pro-
cessing of spectral shape as in the determination of vocal
tract properties (Calhoun and Schreiner 1998; Versnel and
Shamma 1998). Functional significance, however, needs to
be established related to particular steps in a sequence of
transformations and integrations rather than as an isolated,
disassociated phenomenon.

Non-uniform distributions of spectral integration proper-
ties are also seen in other primary fields, such as cat AAF
(Imaizumi et al. 2004), and in other species, such as the
ferret (Shamma et al. 1993; Bizley et al. 2005), owl mon-
key (Recanzone et al. 1999), and squirrel monkey (Cheung
et al. 2001a). However, in awake preparations, evidence of
spectral integration topography has not been unambiguous
(Recanzone et al. 2000).

The systematic change in spectral selectivity across AI
is significant for understanding the cortical representation
and processing of spectrally complex signals, like species-
specific vocalizations, speech, music, and ambient noise.
These topographies suggest that any incoming signal is
simultaneously processed through many filters with differ-
ent center frequencies and a broad range of bandwidths.
Spectral information in AI is extracted and represented
by multiple modules for frequency resolution along the
iso-frequency domain, and the center frequency of each
bandwidth module is aligned to the “frequency decom-
position” or tonotopic axis. Parallel analysis by multiple
bandwidths results in an iterative, multi-resolution repre-
sentation of information within each iso-frequency domain
differentially weighted by filter width. This parallel ana-
lysis may aid in the extraction and evaluation of com-
plex spectral shapes, e.g., formant structure of vowels, and
establish multiple, parallel output streams for further pro-
cessing (Mesgarani et al. 2008; Schreiner and Calhoun
1994; Shamma et al. 1993; Sutter 2005; Wang and Shamma
1995)

The heterogeneity of spectral integration properties across
primary and non-primary fields is in contrast to psychophys-
ically determined spectral integration that is relatively con-
stant at a “critical bandwidth” of ∼1/3 octave throughout the
cat hearing range (Ehret and Schreiner 1997; Nienhuys and
Clark 1979; Pickles 1975). The module-like spatial organi-
zation of Q values across CFs in AI and AAF may be related
to peripheral and thalamocortical mechanisms as well as to
the RF construction in auditory cortex (Miller et al. 2001;
Suga 1995; Sutter et al. 1999; Cheung et al. 2001a). Spectral
bandwidth is already influenced by cochlear tuning proper-
ties (Liberman 1978; Narayan et al. 1998) and is reflected
in subsequent processing stations. However, spectral integra-
tion differences in different frequency regions likely reflect
higher-order processing principles, perhaps reflecting spe-
cific behavioral tasks (e.g., Razak et al. 2007; Suga 1995) or
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neuroanatomical arrangements (Prieto et al. 1994a, b; Read
et al. 2002).

Anesthesia strongly affects the responses of neurons in the
central auditory pathway, from the dorsal cochlear nucleus
(Young and Brownell 1976) to the auditory cortex (Gaese
and Ostwald 2001; Sally and Kelly 1988; Schreiner and
Sutter 1992; Sutter and Schreiner 1991, 1995). In particu-
lar, the frequency selectivity in barbiturate- or higher dose
isoflurane-anesthetized animals (Sutter and Schreiner 1991,
1995; Cheung et al. 2001b) appears to be generally narrower
than in other anesthetic regimens, such as under halothane
(Moshitch et al. 2006), or in awake animals. For example,
awake rats and cats can show a 3–4 times wider bandwidth
of excitatory tuning curves than under barbiturate (Gaese
and Ostwald 2001; Qin et al. 2003). However, similarly
highly frequency selective and unselective neurons can be
encountered in both awake and anesthetized models (e.g.,
Abeles and Goldstein 1970; Moshitch et al. 2006; Schreiner
and Sutter 1992, 1995; Kadia and Wang 2003). The shift
toward higher frequency selectivity under certain anesthetic
regimens may be due to an increase in the effectiveness of
inhibition in the cortex. The consequences of bandwidth dif-
ferences due to anesthesia for the emergence and functional
interpretation of the wide range of spectral integration prop-
erties in auditory cortex and their relationship to behavior
remain to be fully evaluated.

Laminar Organization: Laminar differences in frequency
tuning bandwidths have been seen in several studies of cat,
bat, and rodent auditory cortex (Dear et al. 1993; Eggermont
1996; Norena and Eggermont 2002; Sugimoto et al. 1997;
Wallace and Palmer 2008; Atencio and Schreiner 2010a,
b). The tuning bandwidth was generally broader for single
neurons in the deep layers (IV to VI) compared to layers
I to III of the Guinea pig (Wallace and Palmer 2008) and
was sharpest for layers III and IV in the Mongolian ger-
bil (Sugimoto et al. 1997). In AI of ketamine-anesthetized
cats, layer-specific frequency selectivity was also present;
however, sites with fairly constant BW values across depth
were also encountered (Fig. 13.1d). On average, the cat
data also reflect a lower frequency selectivity for infragranu-
lar layers (Atencio and Schreiner 2010a, b). This indicates
that strict columnar invariance in frequency selectivity is
not the rule. In addition to layer-specific differences, pyra-
midal cells appear to have slightly higher frequency selec-
tivity than putative inhibitory interneurons when they are
recorded from within the same layer (Atencio and Schreiner
2008).

Overall, auditory cortex shows a wide range of frequency
specificity and selectivity. However, to adequately appreci-
ate this broad and varied repertoire of frequency filters and
its impact for signal analysis, other aspects of cortical sig-
nal encoding need to be taken into consideration (see below)
and, foremost, a better understanding of local and global

processing goals and algorithms has to be developed (e.g.,
Griffiths et al. 2004; King and Nelken 2009).

2.3 Shape of Frequency Response Areas

In primary auditory cortical fields, most extensively observed
in AI of various species, many frequency/intensity response
areas have a rather uniform V-shape under anesthesia,
i.e., the frequency selectivity decreases with increasing
intensity (Brugge and Reale 1985; Sally and Kelly 1988;
Phillips and Irvine 1981). However, a substantial propor-
tion of neurons have quite different FRA shapes, including
intensity-independent frequency tuning (I-shape), and cir-
cumscribed FRAs with no or substantially reduced responses
at higher sound intensities (O-shape) (e.g., Abeles and
Goldstein 1972; deCharms et al. 1998; Goldstein and
Abeles 1975; Pelleg-Toiba and Wollberg 1989). Some neu-
rons have multiple, non-continuous response areas (multi-
peaked) (Abeles and Goldstein 1972; Sutter and Schreiner
1991, Kadia and Wang 2003; He and Hashikawa 1998)
or diffuse/patchy response areas composed out of many
local intensity/frequency combinations without a clear, joint
appearance that fits into standard classification schemes
(Moshitch et al. 2006; Sadagopan and Wang 2009). A higher
incident of complexly shaped response patterns can be found
in unanesthetized and halothane preparations (Abeles and
Goldstein 1972; deCharms et al. 1998; Pelleg-Toiba and
Wollberg 1989; Kadia and Wang 2003; Moshitch et al. 2006;
Sadagopan and Wang 2009).

A large diversity of FRA shapes, including some with
very broad frequency tuning and some with multiple dis-
tinct excitatory frequency ranges, are also seen in other
cortical fields, especially in non-primary areas (e.g., cat
PAF; Loftus and Sutter 2001; Horseshoe bat; Radtke-
Schuller and Schuller 1995). However, more quantitative
studies of non-primary FRAs are needed to fully assess
systematic filter-shape differences between most cortical
fields.

Under anesthesia, most AI neurons have a single peaked
FRA (Phillips and Irvine 1981), i.e., they have a single region
of low-intensity responses centered at the CF. However,
multipeaked tuning curves with two or three distinct low-
threshold peaks have been described (Abeles and Goldstein
1972; Sutter and Schreiner 1991, Kadia and Wang 2003;
Fitzpatrick et al. 1998; He and Hashikawa 1998; Oonishi
and Katsuki 1965; Wenstrup and Grose 1995). In AI of
awake marmosets, 20% of neurons have multipeaked FRAs.
In both cats and marmosets, the excitatory spectral peaks in
the multipeaked FRAs are often harmonically related (Kadia
and Wang 2003; Sutter and Schreiner 1991). Stimuli pre-
sented at the spectral peaks of the multipeaked FRA can
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result in a facilitated response compared to either com-
ponent presented in isolation. This suggests that sounds
containing multiple, prominent spectral components may be
processed by different classes of neurons (Kadia and Wang
2003).

Relating the position of single neurons with multipeaked
tuning curves to the excitatory bandwidth distribution in
cat AI reveals a distinct spatial distribution of these neu-
rons (Sutter and Schreiner 1991). Multipeaked tuning curves
are primarily found in the dorsal third of AI, whereas the
rest of AI shows little evidence of single neurons with
multiple FRAs. Multipeaked tuning curves are also char-
acteristic for the Dorsal Zone, a non-primary area located
adjacent and dorsal to AI (He and Hashikawa 1998). This
subpopulation of cortical neurons may be sensitive to spe-
cific spectro-temporal combinations in the acoustic input
(Sutter and Schreiner 1991; He et al. 1997). The spatial clus-
tering of these specialized multipeaked neurons implies a
functional segregation. Spatial and functional segregation of
spectral analysis appears to be a general organizing principle
of AI.

In the auditory cortex of awake animals, a substantial
number of neurons do not respond to pure tones (Sadagopan
and Wang 2009; Bandyopadhyay et al. 2010; Rothschild
et al. 2010). At least some of these “unresponsive” neu-
rons are likely to be selective for complex sound fea-
tures with highly nonlinear combination-sensitive responses
(Sadagopan and Wang 2009). Specific combinations of sev-
eral tones with appropriate spectral and timing relationships
can elicit strong responses whereas each component alone
fails to produce an excitatory response (Sadagopan and Wang
2009), highly reminiscent of combination-sensitive neurons
in echolocating bats (Suga 1984). Characterizing cortical
neurons with more complex, broad-band spectra, including
naturally occurring sounds, may reveal more appropriate
response classifications that transcend the diversity of pure-
tone FRA shapes.

2.4 Temporal Dependence of Pure-Tone Tuning

Frequency specificity (e.g., BF) and frequency selectivity
(e.g., BW) are usually determined by integrating spikes over
the entire duration of a tone stimulus for the construction
of FRAs. This procedure masks three potential changes in
frequency tuning during the time course of the response: (i)
response latency differences for different intensities and for
frequencies near the margins of the FRA, (ii) response dura-
tion differences, such as phasic versus sustained responses,
and (iii) occurrence of “off” responses, i.e., excitatory activ-
ity following the end of tones.

Neurons with phasic response profiles predominate in
anesthetized animals, and account for up to 50% of responses
in awake animals (DeWeese et al. 2003; Evans and Whitfield
1964; Wang et al. 2005). In these neurons, frequency speci-
ficity strongly depends on the time relative to the stimulus
onset (Schreiner et al. 2006). Early, short latency responses
account for the high-intensity, broadly tuned region of most
V-shaped FRAs (Fig. 13.4). Slightly longer latency responses
provide lower intensity, near BF regions of the FRA. The
longest latency phasic responses supply the off-CF regions of
the FRA margins. Therefore, frequency specificity, including
sensitivity and selectivity, for single neurons and for the neu-
ronal population evolves rapidly over the course of the first
∼40 ms after stimulus onset.

This is also the case for the phasic portion of neurons with
sustained responses, however, the impact on the global tun-
ing is diminished by the sustained portion of the activity. Yet,
the frequency specificity of sustained neurons also under-
goes a clear temporal evolution. FRAs of phasic (<30 ms)
and early-sustained responses (<100 ms) were found to be
highly similar, with BF differences of < 1/4 octaves (awake
macaque; Fishman and Steinschneider 2009). In contrast,
FRAs based on phasic and late-sustained (>100 ms) response
portions differed considerably (BF differences: 2/3 octaves).
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Fig. 13.4 Tuning curve shape as
a function of time. The shape of a
pure-tone FRA is plotted in 2 ms
time intervals relative to
tone-onset. Shaded boxes
correspond to firing rate strength
for different frequency-intensity
combinations (darker squares
correspond to higher firing rates).
The solid lines indicate the
lowest threshold across all time
intervals, indicating the
traditional frequency tuning
curve that is customarily
integrated across the total
stimulus duration. Modified from
Schreiner et al. (2006)



13 Spectral Processing 285

Many neurons with strong phasic or phasic/sustained
response profiles also exhibit offset responses, especially in
awake preparations (Fishman and Steinschneider 2009; Qin
et al. 2007; Recanzone 2000). Prevalence of off-responsive
neurons are about 30% in awake monkey (Recanzone 2000)
and ketamine- or halothane-anesthetized cat (Volkov and
Galazjuk 1991; Moshitch et al. 2006), and roughly 60%
in awake cat (Qin et al. 2007). The frequency-filtering
property of the off-responses differs from that of the pha-
sic and sustained portions. Off-response FRAs usually are
non-overlapping with or inversely related to that of the
on-responses. Frequency tuning of off-responses is often
∼1–2 octaves above that of on-responses in the awake
macaque (Fishman and Steinschneider 2009; Pelleg-Toiba
and Wollberg 1989). However, in awake cats, a similarly
consistent relationship was not found (Qin et al. 2007). The
different frequency tuning and excitatory–inhibitory com-
positions underlying on- and off-responses strongly suggest
that they are driven by largely non-overlapping sets of
synapses (Scholl et al. 2010). Frequency tuning of popu-
lation responses may vary considerably over the course of
the response to a tone, demonstrating a strong temporal
dependence of the cortical spectral representation of sounds
(Fishman and Steinschneider 2009).

2.5 Inhibitory Response Areas

Processing properties of cortical neurons are shaped by the
convergence and interaction of excitatory thalamocortical
and cortico-cortical inputs and inhibitory projections (see
Section 13.6 and Chapter 2). Stimulus components outside
of the excitatory FRA can exert strong suppressive effects
on responses. If sufficient spontaneous activity is present,
as is often the case in awake animals, suppressive effects
from single tones can be observed (Qin and Sato 2004).
Phasic neurons in awake cats showed that tone-evoked sup-
pression and excitation temporally alternated and spectrally
co-occurred, restricting excitatory spike-responses within
narrow temporal limits but not setting the spectral limits. By
contrast, sustained neurons showed that the suppression and
excitation spectrally alternated and temporally co-occurred,
restricting excitatory frequency tuning but not setting the
time limits (Qin and Sato 2004). These observations hint at
complex interactions of excitatory and inhibitory forces.

Many neurons, especially in anesthetized preparations, do
not have sufficient spontaneous activity to observe suppres-
sive effects at the level of extracellular recordings of spiking
activity. By eliciting a mildly excitatory response, for exam-
ple by a soft CF tone, suppressive effects of an additional
tone can be observed. Application of this two-tone inter-
action paradigm has revealed a high incidence of neurons

(>90%) with suppressive response regions outside the exci-
tatory (one tone) FRA. A wide variety in the structure of
these “inhibitory bands” has been observed ranging from a
single V- or I-shaped band to more than four distinct suppres-
sive regions (e.g., Sutter et al. 1999; Loftus and Sutter 2001)
(Fig. 13.1). The most common arrangement of suppressive
bands (∼35%) in the anesthetized cat, ferret, and gerbil AI
is a single suppressive band on either side of the excitatory
FRA (Loftus and Sutter 2001; Sutter et al. 1999; Shamma
et al. 1993; Foeller et al. 2001). Regional differences in the
distribution of suppressive regions across AI have also been
reported (Loftus and Sutter 2001; Kowalski et al. 1995). In
cat dorsal AI, only 16% of the neurons had one suppressive
band on either side of the FRA whereas 50% of ventral AI
neurons had this organization. Regional organizational dif-
ferences, thus, are also present when considering suppressive
areas of the spectral filters that may be part of function-
ally distinct auditory cortical processing streams (Sutter et al.
1999). No laminar differences in strength of inhibition were
observed (Foeller et al. 2001), although the distribution and
density of different interneuron classes varies across lamina
(Prieto et al. 1994a,b).

Suppressive interactions can also play a role in shap-
ing the response magnitude within the excitatory FRA such
as in the generation of O-shaped, circumscribed FRAs
(Fig. 13.1). In extracellular (Sutter and Loftus 2003) and
intracellular recordings (Tan et al. 2007), the intensity tun-
ing of excitatory and inhibitory/suppressive components can
be negatively correlated, supporting the hypothesis that cor-
tical inhibition can contribute to intensity tuning within the
excitatory domain.

Most studies of inhibitory cortical properties in the audi-
tory system have been limited to AI. Studies in cat PAF
revealed a higher incident of complexly shaped inhibitory
FRAs, such as with more than 2 suppressive regions (Loftus
and Sutter 2001). It is likely that more complex suppressive
frequency bands indicate an analysis of greater spectral com-
plexity. However, detailed studies at the synaptic level are
needed to clearly establish the role of inhibitory/excitatory
interactions in the shaping of spectral filter properties and
the generation of excitatory and suppressive FRA regions
throughout auditory cortex (see Section 13.6).

3 Cortical Frequency Channels

Psychophysical experiments in humans and animals have
demonstrated that auditory processing makes use of a set
of frequency channels with well-defined bandwidth for the
processing and resolution of complex stimuli. The com-
ponents of such a filter bank with intensity-tolerant and
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frequency-dependent bandwidth are known as critical bands
(e.g., Greenwood 1974).

Speech recognition in humans requires relatively coarse
spectral information, provided sufficiently resolved temporal
information is available (Shannon et al. 1998, 2004). As little
as four independent frequency channels may suffice for some
basic speech identification. More channels, 16–64, can pro-
vide sufficient clues for nearly full speech perception, even
in noise (Shannon 2005; Shannon et al. 1998, 2004; Smith
et al. 2002). Music processing requires even higher spectral
resolution (Shannon 2005). In addition to integration across
relatively narrow frequency bands, for example for loudness
formation and discrimination between different frequency
components in a complex sound, integration across wider
frequency regions is also perceptually utilized such as in co-
modulation masking release and profile analysis (Bregman
1990; Hall and Grose 1988).

Although the spectral RFs of auditory cortical neurons
derived from tones are useful for estimating properties of
spectral integration, a more direct measure of the effec-
tive auditory filter bandwidth is necessary to establish the
relationship between psychophysics and neuronal behavior.
Methods analogous to psychophysical measurements of crit-
ical bands applied to single neuron responses, such as sup-
pression of a tone response by noises of different bandwidths
or by flanking noise-bands at different frequency separations,
are useful to establish a neural-perceptual correspondence
(Ehret and Merzenich 1985, 1988; Ehret and Schreiner 1997;
Fishman and Steinschneider 2006). By repeating this mea-
surement for different tone intensities, the level dependence
of the neural critical bandwidth can be assessed.

A majority of neurons in anesthetized cat AI show spectral
integration properties that remain relatively constant across
intensity. However, the critical bandwidth of many intensity-
tolerant neurons is broader than predicted from behavioral
measurements of the critical band. Neurons that are inten-
sity tolerant and have critical bandwidths similar to the
behaviorally known values for cats (Pickles 1975; Nienhuys
and Clark 1979) are less common but cluster in the cen-
tral, narrow-band region of cat AI (Ehret and Schreiner
1997). Only in a subgroup of neurons does the spectral
integration width estimated from pure-tone responses match
that derived from noise masking with clear discrepancies
between the two measures in the remaining neurons (Ehret
and Schreiner 1997). Consequently, the actual spectral inte-
gration properties depend on the specific stimulus conditions
and pure-tone excitatory measures are not sufficient to fully
explain broad-band spectral integration behavior (Schreiner
et al. 2000).

Using a two-noise masking paradigm, the spectral reso-
lution of neural populations in AI of awake macaques also
was found to parallel results of psychoacoustic studies in
both monkeys and humans. The best fit of auditory filter

shapes in psychoacoustic and these neural studies of fre-
quency resolution was found in cortical layers IV and lower
layer III compared to lower quality fits for more super-
ficial cortical layers (Fishman and Steinschneider 2006).
Evidence for physiological correlates of perceptual criti-
cal bands was also found in human auditory cortex using
magneto-encephalographic measures (Soeta and Nakagawa
2006). These studies indicate that a cortical representation
of perceptual frequency resolution is available, at least at the
level of AI.

Evidence of a correspondence between psychophysical
and neural spectral integration properties in non-primary/belt
areas is still lacking. Broader pure-tone tuning in many non-
primary fields may indicate that such a correspondence may
be less likely than for narrowly tuned cortical fields and
wider frequency integration may be emphasized at those
later levels of analysis. Neurons in non-primary areas, espe-
cially in awake preparations, have been shown to respond
often better to noise than to tonal stimuli (Recanzone 2000;
Rauschecker and Tian 2004). However, the consequences of
such observations for the formation of perceptual attributes,
in particular for spectral integration and resolution, remain
unclear.

4 Static Spectral Profile Analysis

Given that naturally occurring sounds are usually neither
tone- nor noise-like, the discrepancies between spectral
response characterization between pure-tone and noise stim-
uli indicated in the previous section become even more
relevant. Spectral profiles of environmental sounds, and in
particular of communication sounds, typically are composed
of distinct spectral peaks and troughs distributed over a
wide frequency range. Examples are the formant structure
of vowels, a fundamental spectral feature of the vocal tract
expressed in speech and animal vocalization sounds, and
the spectral notches and peaks introduced by head shad-
ows and outer-ear resonance utilized for sound localization
processing.

Sensitivity and selectivity of neurons for more natural,
complex spectral profiles can be assessed with broad-band
stimuli using various methods. Random spectrum stimu-
lus (RSS) sets, i.e., time-invariant broad-band stimuli with
complex spectral envelopes, have been used to estimate
the spectral weighting function that a neuron applies to
sound energy across frequency. A linear frequency weight-
ing function can be deduced by presenting stimuli with
many different predetermined spectral shapes, by recording
the observed discharge rates, and by subsequent superpo-
sition of the profiles proportional to their evoked activity.
The resulting function is a rate-code based, normalized and
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Fig. 13.5 Static spectral profiles determined with random sequence
stimuli (RSS). a–c Three examples of spectral profiles indicating exci-
tatory regions (activity above mean firing rate) and suppressive regions
(activity below mean firing rate) (macaque monkey; adapted from
O’Connor et al. 2005). d, e Two frequency response areas determined

with pure tones (marmoset monkey; adapted from Barbour and Wang
2003a). f, g Two frequency response areas reconstructed from RSS
obtained at different mean intensity levels for the same neurons as
shown in (d, e)

weighted average spectral profile and corresponds to the
spectral receptive field (Fig. 13.5; Barbour and Wang 2003a;
Yu and Young 2000). Function values above the mean cor-
respond to frequencies at which stimulus energy addition
increases the driven rate of a neuron. Values below the mean
are frequencies at which energy elimination increases the
driven rate (Fig. 13.5a–c).

Similar estimates of neuronal spectral profile preference
can be derived with adaptive stimulus optimization (Nelken
et al. 1994a; O’Connor et al. 2005) by using variations of
a static spectral stimulus profile to iteratively reach a max-
imum in the response rate. The resulting preferred stimulus
profile also is a robust estimate of the neuron’s actual spectral
tuning, effectively representing properties found in natural
sounds. While spectral profile estimations are not identical
between the different methods, similarities exist revealing
linear and nonlinear aspects of spectral integration properties
(Sutter 2005).

RSS produced significant firing rate changes in 60–80%
of neurons encountered in AI of awake marmoset and rhe-
sus monkeys (Barbour and Wang 2003a; O’Connor et al.
2005) most of them showing sustained spiking. The result-
ing shapes of preferred spectral profiles (Fig. 13.5) showed

a range of appearances with narrow or broad excitatory
maxima and various suppressive/inhibitory troughs on either
side, described as circumscribed, multi-lobed antagonis-
tic structures (O’Connor et al. 2005). When obtained for
a range of different mean stimulus intensities, the shape
of the estimate function closely resembled two-tone FRAs
(Fig. 13.5d–g). In contrast to typical V-shaped FRAs, they
remained relatively constant throughout the stimulus interval
and across the stimulus properties of mean sound level (Fig.
13.5f, g), spectral density, and spectral contrast (Barbour
and Wang 2003b; O’Connor et al. 2005). Similarities to
FRAs include the occurrence of multiple excitatory bands,
their shape and bandwidth, and the position of suppressive
sidebands. However, it is highly likely that many auditory
cortex neurons behave in a substantially nonlinear man-
ner in response to complex spectral input (Barbour and
Wang 2003a; Calhoun and Schreiner 1998; Linden et al.
2003; Machens et al. 2004; Nelken et al. 1994b; Sahani
and Linden 2003). This should result in distinct differences
between narrow- and broad-band estimates of spectral pro-
cessing. This is emphasized by the observation that even
linear predictions of rate responses from preferred spectral
profiles for other RSSs yielded poor results, again implying
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that auditory cortex neurons integrate information across
frequency nonlinearly (Barbour and Wang 2003a).

Several other techniques have been used for characterizing
the structure of auditory receptive fields. Auditory gratings
or ripple spectra, i.e., broad-band stimuli with sinusoidal
spectral envelopes (linear spacing along the logarithmic fre-
quency axis) that resemble the formant structure of vowels,
can be used to obtain the spectral modulation spectrum or
spectral gain function of a neuron (Escabí and Schreiner
2002; Klein et al. 2000; Miller et al. 2002; Schreiner and
Calhoun 1994; Shamma et al. 1995; Versnel and Shamma
1998). The main variables of the modulation spectrum are
the spectral envelope periodicity or modulation frequency
and the magnitude and the phase of each modulation com-
ponent. The preferred spectral profile and the modulation
spectrum are directly related and can be translated into each
other via Fourier transform. The usefulness of the modula-
tion spectrum approach as a descriptor is in its straightfor-
ward parametric space. The relevance of spectral modulation
information for communication sound processing becomes
evident when considering how challenging it is for listen-
ers to discriminate speech with a degraded spectral envelope
(Dreisbach et al. 2005; Leek et al. 1987; Shannon et al. 1998;
Smith et al. 2002).

Cat and ferret cortical neurons respond preferentially to
a limited range of spectral envelope frequencies (Calhoun
and Schreiner 1998; Klein et al. 2000; Kowalski et al. 1996a,
b; Schreiner and Calhoun 1994; Shamma et al. 1995). For
these static ripple stimuli, preferred ripple frequencies for
AI range between 0.2 and 4 cycles/octave (Schreiner and
Calhoun 1994; Keeling et al. 2008; Shamma et al. 1995)
with mean frequencies of ∼1.0 cycles/octave. This range cor-
responds well to the best sine-profile frequencies that can
be fit to the preferred spectral profiles obtained with RSS
which range between 0.2 and 3 cycles/octave with a mean of
1.17 in the awake rhesus monkey (O’Connor et al. 2005). As
with preferred spectral profiles, the relative response to dif-
ferent spectral modulation/ripple frequencies remains fairly
constant with changes in the intensity and the spectral den-
sity of the broad-band carrier signal. However, variations of
spectral modulation depth or contrast can result in nonlinear
behaviors of the spectral modulation spectrum (Calhoun and
Schreiner 1998). There is only sparse experimental evidence
for a spatial organization or clustering of ripple transfer
functions (Shamma et al. 1995; Kowalski et al. 1996a, b).

Studies in ferret AI find that ripple responses allow rea-
sonable predictions of responses to pure tones and to spec-
trally complex natural sounds (Shamma et al. 1995; Versnel
and Shamma 1998; Klein et al. 2000; David et al. 2009), sug-
gesting that AI neurons analyze the shape of acoustic spectra
in a substantially linear manner.

Details of the spectral shape of natural broad-band sounds,
such as sharpness of formants or attributes of spectral edges,

contribute to the perceived sound quality. Different types
of preferred spectral profiles and their relationship to the
distribution of excitatory and inhibitory subregions in AI
neurons can help in an effective representation of these
properties. The relative pattern of excitatory and inhibitory
portions of the preferred spectral profile contributes to this
process. For example, a response preference for steep slopes
of formants or edges seems associated with a shift of pro-
cessing balance toward inhibitory regions of the receptive
field, whereas a preference for gentle slopes emphasizes
engagement of excitatory spectral regions (Qin et al. 2004).

Laminar Organization: Significant differences exist
between the expression of spectral modulation preferences
in granular, supragranular, and infragranular neurons in cat
AI (Atencio and Schreiner 2010a, b). Simultaneous record-
ings from 8 to 20 single neurons across cortical layers
revealed that CFs show only small laminar variations. By
contrast, clear laminar differences were evident for spec-
tral modulation preferences, and equivalently, of preferred
spectral profiles (Fig. 13.3f). Only ∼30% of penetrations
showed consistent spectral modulation preferences across
layers, indicative of functional laminar diversity or special-
ization. Compared to layer IV, spectral modulation spectra
were broader on average, and their upper cut-off frequencies
higher, in layers V and VI. This suggests a higher repre-
sentational fidelity of sharp edges in the spectral profile in
the infragranular layers. Ensembles of auditory neurons that
are tuned to different auditory features enhance the acoustic
differences between classes of natural sounds and their dis-
tribution may reflect high informational regions in the envi-
ronmental sound statistics (Woolley et al. 2005). Functional
layer differences, reflecting different pre-processing for their
respective projection targets, suggest then specific sensitivi-
ties to spectral profiles that need to be understood based on
the goals and algorithms at each point in the circuit.

5 Dynamic Spectro-Temporal Profile Analysis

5.1 Spectro-Temporal Receptive Fields

When the sensory functions and response characteristics of
a neuron are unknown, it is preferable to make few assump-
tions and to explore a large set of stimulus attributes in an
unbiased way. Reverse correlation or spike-triggered average
(STA) techniques embody this principle. Synthetic, spectro-
temporally complex stimuli, such as dynamic chord stimuli,
dynamic ripples, ripple noise, and temporally orthogonal
ripple combinations (TORCs) (Escabí and Schreiner 2002;
Blake and Merzenich 2002; Klein et al. 2000), share many
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properties with natural sounds and satisfy formal require-
ments for deriving spectro-temporal receptive fields (STRFs)
through the STA. The STRF is a linear, time-frequency
representation of neural stimulus preferences as shown by
the excitatory and inhibitory STRF subregions (Aertsen
and Johannesma 1981; Depireux et al. 2001; Eggermont
et al. 1983; Gill et al. 2006). The two-dimensional Fourier
transform of an STRF yields modulation transfer functions
(MTFs) that characterize the neurons preferred spectral and
temporal stimulus envelopes. The STRF and its relatives
remain among the richest unbiased, linear descriptors of neu-
ronal function. Compared to static spectral profiles, STRFs
add a temporal axis that characterizes the temporal evolution
or dynamics of the spectral influences. While informative,
STRFs may be biased by stimulus correlations, may reflect
nonlinear behavior in a very limited way, and do not char-
acterize neural sensitivity to multiple stimulus dimensions.
STRFs provide a versatile and integrated, spectral and tem-
poral, functional characterization of neural responses (Klein
et al. 2000, 2006). STRFs express a single feature dimen-
sion that captures the time-dependent behavior of stimulus

envelope processing in auditory neurons. This combined
spectro-temporal processing is advantageous for encoding of
natural sounds which are rarely static. It enables – at least
partially – the basic reconstruction of the input signal (David
et al. 2009; Mesgarani et al. 2009).

To extract additional feature dimensions and to account
for nonlinear response rules, an alternative approach can be
used that is based on maximizing the mutual information
(MI) between the stimulus and the evoked spike train of a
neuron (Atencio et al. 2008; Clifford et al. 2007; Sharpee
2007; Sharpee et al. 2006, 2008). The resulting maximally
informative dimension (MID) can share many aspects with
STRFs obtained through reverse correlation (Fig. 13.6) and
has additional advantages, such as suitability for derivation
with non-Gaussian signals and elimination of effects from
stimulus correlations (Sharpee et al. 2004a, b).

Both MIDs and STAs can provide the linear component
in a linear–nonlinear neuron model (Sharpee et al. 2008;
Schwartz et al. 2006). In this model, spectro-temporal stim-
ulus features, or linear filters, are combined with a static
nonlinearity to compactly represent neural processing. This
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linear–nonlinear model can account for features in stim-
ulus space that best capture the variability in neuronal
responses. The nonlinear input–output function, or non-
linearity, describes the firing probability of a neuron as
the similarity, or correlation, between the stimulus and the
STRF/MID changes (Fig. 13.6) and forms a fundamental
component in linear/nonlinear cascade models of neuronal
function (Chichilnisky 2001; Schwartz et al. 2006). Most
STRF/MID nonlinearities in ketamine-anesthetized cat AI
are asymmetric and sigmoidal in shape, representative of
a thresholding and smoothing operation. Parameter ranges,
such as slope and position of inflection point, of asym-
metric nonlinearities provide a rich substrate for response
differences in neurons with similar STRFs.

The main feature of STRFs is that they can capture tem-
poral dependencies of spectral processing. Many neurons in
cat and ferret AI have STRFs with “sloped” response max-
ima or minima, indicating that the frequency position of
excitatory and/or inhibitory regions shift with time (Atencio
and Schreiner 2008; Depireux et al. 2001). This means
that spectral and temporal processes can interact and can-
not be considered in isolation. This inseparability of spectral
and temporal processing implies that the combined spectro-
temporal transfer function of a cell cannot be written as
the product of independent spectral and temporal trans-
fer functions; i.e., the spectral tuning of a neuron changes
over time. In cat and ferret AI, less than 10% of neu-
rons were shown to be separable (Atencio and Schreiner
2008; Depireux et al. 2001). However, separability is a con-
tinuous variable and the degree of separability can vary
substantially.

Areal Organization: Spectral modulation information
derived from STRFs can undergo a transformation between
thalamus and cortex (Miller et al. 2002). On average, spec-
tral integration, as measured by excitatory bandwidth and
spectral modulation preference, is similar across both sta-
tions (mean Q: thalamus = 5.8, cortex = 5.4; upper cut-
off of spectral modulation transfer function: thalamus =
1.30 cycles/octave, cortex = 1.37 cycles/octave). However,
modulation properties of cortical neurons are not strictly
predictable from individual thalamic inputs to the corti-
cal neuron (Miller et al. 2002) indicating the relevance of
cortico-cortical interactions in shaping spectral modulation
preferences.

STRFs in AI and the dorsal-caudal field (DC) of the
guinea pig, both primary/core areas, revealed diversity in
excitatory and inhibitory bandwidths but showed no clear
field differences. The ventrorostral belt area also showed
STRF types similar to those in AI and DC. However, the
proportions of STRF types were significantly different, sug-
gesting a difference in spectro-temporal processing between
the ventrorostral belt and the core areas (Rutkowski et al.
2002).

Spectral properties of AI and AAF receptive fields in
mice were largely similar, although STRF bandwidths were
slightly broader in AI than in AAF. In both, AI and AAF,
only a small proportion of STRFs were spectro-temporally
inseparable, e.g., revealing slanted STRFs. This suggests
still a fairly independent processing of temporal and spec-
tral aspects in these core areas (Linden et al. 2003). In cat
PAF, a higher hierarchy core area, about half of the neurons
have non-separable STRFs (Loftus and Sutter 2001) indicat-
ing a potential increase in spectral–temporal interactions at
later stages of the cortical pathways.

Attempts to derive STRFs in prefrontal cortex of awake
macaque monkeys (Averbeck and Romanski 2006; Cohen
et al. 2007) did not reveal significant internal structures
despite the fact that neurons responded strongly to acoustic
stimuli, especially if they were complex in structure, such
as vocalizations. A faithful time-frequency representation
appears to be less useful at this stage and other processing
aspects, such as time-probability representations, may play a
larger role (Romanski and Averbeck 2009).

Noninvasive imaging methods showed selective tuning to
combined spectro-temporal modulations in the primary and
secondary auditory cortex in humans. The overall low-pass
modulation rate preference matched the modulation content
of natural sounds. These results suggest that complex signals
are decomposed and processed according to their modulation
content, the same transformation used by the visual system
(Langers et al. 2003; Schönwiesner and Zatorre 2009).

Laminar Organization: In cat AI STRFs show some sys-
tematic changes with cortical depth, although STRFs within
several 100 μm of each other are usually quite similar. Layer-
dependent spectral modulation behavior includes single and
multipeaked excitatory and suppressive regions, resulting in
bandpass and lowpass filter shapes, and narrow-band and
broad-band filter widths. The width of the excitatory area
was broadest in infragranular layers. In infragranular layers,
STRF structure was more varied especially with regard to the
position and structure of inhibitory subfields (Atencio and
Schreiner 2010b).

The layer-dependent behavior of spectral modulation pro-
cessing is dissimilar to that of temporal modulations that
have a stronger tendency for a columnar, layer-independent
behavior (Atencio and Schreiner 2010b). Differences in the
preferred spectral modulation range across cortical laminae
are quite common. In about 70% of penetrations, signifi-
cant interlaminar differences can be detected, whereas this is
only true for ∼30% of penetrations for temporal modulations
(Atencio and Schreiner 2010b). On average, layer V neurons
have the highest preferred spectral modulation frequencies.
Compared to layer IV, spectral MTFs are broader and their
upper cut-off frequency higher in layers V and VI. This fil-
ter broadening and increase in preferred spectral modulation
frequencies in infragranular layers can be accounted for by
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the shift of the strength and location of inhibitory sidebands.
Spectral integration appears to increase in infragranular lay-
ers (Wallace and Palmer 2008; Volkov and Galaziuk 1989;
Atencio and Schreiner 2010b). Responsiveness of infragran-
ular layers to higher modulations than in granular layers
clearly requires additional inputs not provided by a sim-
ple columnar feedforward stream from the thalamo-recipient
layers.

In cat AI, STRFs are less separable in supra- and infra-
granular layers, indicating that spectral and temporal pro-
cessing aspects become more interdependent compared to
the main thalamic input layer. In granular layers, the STRF
nonlinearities were most asymmetric, revealing that in these
layers responses are greatest for stimuli that are highly
matched to the STRF. On average, the STRF nonlinear-
ity of supragranular neurons showed the same degree of
asymmetry as granular layer neurons. Infragranular neurons,
however, had a clearly reduced asymmetry, suggestive of a
processing manner less sensitive to the phase, or polarity, of
the spectro-temporal envelope.

Receptive fields in the cortical input layers may be pre-
dominantly created via three general schemes: inheritance
from thalamic inputs, constructive convergence of different
narrow thalamic and cortical inputs, and/or by assembly con-
vergence of combined, broader thalamic and cortical inputs
(Miller et al. 2001). After this initial integration stage, fur-
ther transformations occur related to the primary interlaminar
flow of information from the thalamocortical input layers to
the supragranular and then to infragranular output layers, by
intralaminar cortico-cortical inputs as well as cortico-cortical
feedforward and feedback connections (Wallace et al. 1991;
Mitani and Shimokouchi 1985; Mitani et al. 1985; Winer
2006). The direction of STRF changes, however, is not
strictly linked to a simple interlaminar flow pattern from
thalamic input layers to supra- and infragranular output lay-
ers. Changes in modulation properties captured in STRFs
make it feasible to dissect laminar-specific, module-specific,
and field-specific variations in the cortical processing regime
and can help to determine whether common functional pat-
terns pertain to cortical or subcortical inputs, and how they
reflect local, lamina-specific circuitry (Atencio and Schreiner
2010a, b).

5.2 STRF Differences Between Cell Classes

Excitatory pyramidal neurons and inhibitory interneurons
constitute the main elements of the cortical circuitry and
have distinctive morphologic and electrophysiological prop-
erties. Functional differences between these different neu-
ronal classes have been found in mammalian cortex (Bartho
et al. 2004; Bruno and Simons 2002; Hirsch 2003; Simons
and Carvell 1989; Swadlow and Gusev 2002; Zhang and

Alloway 2004). Differences in spike duration and amplitude
ratios are associated with specific classes of cortical neu-
rons. “Regular-spiking” neurons (RSUs) have slow action
potentials (initial negative wave >300 μs) and are pre-
sumably excitatory pyramidal cells, though some inhibitory
interneurons also show this spike waveform (Bruno and
Simons 2002; Kawaguchi and Kubota 1993; Swadlow 2003;
Simons and Carvell 1989). “Fast-spiking” or “thin-spike”
neurons (FSUs) have shorter action potentials (initial wave
<200 μs) and are associated with inhibitory interneu-
rons, although some excitatory neurons also show this
spike waveform (Connors and Gutnick 1990; McCormick
et al. 1985).

Excitatory sharpness of frequency tuning among simul-
taneously recorded fast-spiking and regular-spiking neurons
differs despite the similarity of layer and local CF. Fast-
spiking cells have slightly broader spectral tuning than
RSUs. At a given intensity, fast-spiking inhibitory neurons
exhibit less-selective frequency tuning than nearby excita-
tory neurons (Atencio and Schreiner 2008; Wu et al. 2008).
A possible consequence of the wider FSU bandwidth is that
the spike-based tuning of RSUs, the potential synaptic tar-
get of FSUs, is narrower than their synaptic inputs (Tan et al.
2004; Wu et al. 2008). No significant differences were found
between FSUs and RSUs in relation to best spectral modula-
tion frequency and spectral MTF width. Although the range
of preferred spectral modulations values does not differ for
the two cell distributions, the manner in which FSUs and
RSUs respond to spectral and temporal envelope modula-
tions does differ. A slightly higher proportion of RSUs show
band-pass spectral modulation transfer functions (25%) as
compared to FSUs (15%). Response latency was shorter for
FSUs versus RSUs within a given cortical layer (Atencio
and Schreiner 2008). This could enable them to transmit
feedforward inhibition to nearby cells.

STRF structure differs between FSUs and RSUs. FSU
STRFs are more separable, thus dissociating more fully spec-
tral and temporal processing, since they can be approximated
as the product of two independent functions. Whether this
reflects different cortical connection patterns and/or differ-
ent distributions and kinetic properties of GABAergic inputs
to RSUs (Hefti and Smith 2003) is unknown, since detailed
accounts of cortico-cortical inputs to inhibitory neurons are
not yet available. The nonlinearities associated with the
two cell classes revealed a stronger asymmetry for FSUs
indicative of higher feature selectivity.

These global functional differences between RSUs and
FSUs suggest clear distinctions between putative excitatory
and inhibitory neurons that shape auditory cortical process-
ing. FSUs have response characteristics more closely related
to thalamic input properties than RSUs. Connected tha-
lamocortical neuron pairs usually differ in most of their
modulation properties (Miller et al. 2001). Intracortical
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recurrent excitation appears to amplify the thalamocortical
inputs to determine stimulus selectivity of cortical neu-
rons (Wu et al. 2008). Cortical modulation likely is also
shaped by local inhibitory mechanisms. The precise role
of inhibition in determining modulation preferences is still
unclear (Kurt et al. 2006) and contributing factors, such
as convergence of different modulation ranges and synap-
tic depression/facilitation, play major roles in the modulation
of cortical responses (Eggermont 2002; Wehr and Zador
2005).

Differences in STRFs of RSUs and FSUs provide a
useful first step in the analysis of local circuits and lami-
nar functional diversity and segregations within an auditory
context. The extension of this approach to nonlinear, multi-
feature receptive fields is required and will further delineate
systematic processing differences between cell types.

5.3 Multi-filter Spectral Analysis

One of the advantages of the linear-nonlinear STRF/MID
characterization is that it provides a rigorous framework to
predict neuronal response behavior to novel sounds. Some
success in STRF-based response prediction and stimulus
reconstruction has been reported for auditory cortical neu-
rons (e.g., Kowalski et al. 1996b; Versnel and Shamma
1998; Mesgarani et al. 2009). However, other studies have
fallen short of successfully predicting responses to complex
sounds, especially when test stimuli differ in their statisti-
cal properties from those sounds used to derive STRFs (e.g.,
Machens et al. 2004; Sahani and Linden 2003; Theunissen
et al. 2000). One possible cause for low predictive power
may be that standard STRFs/MIDs represent a single stim-
ulus dimension that influences a neuron’s response. In visual
cortex it has been shown that an additional stimulus dimen-
sion may be necessary to provide a more complete depiction
of the effective stimulus configurations (Rust et al. 2005).
An extension of the information-based MID method has
demonstrated that auditory cortical neurons as well are bet-
ter characterized by at least two independent but interacting
spectro-temporal filters (Atencio et al. 2008). In this method,
two parametrically independent but jointly operating fil-
ters are iteratively adjusted until the mutual information
between stimulus and response is maximized, resulting in
two (or more) MIDs, and their associated nonlinearities. The
first MID (MID1) maximizes the MI with respect to one
STRF and the second MID (MID2) is an additional STRF
that further maximizes the MI. The concurrent operation of
these two MIDs in combination with their nonlinearities can
capture a substantially larger proportion of the mutual infor-
mation of cortical neurons than the STA or a single MID
alone (Sharpee et al. 2004a, b; 2008).

The main observations (Atencio et al. 2008, 2009) from
this approach include: (1) All neurons in cat AI with an
STA/MID1 also have a significant although slightly less
informative MID2, i.e., each neuron can be modeled as a
combination of at least two stimulus dimensions (Fig. 13.7).
The contribution of the MID2 to the combined mutual infor-
mation is in the range of 20–40%. (2) MID1 and STA-based
STRF and their nonlinearities are highly correlated, thus
validating the use of spike-triggered averaging in previous
studies to identify the strongest contributing filter (Fig. 13.7).
(3) The nonlinearities of the two MIDs differ in charac-
ter. The nonlinearity of the first STA/MID is asymmetric
and sigmoidal, while the nonlinearity of the second MID
is usually symmetrical. The asymmetric nonlinearity is typ-
ical for a feature detector. The symmetric nature of the
MID2 nonlinearity shows that for this dimension the neu-
ron has an increased probability of firing when a stimulus
is either correlated or anti-correlated with the filter (Fig.
13.7). This type of nonlinearity is often seen in visual neu-
rons that are envelope-phase insensitive or shift-invariant
(Emerson et al. 1992; Dellen et al. 2009). The difference
in the shape of the nonlinearities implies that a given AI
neuron in this extended model contains functional subunits
that both threshold (MID1) and square (MID2) the out-
puts of the individual filters. (4) Best frequencies of the
two filters are usually closely matched. However, the shape
of the two MIDs (i.e., the distribution and relationship of
excitatory and inhibitory subregions) differs, reflecting their
orthogonality and providing different constellations of spec-
tral modulation preferences. The preferred spectral envelope
modulation frequencies of a population of AI neurons span
an equally wide range for both MIDs but are uncorrelated.
As a consequence, spectral processing properties of cortical
neurons reflect at least two differently tuned spectral filters
(Fig. 13.7e). (5) The two MIDs cooperate in a nonlinear
fashion, creating combination-sensitive, and sometimes syn-
ergistic, processing. On average, the combined applied filters
account for 28% more information than the sum of each filter
in isolation. This type of nonlinear combination-sensitivity
differs from previously described combinations-sensitivity
in subcortical and cortical auditory stations. It requires two
interacting filters and cannot be explained by the shape and
properties of a single, one-dimensional nonlinearity as is the
case for combination-sensitivity described for tone-on-tone
interactions, for example, in bats (Suga 1984), or in awake
marmosets (Sadagopan and Wang 2009).

Of relevance is that the contributions of MID2s in sub-
cortical stations, such as the central nucleus of the inferior
colliculus or the ventral nucleus of the medial genicu-
late body, seem to be absent or significantly smaller than
in AI (Atencio, Shih, Schreiner unpublished observation).
This suggests that the generation of multiple STRFs/MIDs
expressed in a single neuron is an emergent property of
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Fig. 13.7 Auditory cortical
responses are more fully
characterized by two filters and
their associated nonlinearities. a
MID1 s of five single AI neurons
(red: excitatory regions, blue
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Same neurons as in Fig. 13.6. b
MID2 for the same neurons. Note
similar CFs but different
distributions of excitatory and
inhibitory subregions. c MID1
nonlinearities. MID1
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stimulus/MID correlation can
result in increased firing rates,
whereas negative correlations
have little effect on firing rate. d
MID2 nonlinearities. Note that
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symmetric, i.e., either positive or
negative stimulus/MID2
correlations can increase firing
rate. e Distribution of the best
spectral modulation frequency of
MID1 and MID2 with marginal
distribution histograms. The
preferred spectral modulation
frequency of the two filters is
essentially uncorrelated

auditory cortex, similar – but not identical – to processing
principles emerging in visual cortex, such as simple and com-
plex cells (Hubel and Wiesel 1962; Movshon et al. 1978).
This finding suggests that there may be general principles in
cortical processing and hierarchical computation across dif-
ferent sensory modalities. As of yet, it is unknown whether
higher cortical areas also have multiple STRF/MID filters.

Laminar Organization: For STRFs and MIDs in cat AI, a
sequential evolution within the interlaminar columnar micro-
circuit is evident (Atencio and Schreiner 2010a, b; Atencio
et al. 2009). Processing in all AI layers is more com-
pletely captured with a two-filter MID characterization. In

granular layers, the MID1 is most dominant, with a high
degree of feature selectivity and separability (Fig. 13.8).
A MID2 is found in all layers although its contribution is
smaller in granular layers (Fig. 13.8). The two MIDs, and
their nonlinearities, differ in shape, and show different prop-
erties with cortical depth. In supra- and infragranular layers,
the MID1 contribution is reduced, and the synergy or posi-
tive interactions between the filters increases (Atencio et al.
2010a) (Fig. 13.8).

The sequential information processing across the dif-
ferent AI layers is progressive and becomes more com-
plex, and synergistic, as the auditory signal moves from
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the joint 2D nonlinearities of the two MIDFs. High values correspond
to reduced interactions between the two nonlinearities. Supragranular
layers show the least separability suggestive of nonlinear interactions
between the two MIDs and their individual nonlinearities. Adapted from
Atencio et al. (2009)

thalamic input to cortical output layers. Spectral and tem-
poral processing becomes more complex in structure, less
linear in interaction and response generation, and poten-
tially more abstract and stimulus-variation tolerant. All AI
neurons exhibit some degree of inseparability of their two-
dimensional nonlinearity, i.e., the two filters cooperate to
various degrees. The most separable joint nonlinearities are
in granular layers, with significantly lower separability and,
thus, increased cooperativity, in supragranular and infra-
granular layers (Fig. 13.8). This indicates that the rule that
governs the joint, two-filter processing is not a simple prod-
uct of two one-dimensional nonlinearities, and implies that
information processing becomes more nonlinear and com-
plex as the synaptic distance from granular layers increases.
The relationship of the emergence of multiple spectro-
temporal filters in auditory cortex with specific computations
and task-specific processing remains elusive. Formation of
enhanced stimulus invariance may indicate improvements
in foreground/background separation and noise tolerance as
well as in perceptual and conceptual category formation.

5.4 Receptive Fields: Constancy Versus
Malleability

5.4.1 Short-Term Changes of Receptive Fields

Receptive field properties are measured at certain points in
time, after presentation of a specific stimulus set. Thus, the
empirically determined receptive fields of cortical neurons
are thought to be approximations of their “true,” intrin-
sic functional characteristics. However, many aspects can

affect the outcome of receptive field estimations. Neuronal
parameter sensitivity and selectivity may depend, among
other conditions, on stimulus statistics, response adaptation,
task conditions, context, and attention, consistent with com-
plex, nonlinear and recurrent processing in neural assemblies
(Christianson et al. 2008; Fritz et al. 2007c; Pienkowski and
Eggermont 2009).

Spontaneous variations of STRF parameters in repeated
estimations have been shown to usually be quite small, sug-
gesting that neuronal properties can be stable over hours and
days (Blake and Merzenich 2002; Elhilali et al. 2007).

However, state-dependencies, such as arousal, alertness,
attention, stimulus statistics dependencies – including vari-
ance, mean, and skewness of the distributions – and behav-
ioral context and task-dependencies can induce temporary
RF perturbations that, under certain circumstance, may
become long-lasting changes, usually referred to as reorga-
nizational plasticity.

A main utility of STRFs is their versatility in capturing
and classifying the large range of cortical processing prop-
erties. However, a significant problem is that responses are
nonlinear, adaptive, and sensitive to biased stimuli. With non-
linear processing, STRFs inevitably become stimulus and
context dependent, e.g., altering polarity, shape and extent of
STRFs (Christianson et al. 2008). Especially when applying
non-Gaussian, natural stimulus statistics, STA methods may
produce biased STRFs leading to features that are shifted
away from the most relevant dimensions (David et al. 2009;
Machens et al. 2004; Nagel and Doupe 2006; Rotman et al.
2001). STRFs computed for natural stimuli in a nonlinear
MID model have been shown to be significantly different
from those computed with a linear STA model, and usually
show a better description of the neuronal responses (Sharpee
2007). A number of potential causes for nonlinear responses
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have been proposed, including short-term depression (David
et al. 2009), divisive surround inhibition (Carandini et al.
1998), or thresholding of spiking output (Qiu et al. 2003),
although definitive links between cellular and synaptic mech-
anisms and the model nonlinearities remain to be fully
established.

STRF perturbations have been described for a number of
stimulus parameters, such as the density and bandwidth of
random cord and ripple stimuli (Blake and Merzenich 2002;
Gourevitch et al. 2009; Norena et al. 2008), and for stimuli
with more natural parameter statistics, such as speech and
vocalizations (David et al. 2009; Theunissen and Shaevitz
2006). For random chord stimuli with different sound den-
sities, STRFs often develop larger inhibitory fields and
narrower spectral tuning (Valentine and Eggermont 2004;
Blake and Merzenich 2002). Comparing STRFs obtained
for dynamic ripple stimuli (composed of a single pair of
spectral/temporal properties at any given time) and ripple
noise stimuli (composed of multiple spectral and tempo-
ral features at any given time) also revealed some differ-
ences. Cells with low firing rates often respond better to the
dynamic ripple than to the ripple noise, a highly nonlinear
behavior (Escabí and Schreiner 2002). More natural stimulus
statistics, as compared to Gaussian distributions, also have
large effects on the estimated filters and nonlinearities, and
seem to increase precision of temporal coding and emphasize
the most informative features of natural sounds (Theunissen
and Shaevitz 2006; Woolley et al. 2006).

Accommodation of the neural response to an ongoing
stimulus is called adaptation. Input–output functions for
intensity, temporal preferences, or spectral receptive fields
are shifted or altered (Gourevitch and Eggermont 2008;
Ohl and Scheich 1996; Pienkowski and Eggermont 2009;
Ulanovsky et al. 2004). Consequences of adaptation are
thought to rearrange the neural response sensitivity of neu-
rons to optimize their information transmission. This can
be achieved by providing a better match of the statisti-
cal distribution in the ongoing stimulus and the response
preferences.

Attention is essential for performing auditory tasks (see
Chapter 29). Neural correlates of this perceptual ability have
been demonstrated in STRFs of AI in behaving ferrets (Fritz
et al. 2003; Fritz et al. 2005, 2007c) during the detection of
a target tone embedded in noise. Compared with responses
in the passive state, the gain of STRFs decreased in most
cells and STRF shape changes were specific to the stimuli
in the task, and were strongest in cells with best frequen-
cies near the target tone. These adaptations accentuate the
spectro-temporal representation of the target tone relative to
the noise (Atiani et al. 2009).

The non-static properties of spectral integration can also
be seen with changes in behavioral states such as sleep ver-
sus wakefulness (Edeline et al. 2001; Edeline 2003; Issa and
Wang 2008; Pena et al. 1999). During slow-wave-sleep, as

compared to waking animals, the receptive field size – and
implicitly the spectral integration behavior – varied as a func-
tion of the changes in evoked responses: it was reduced for
cells whose responses were decreased, and enlarged for the
cells whose responses were increased (Edeline et al. 2001).

5.4.2 Long-Term Plasticity of Spectral Modulation
Filters

Cortical representations of signal dimensions have been
shown to be alterable over extended periods of time when
behavioral significance is attached to parts of those dimen-
sions (Allard et al. 1985; Calford and Tweedle 1988; Gilbert
et al. 2009; Recanzone 1998; Recanzone et al. 1992, 1993).
Animals that learn to distinguish between certain spectral
or temporal properties of sensory stimuli show an expanded
and/or more refined cortical representation of relevant stim-
ulus features and concomitant changes in perceptual ability
(Jenkins et al. 1990; Recanzone et al. 1993).

Many studies have been undertaken which demonstrate
plasticity in the receptive field of auditory cortical neurons
during classical conditioning (e.g., Diamond and Weinberger
1986, 1989; Edeline 1998; see Chapter 22). Significant
changes in discharge activity in auditory cortical cells follow
the associative pairing of an acoustic conditioned stimulus
with an unconditioned stimulus. Since the extent of these
physiological changes does not occur during the sensitization
and extinguishing phases of the training session, it becomes
clear that the associative process plays the most salient role
in discharge plasticity. Plasticity in auditory cortical neurons
and the spatial distribution of receptive field properties have
been demonstrated for a number of other learning conditions,
e.g., operant detection and discrimination training and expo-
sure to altered sensory inputs (e.g., Diamond and Weinberger
1986; Harrison et al. 1991; Rajan 2001; Robertson and Irvine
1989). For example, the distribution of the CF of AI neu-
rons can be altered by frequency discriminative training
(Recanzone et al. 1993). The representation of the frequency
domain over which animals were trained expanded, and
the excitatory bandwidth of cortical neurons was sharpened
with training, reflecting task-dependent demands on sound
processing.

Changes in spectral bandwidth properties of auditory cor-
tical receptive fields occur during and after certain forms of
perceptual learning. Prolonged exposure to a spectral pro-
file with a fixed spectral periodicity (e.g., 1 ripple/octave)
embedded into a perceptual training task influences the dis-
tribution of neuronal ripple transfer functions and pure-tone
tuning curves (Keeling et al. 2008). The animals had to
discriminate between stimuli that contained equally spaced
formants but differed in their frequency positions. Following
discrimination training, the preferred ripple density shifted
toward the spectral spacing in the training stimuli (Fig. 13.9).
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Fig. 13.9 Effects of behavioral training on spectral modulation trans-
fer functions (sMTFs). a Population sMTFs for three untrained cats
(Keeling et al. 2008). b population sMTFs for cats that were trained to
perform a spectral envelope discrimination task. The training stimulus
was a three-octave wide ripple sound with a sinusoidal spectral enve-
lope of 1 ripple/octave (indicated by the vertical gray line). Animals

were required to discriminate between stimuli with shifted positions
of the spectral peaks (envelope phase) but with constant peak spacing.
Note the shift in the preferred ripple frequency toward the trained rip-
ple spacing and the relative increase in firing rate at the trained ripple
density. Adapted from Keeling et al. (2008)

This is equivalent to an expansion of cortical space for the
most task-relevant stimulus feature and increases stimulus
sensitivity. In addition, the bandwidth of ripple transfer func-
tions, a direct measure of the selectivity of neurons to specific
formant spacings, became significantly narrower (Keeling
et al. 2008) in conjunction with a narrowing of the band-
width of pure-tone tuning curves. This change corresponds
to an increase in selectivity.

Exposure to stimuli without overt behavioral consequence
or explicit learning task can also have a long-term effect on
the properties of cortical receptive fields (Gourevitch et al.
2009).

These observations indicate that the rules of short- and
long-term cortical plasticity alike can operate on elemental
stimulus features independent or in conjunction with others.
The effect is governed by the stimulus statistics and their
relationship to associative tasks. The cortex seems to use
these features to guide several forms of receptive field reorga-
nization, including reorganization of feature maps, plasticity
of spectral and temporal specificity and selectivity, emphasis
of relevant parameter ranges and combinations, and altered
strength of evoked responses.

6 Synaptic Mechanisms of Spectral
Processing

6.1 Synaptic Frequency Tuning

Most studies of cortical receptive fields have relied on extra-
cellular recordings of spike output. However, recent advances
in understanding the organization and dynamics of cortical

circuits have been obtained using intracellular techniques
such as in vivo whole-cell voltage-clamp recording. This
is primarily for two reasons: first, spiking receptive fields
necessarily are subsets of the underlying synaptic recep-
tive fields; and second, excitatory responses are strongly
governed by the inhibitory inputs received by a given neu-
ron. Extracellular and optical approaches cannot at present
directly measure these subthreshold inhibitory responses.
Thus in vivo whole-cell recording experiments have provided
the highest resolution descriptions of cortical tuning curves
and receptive field properties, particularly for responses to
pure tones and frequency modulation sweeps.

In terms of spectral tuning in adult cat, rat, and mouse
AI, a major feature of synaptic receptive fields is that the
relative strengths of excitatory and inhibitory inputs are pro-
portional across tone frequency, i.e., synaptic excitation and
inhibition are essentially balanced in mature AI (Froemke
et al. 2007; Tan and Wehr 2009; Tan et al. 2004; Volkov and
Galazjuk 1991; Wehr and Zador 2003; Zhang et al. 2003).
Excitatory and inhibitory responses are balanced in the sense
that they are usually co-tuned, i.e., sharing best frequencies
and having correlated response magnitudes across other fre-
quencies (Fig. 13.10a, c, d). However, although the relative
amplitudes of inhibitory responses scale with the size of exci-
tatory responses for a given stimulus, the onset of inhibition
is delayed by a few milliseconds (Wehr and Zador 2003). As
a consequence, there is a brief window in which excitatory
responses can sum together and generate action potentials.
This phase lag for inhibition is likely due to the architec-
ture of thalamocortical circuitry in that there are few if any
direct inhibitory projections from the MGB to AI (Winer
1992), leading to a short disynaptic delay between the onset
of excitation and the onset of inhibition.
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Fig. 13.10 Spectral tuning of synaptic excitation and inhibition in
adult and developing rat AI. a Balanced tone-evoked excitation and
inhibition in adult AI. Whole-cell recording from an adult (3-month old)
rat. Top, frequency tuning of excitatory (filled symbols) and inhibitory
(open symbols) conductances. Bottom, correlation between excitation
and inhibition. Error bars represent s.e.m. b Imbalanced excitatory and
inhibitory frequency tuning early in development. Whole-cell record-
ing from AI of a young (P14) rat. c Increase of excitatory–inhibitory
balance during the AI critical period. At the end of the second postna-
tal week, excitation and inhibition were uncorrelated. By the end of the
third week, the correlation rapidly improved, and by the end of the first
month, the excitation–inhibition correlation was similar to that mea-
sured in adult animals. d Summary of changes to excitatory–inhibitory
balance during development. Top, mean correlation between excitation
and inhibition in young (P12-21) and adult animals. Bottom, mean dif-
ference in excitatory and inhibitory best frequencies in young and adult
animals

While on average, synaptic frequency tuning of AI neu-
rons is balanced, sensory-evoked excitatory and inhibitory
responses are not always so closely matched. For some cells
in adult AI, excitation and inhibition are uncorrelated or even
anti-correlated (Fig. 13.10c). There is additional evidence
for untuned or cross-tuned inhibitory inputs from intracel-
lular recording studies in visual cortex (Douglas et al. 1991;
Ferster 1986; Monier et al. 2003; Pei et al. 1991; Schummers
et al. 2002). Recordings from interneurons in both auditory
and visual cortex indicate that inhibitory cells are frequently
less tuned than excitatory neurons (Atencio and Schreiner
2008; Liu et al. 2009; Niell and Stryker 2008; Sohya et al.

2007; Wu et al. 2008). Also, depending on the position of a
neuron within the AI frequency map, there may be asymmet-
rical sidebands of inhibitory inputs within an octave or so,
helping to selectively shape the responses to up or down fre-
quency sweeps (Zhang et al. 2003). Likewise, other receptive
field properties, such as intensity tuning, may be regulated
by focally imbalanced inhibition (Tan et al. 2007; Wu et al.
2006). In general, diversity in the synaptic organization of
cortical receptive fields might be important for detection and
discrimination of different classes of auditory stimuli, and
theoretical models suggest that both balanced inhibition and
relatively broad lateral inhibition schemes are required to
explain the range of spiking responses observed in extra-
cellular recordings in vivo (de la Rocha et al. 2008). One
challenge for future studies will be to determine how the var-
ious types of interneurons, such as basket cells and Martinotti
cells (Petilla International Nomenclature Group 2008), might
be activated by specific patterns of auditory stimulation and
differentially affect synaptic receptive fields.

While the exact sources of intracortical inhibition remain
unknown, it is also still unclear to what degree thala-
mic or intracortical excitatory inputs contribute to the net
excitation evoked by tones or other stimuli. Kaur and col-
leagues (2004) reported that intracortical injections of mus-
cimol, a GABAA receptor agonist, reduced the bandwidth
of frequency-intensity receptive fields, but left characteristic
frequency responses relatively intact. These results suggest
that intracortical inputs help define the width of excitatory
receptive fields, broadening frequency tuning curves beyond
the extent determined by more sharply tuned thalamic input.
However, a study by a different group attempted to iso-
late thalamic inputs using muscimol in combination with
SCH50911 (a GABAB receptor antagonist), to prevent reduc-
tion of presynaptic transmitter release at thalamocortical
afferents while simultaneously reducing intracortical exci-
tation. They found that tuning curve width was unaffected
by this pharmacological treatment (Liu et al. 2007), sug-
gesting that the range of thalamic input alone may set the
width of subthreshold frequency tuning. Regardless of the
anatomical basis of synaptic receptive fields, the relative con-
nection strengths of thalamic and intracortical inputs can be
changed by various forms of experience, with intracortical
synapses seemingly expressing a higher degree of plasticity
than thalamic inputs (Diamond et al. 1994; Froemke et al.
2007).

6.2 Development of Synaptic Frequency
Tuning

Although cortical synapses can be modified all through-
out life, receptive fields are especially plastic during
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developmental critical periods, epochs during which cortical
circuits are particularly susceptible to changes in sensory
input (Buonomano and Merzenich 1998; Hensch 2005; Katz
and Shatz 1996). Auditory cortical critical periods usually
last for a few days or weeks, beginning just after the start of
hearing, and possibly are overlapping or staggered for differ-
ent components of the auditory system or different receptive
field properties.

In rodent AI, representations of sound frequency and
intensity can be profoundly altered if young animals are
exposed to pulsed pure tones for a brief period immediately
after hearing onset, between postnatal day (P) 11 and 13. This
form of patterned exposure was found to both rapidly alter
tonotopic map structure and close the cortical critical period
for frequency tuning (de Villers-Sidani et al. 2007; Dorrn
et al. 2010). Conversely, exposure to pulsed white noise
stimuli early in life was found to degrade the tonotopic orga-
nization of rodent AI (Zhou and Merzenich 2007). Therefore,
exposure to either pulsed pure tones or white noise bursts has
opposing effects on AI feature selectivity. In both cases, how-
ever, receptive fields are remodeled to match the statistics of
the sensory environment.

Exposure to continual white noise, rather than periodic
bursts of noise, has also been found to degrade cortical
receptive fields. However, continual noise exposure prolongs
the extent of the critical period into adulthood (Chang and
Merzenich 2003). Thus while the spectral structure of acous-
tic stimuli controls the formation of AI frequency tuning
profiles, the temporal pattern of sensory input regulates the
overall duration of the AI critical period. Continual stimuli
keep the critical period open, perhaps because of the strong
neuronal adaptation driven by tonic input, while pulsed or
phasic input precociously close the critical period, probably
because of the increase in correlated or coincident neuronal
activity that should drive long-term synaptic modifications
throughout the cortical network (Dorrn et al. 2010).

These forms of receptive field plasticity can also be
observed at the synaptic level. In rodent AI, synaptic mat-
uration occurs between P12-21 (Dorrn et al. 2010; Oswald
and Reyes 2008). Excitatory inputs seem to mature first,
and are tuned for sound frequency by approximately P14
(de Villers-Sidani et al. 2007; Dorrn et al. 2010; Sun et al.
2010). However, inhibitory inputs are potentially equally as
strong in young versus adult AI, but exhibit little to no fre-
quency tuning after the second postnatal week, resulting in
imbalanced excitation and inhibition and erratic receptive
field organization (Fig. 13.10b). After three postnatal weeks
of relatively normal acoustic experience, though, cortical
inhibition progressively becomes tuned to sound frequency,
matching and balancing excitatory inputs (Fig. 13.10c, d).
This experience-dependent process of inhibitory maturation
can be affected in a similar manner to tonotopic maps:
continual white noise exposure delays maturation, while

repetitive tonal exposure accelerates balancing of excitation
and inhibition (Dorrn et al. 2010). Furthermore, studies in AI
brain slices have revealed that postnatal hearing loss, even to
a partial degree, leads to persistent changes in the efficacy
of cortical synapses (Kotak et al. 2008). Thus early in life,
the patterns of acoustic experience – or lack thereof – lead
to rapid modifications of excitatory and inhibitory synaptic
strength, which in turn govern the organization of receptive
fields, the output of cortical circuitry, and the perception of
auditory stimuli.

6.3 Plasticity of Frequency Tuning in the Adult
Cortex

After the critical period has ended, patterned auditory stim-
ulation by itself is no longer sufficient to drive long-term
synaptic modifications or enduring changes to cortical recep-
tive field properties. Rather, adult receptive field plasticity
also depends on stimulus history and internal state variables
such as arousal level and motivation. This behavioral context
is often conveyed by activation of subcortical neuromodula-
tory systems that directly project to AI, e.g., the cholinergic
nucleus basalis (Weinberger 2007; see Chapter 22).

Acetylcholine release is essential for learning and mem-
ory, and is believed to be involved in arousal and atten-
tional modulation of cortical responses (Froemke et al. 2007;
Parikh et al. 2007). Classic studies using extracellular record-
ings have shown that pairing pure tones of a specific fre-
quency with electrical stimulation of nucleus basalis induces
large, long-lasting enhancements of spontaneous and tone-
evoked spiking (Bakin and Weinberger 1996; Kilgard and
Merzenich 1998; Rasmusson and Dykes 1988). Although
electrical stimulation of nucleus basalis should activate a het-
erogeneous population of projection neurons, including those
that release acetylcholine, glutamate, GABA, and various
peptides (Henny and Jones 2008; Lin and Nicolelis 2008),
pharmacological evidence indicates that cortical muscarinic
acetylcholine receptors are specifically required for the long-
term effects on AI receptive fields of this pairing procedure.
Acetylcholine has a wide range of effects on cortical neurons,
but a consistent observation is increased excitability (Woody
and Gruen 1987) and suppression of intracortical synaptic
transmission (Metherate et al. 2005; Sarter and Parikh 2005;
Xiang et al. 1998).

Intracellular recordings in vivo revealed the mechanisms
by which stimulation of the nucleus basalis neuromodu-
latory system activates cortical networks (Metherate and
Ashe 1993; Metherate et al. 1992) and enables recep-
tive field plasticity (Froemke et al. 2007). In these lat-
ter experiments, whole-cell voltage-clamp recordings from
individual neurons were obtained in anesthetized adult rat
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Fig. 13.11 Temporal dynamics of progressive synaptic receptive field
plasticity induced by nucleus basalis pairing. a Experimental config-
uration. The stimulation electrode was acutely implanted in the right
nucleus basalis, and whole-cell recordings were obtained from neurons
in right AI. Pure tones of various frequencies were played to the con-
tralateral ear, and synaptic responses were recorded in voltage-clamp.
b Frequency tuning of synaptic excitation (filled) and inhibition (open)
for the first cell 10 min prior to nucleus basalis pairing. Note the initial
balance of excitation and inhibition across frequencies (linear correla-
tion coefficient r: 0.9). Arrow indicates the paired frequency (4 kHz).
Arrowhead indicates the original best frequency (16 kHz) for this region

of AI. Error bars represent s.e.m. c Frequency tuning of the same cell
in (b), recorded 30 min after nucleus basalis pairing. The paired fre-
quency had become the best frequency for excitatory tuning but not
inhibitory tuning because of the enhancement of excitation and sup-
pression of inhibition, leading to a decrease in excitatory–inhibitory
balance (r: 0.3). d Another cell from same region of AI, recorded
180 min after nucleus basalis pairing. The paired frequency was now
the best frequency for both excitation and inhibition, and excitatory–
inhibitory balance across all frequencies was restored (r: 0.9). Adapted
from Froemke et al. (2007)

AI (Fig. 13.11a), and excitatory and inhibitory synap-
tic frequency tuning was initially determined (Fig.13.11b).
Afterwards, tones of a specific non-preferred frequency were
paired with electrical stimulation of nucleus basalis. Several
seconds after the start of pairing, there was a large suppres-
sion of inhibitory events evoked by the paired tone, followed
by a more gradual enhancement of tone-evoked excitation.
These changes were long-lasting, persisting at least 20 min
or more after the end of the pairing procedure. While nucleus
basalis stimulation has immediate effects on both thalamo-
cortical and intracortical transmission, longer-term synaptic
modifications appear to be specific to intracortical connec-
tions and not to the primary thalamic input to AI (Metherate
and Ashe 1993; Froemke et al. 2007).

Due to the cooperative effects of suppression of inhi-
bition and enhancement of excitation, nucleus basalis

pairing disrupted excitatory–inhibitory balance in adult AI
(Fig. 13.11c). However, over a longer time period (sev-
eral hours), synaptic modifications continually evolved, with
inhibition progressively increasing to a higher level than
before, eventually re-balancing the persistent increase of
excitation at the paired frequency (Fig. 13.11d). These results
indicate that the dynamics of inhibitory transmission could
serve as a synaptic memory trace of the brief pairing event
(Froemke et al. 2007). The duration of input-selective disin-
hibition may permit self-reorganization of AI receptive fields
to emphasize the new preference for paired stimuli, in a man-
ner independent of further evoked neuromodulator release.
Under natural conditions, this memory trace could represent
episodes or events that have acquired new behavioral mean-
ing, or might be similar to the sorts of cortical changes that
occur during perceptual learning, especially for those tasks
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requiring focal attention and sensory discrimination. In this
way, neuromodulatory systems allow cortical networks to
selectively respond to important or novel stimuli.

Transient, focal suppression of inhibition may be a gen-
eral mechanism for induction of receptive field modification
in the adult cortex. During developmental critical periods, the
high level of plasticity may be due to a less-refined inhibitory
tone (Chang et al. 2005; Dorrn et al. 2010), permissive for
alterations of cortical networks by passive stimuli. In adult
cortex, however, receptive field plasticity also requires acti-
vation of neuromodulator systems, reflecting the importance
of behavioral context in associative learning and memory
provided by subcortical systems (Weinberger 2007). This is
further demonstrated by a series of studies from Fritz and col-
leagues (Fritz et al. 2003, 2005), using single-unit recordings
in AI of head-restrained behaving ferrets. Receptive fields of
AI neurons were powerfully modified after behavioral con-
ditioning. Excitatory and suppressive subregions of spectro-
temporal receptive fields evoked by certain stimuli were
altered when those stimuli were followed by tail-shock. The
predominant changes to spectro-temporal receptive fields
were increases of excitatory regions and reductions of sup-
pressive regions around the conditioned tone (Fritz et al.
2003), strikingly similar to the synaptic effects of nucleus
basalis pairing (Froemke et al. 2007). These changes in
receptive field structure could endure for minutes to hours
after conditioning, possibly serving as a memory in sen-
sory cortex for the contingencies of behavioral training and
reinforcement.

Intracellular recordings have been essential for describ-
ing cortical organization and dynamics at the synaptic level.
During development, perturbations in the sensory environ-
ment drive changes in synaptic strength, functioning to
model cortical receptive fields around the statistics of sen-
sory inputs. In the adult brain, receptive field plasticity is
controlled by behavioral context and motivational state, act-
ing through neuromodulators to gate long-term changes in
excitatory and inhibitory synaptic receptive fields. It remains
an open question how distinct elements of cortical networks
and subcortical neuromodulatory systems are recruited by
various forms of sensation, experience, and internal drive
for the control of synaptic modifications, circuit dynamics,
perception, and cognition.

7 Conclusions and Future Directions

Elucidating stimulus-centered complex coding principles
and placing them into a functional and behavioral context
remains a primary goal of future studies of the auditory cor-
tex. Without that information, hypotheses about local and
global tasks and mechanisms as well as the properties of

potential processing streams in higher cortical areas and
parallels among modalities remain speculative or untestable.

Linking functional organization and structural substrates
that govern complex sound processing in auditory cortex
is an essential step in understanding how the brain rep-
resents the auditory world and performs specific auditory
tasks. Similar approaches in visual and somatic sensory cor-
tices of cats and primates revealed fundamentally different
information processing mechanisms from subcortical pro-
cessing strategies. In early visual cortex, locally created
stimulus-based representations include substrates for binoc-
ularity, orientation selectivity, and motion selectivity (Bishop
et al. 1973; Henry et al. 1974; Hubel and Livingstone 1990;
Hubel and Wiesel 1970; Movshon 1975). In somatic sen-
sory cortex, the segregation of slowly and rapidly adapting
peripheral mechanoreceptors (Mountcastle 1957), single-to-
multiple whisker integration (Mirabella et al. 2001), and
integration mechanisms for vibrotactile frequency informa-
tion (Luna et al. 2005) each offer essential clues as to how the
brain interprets sensory experience. Comparable and emer-
gent stimulus processing attributes have not yet been clearly
identified for early auditory cortical stations. Instead, it is
often assumed (King and Nelken 2009) that cortical pro-
cessing is largely an extension of subcortical processes with
little conceptual changes in content (“what”) and manner
(“how”) of processing. One major impediment to progress
is that uniquely auditory cortical processing principles have
not been unambiguously identified. The observation of emer-
gent, multi-dimensional spectro-temporal feature processing
in AI (Atencio et al. 2008) may hold the key to an advance-
ment in stimulus-centered cortical processing attributes.

The observation of an ordinal laminar progression of how
information is processed – as opposed to what stimulus
content is processed – represents a departure from tradi-
tional models of auditory cortical stimulus feature extraction
and representation (Atencio et al. 2009). The additional
informative dimensions express further relevant spectro-
temporal aspects. Their interactions with the traditional,
feature-selective filter (Atencio et al. 2008) are reminis-
cent of the notion of combination-sensitivity epitomized
in the processing of biosonar signal (Portfors and Felix
2005; Suga 1984; Yan and Suga 1996). However, differ-
ences in the filter nonlinearity and the synergistic cooperation
of the filters introduce new processing dimensions beyond
the combination of highly defined stimulus features that is
already present in subcortical stations (Gans et al. 2009;
Olsen and Suga 1991; Peterson et al. 2008; Portfors and
Felix 2005). Further investigations along these lines, espe-
cially in non-primary/belt areas may provide a key step in
our understanding of laminar RF transitions and the evolu-
tion toward increasingly more complex, nonlinear, robust,
stimulus invariant, categorical and/or abstract processing
principles.
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Cortical microcircuits should be understood according to
their different tasks, requirements of the auditory system,
and how cortical connection patterns subserve these opera-
tions. Simple stereotypical columnar maps repeated across
the spatial extent of auditory cortex can be excluded as a
dominant computational principle. However, it is conceiv-
able that the main functions of auditory cortex circuits may
remain hidden when applying simple, stimulus-based param-
eter analyses. For the processing rules to emerge fully, a more
task-dependent analysis, including determining more com-
plete and higher-order receptive field properties, may have
to be performed (Ahissar et al. 2009; Fritz et al. 2003; King
and Nelken 2009). The manner in which stimulus informa-
tion is processed may be a more relevant organizing principle
for auditory cortex than the encoding of acoustic content
itself. In this framework, increased nonlinear dynamics may
emerge as information moves from input to output layers
(Ahmed et al. 2006) analogous to the different nonlineari-
ties inherent in simple and complex cell processing in the cat
primary visual cortex (Hubel and Wiesel 1962; Linden and
Schreiner 2003; Martinez and Alonso 2003).

While much is known about how the brain processes and
encodes basic sensory features such as color, orientation,
or motion direction in vision and frequency, intensity, and
sound source location in audition, much less is known about
how the brain acquires and represents the behavioral rel-
evance of stimuli. The neuronal encoding of meaning, as
expressed in the creation of sound categories, must involve
something beyond the neuronal encoding observed for basic
stimulus features. The gradual emergence of these coding
aspects, or at least initial steps toward such goals, and their
redistribution via extensive feedback connections (Winer
2006) likely renders most stations that have been tradition-
ally considered purely sensory as substrates for combined
sensory and cognitive processes.

An array of new methods, including optical methods to
record from hundreds of neurons simultaneously, optoge-
netic methods to manipulate activity in specific cell classes,
and computational approaches to dissect and model neuronal
ensemble activity across multiple stations during behav-
iors, are being increasingly exploited to address fundamental
issues of spectral and spectral–temporal coding in auditory
cortex. It is clear that the focus of research has to shift
from single neurons to neuron assemblies, from early cor-
tical regions to later cortical regions, from stimulus-based to
cognition-based aspects, and from animal-based to human-
based studies in order to fully appreciate and understand the
complexity of auditory cortical processing.
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