Costas D Maranas

Costas D Maranas
  • PhD
  • Pennsylvania State University

About

466
Publications
83,781
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
19,691
Citations
Introduction
Reconstruction, analysis and redesign of metabolic networks, systems biology, and networks, computational protein, enzyme and antibody design, optimization theory and algorithms.
Current institution
Pennsylvania State University
Additional affiliations
September 1995 - December 2012
Pennsylvania State University
September 1990 - May 1995
Princeton University
Position
  • PhD Student
Education
September 1990 - May 1995
Princeton University
Field of study
  • Chemical Engineering

Publications

Publications (466)
Article
Full-text available
Estimation of enzymatic activities still heavily relies on experimental assays, which can be cost and time-intensive. We present CatPred, a deep learning framework for predicting in vitro enzyme kinetic parameters, including turnover numbers (kcat), Michaelis constants (Km), and inhibition constants (Ki). CatPred addresses key challenges such as th...
Article
Full-text available
Chemo-enzymatic pathway design aims to combine the strengths of enzymatic with chemical synthesis to traverse biomolecular design space more efficiently. While chemical reactions often struggle with regioselectivity and stereoselectivity, enzymatic conversions often encounter limitations of low enzyme activity or availability. Optimally integrating...
Preprint
Full-text available
Computational pathway design and retro-biosynthetic approaches can facilitate the development of innovative biochemical production routes, biodegradation strategies, and the funneling of multiple precursors into a single bioproduct. However, effective pathway design necessitates a comprehensive understanding of biochemistries, enzyme activities, an...
Preprint
Full-text available
Genome-scale metabolic models (GEMs) and other constraint-based models (CBMs) play a pivotal role in understanding biological phenotypes and advancing research in areas like metabolic engineering, human disease modelling, drug discovery, and personalized medicine. Despite their growing application, a significant challenge remains in ensuring the re...
Article
Full-text available
Stoichiometric genome-scale metabolic models (generally abbreviated GSM, GSMM, or GEM) have had many applications in exploring phenotypes and guiding metabolic engineering interventions. Nevertheless, these models and predictions thereof can become limited as they do not directly account for protein cost, enzyme kinetics, and cell surface or volume...
Article
Populus trichocarpa (poplar) is a fast-growing model tree whose lignocellulosic biomass is a promising biofuel feedstock. Enhancing its viability and yield in non-arable drought-prone lands can reduce biomass cost and accelerate adoption as a biofuel crop. Data from extensive -omics and phenotypic studies were leveraged herein to reconstruct a mult...
Preprint
Full-text available
Quantification of enzymatic activities still heavily relies on experimental assays, which can be expensive and time-consuming. Therefore, methods that enable accurate predictions of enzyme activity can serve as effective digital twins. A few recent studies have shown the possibility of training machine learning (ML) models for predicting the enzyme...
Preprint
Full-text available
Quantification of enzymatic activities still heavily relies on experimental assays, which can be expensive and time-consuming. Therefore, methods that enable accurate predictions of enzyme activity can serve as effective digital twins. A few recent studies have shown the possibility of training machine learning (ML) models for predicting the enzyme...
Article
Full-text available
Metabolic efficiency profoundly influences organismal fitness. Nonphotosynthetic organisms, from yeast to mammals, derive usable energy primarily through glycolysis and respiration. Although respiration is more energy efficient, some cells favor glycolysis even when oxygen is available (aerobic glycolysis, Warburg effect). A leading explanation is...
Article
Full-text available
Cyanobacteria are photosynthetic organisms that have garnered significant recognition as potential hosts for sustainable bioproduction. However, their complex regulatory networks pose significant challenges to major metabolic engineering efforts, thereby limiting their feasibility as production hosts. Genome streamlining has been demonstrated to be...
Preprint
Cyanobacteria are photosynthetic organisms that have garnered significant recognition as potential hosts for sustainable bioproduction. However, their complex regulatory networks pose significant challenges to major metabolic engineering efforts, thereby limiting their feasibility as production hosts. Genome streamlining has been demonstrated to be...
Article
Climate change has adversely affected maize productivity. Thereby, a holistic understanding of metabolic crosstalk among its organs is important to address this issue. Thus, we reconstructed the first multi-organ maize metabolic model, iZMA6517, and contextualized it with heat and cold stress transcriptomics data using expression distributed reacti...
Article
Full-text available
Retro-biosynthetic approaches have made significant advances in predicting synthesis routes of target biofuel, bio-renewable or bio-active molecules. The use of only cataloged enzymatic activities limits the discovery of new production routes. Recent retro-biosynthetic algorithms increasingly use novel conversions that require altering the substrat...
Article
Full-text available
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), believed to have originated from a bat species, can infect a wide range of non-human hosts. Bats are known to harbor hundreds of coronaviruses capable of spillover into human populations. Recent studies have shown a significant variation in the susceptibility among bat species to SARS-Co...
Article
Saccharomyces cerevisiae is an important model organism and a workhorse in bioproduction. Here, we reconstructed a compact and tractable genome-scale resource balance analysis (RBA) model (i.e., named scRBA) to analyze metabolic fluxes and proteome allocation in a computationally efficient manner. Resource capacity models such as scRBA provide the...
Article
Lignocellulosic biomass is an abundant and renewable source of carbon for chemical manufacturing, yet it is cumbersome in conventional processes. A promising, and increasingly studied, candidate for lignocellulose bioprocessing is the thermophilic anaerobe Clostridium thermocellum given its potential to produce ethanol, organic acids, and hydrogen...
Article
Full-text available
Methyl methacrylate (MMA) is an important petrochemical with many applications. However, its manufacture has a large environmental footprint. Combined biological and chemical synthesis (semisynthesis) may be a promising alternative to reduce both cost and environmental impact, but strains that can produce the MMA precursor (citramalate) at low pH a...
Article
The parameterization of kinetic models requires measurement of fluxes and/or metabolite levels for a base strain and a few genetic perturbations thereof. Unlike stoichiometric models that are mostly invariant to the specific strain, it remains unclear whether kinetic models constructed for different strains of the same species have similar or signi...
Article
Full-text available
There is mounting evidence of SARS-CoV-2 spillover from humans into many domestic, companion, and wild animal species. Research indicates that humans have infected white-tailed deer, and that deer-to-deer transmission has occurred, indicating that deer could be a wildlife reservoir and a source of novel SARS-CoV-2 variants. We examined the hypothes...
Preprint
Full-text available
Saccharomyces cerevisiae is an important model organism and a workhorse in biochemical production. Here, we reconstructed a compact and tractable genome-scale resource balance analysis (RBA) model (i.e., sc RBA) to analyze metabolic fluxes and proteome allocation in a computationally efficient manner. Resource capacity models such as sc RBA provide...
Article
The continued emergence of new SARS‐CoV‐2 variants has accentuated the growing need for fast and reliable methods for the design of potentially neutralizing antibodies (Abs) to counter immune evasion by the virus. Here, we report on the de novo computational design of high affinity antibody variable regions (Fv) through the recombination of VDJ gen...
Preprint
Full-text available
Cells face competing metabolic demands. These include efficient use of both limited substrates and limited proteome capacity, as well as flexibility to deal with different environments. Flexibility requires spare enzyme capacity, which is proteome inefficient. ATP generation can occur via fermentation or respiration. Fermentation is much less subst...
Article
Constraining metabolic models by enzyme capacities greatly improves genotype–phenotype predictions. Now, a method for estimating enzyme turnovers based on deep learning has been developed and used to reconstruct enzyme-constrained genome-scale metabolic models for more than 300 yeast species.
Article
Full-text available
Growth‐coupling product formation can facilitate strain stability by aligning industrial objectives with biological fitness. Organic acids make up many building block chemicals that can be produced from sugars obtainable from renewable biomass. Issatchenkia orientalis is a yeast strain tolerant to acidic conditions and is thus a promising host for...
Article
Full-text available
Multiple domestic and wild animal species are susceptible to SARS-CoV-2 infection. Cattle and swine are susceptible to experimental SARS-CoV-2 infection. The unchecked transmission of SARS-CoV-2 in animal hosts could lead to virus adaptation and the emergence of novel variants. In addition, the spillover and subsequent adaptation of SARS-CoV-2 in l...
Preprint
Full-text available
The cellular entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) involves the association of its receptor binding domain (RBD) with human angiotensin converting enzyme 2 (hACE2) as the first crucial step. Efficient and reliable prediction of RBD-hACE2 binding affinity changes upon amino acid substitutions can be valuable for publi...
Article
Full-text available
The factors controlling lignin composition remain unclear. Catechyl (C)-lignin is a homopolymer of caffeyl alcohol with unique properties as a biomaterial and precursor of industrial chemicals. The lignin synthesized in the seed coat of Cleome hassleriana switches from guaiacyl (G)- to C-lignin at around 12 to 14 days after pollination (DAP), assoc...
Article
Full-text available
The atypical glycolysis of Clostridium thermocellum is characterized by the use of pyrophosphate (PP i ) as phosphoryl donor for phosphofructokinase (Pfk) and pyruvate phosphate dikinase (Ppdk) reactions. Previously, biosynthetic PP i was calculated to be stoichiometrically insufficient to drive glycolysis. This study investigates the role of a H ⁺...
Article
Developing economically viable, scalable, and sustainable technologies for the conversion of lignocellulosic polysaccharides to liquid fuels is widely seen as a centerpiece of the global bioeconomy, and a key part of a multi-pronged approach to achieve carbon neutrality. Here we identify technology challenges and opportunities to achieve this promi...
Article
Full-text available
Significance The results provide strong evidence of extensive SARS-CoV-2 infection of white-tailed deer, a free-living wild animal species with widespread distribution across North, Central, and South America. The analysis shows infection of deer resulted from multiple spillovers from humans, followed by efficient deer-to-deer transmission. The dis...
Article
Clostridium thermocellum is a promising candidate for consolidated bioprocessing because it can directly ferment cellulose to ethanol. Despite significant efforts, achieved yields and titers fall below industrially relevant targets. This implies that there still exist unknown enzymatic, regulatory, and/or possibly thermodynamic bottlenecks that can...
Article
Full-text available
Characterizing the functional properties of plant acyl-ACP thioesterases (TEs), a key enzyme class used in the production of renewable oleochemicals in microbial hosts, experimentally, can be an expensive and time consuming process since it requires manual screening of thousands of candidates in a database. Using amino acid sequence to computationa...
Preprint
Full-text available
Many animal species are susceptible to SARS-CoV-2 and could potentially act as reservoirs, yet transmission in non-human free-living animals has not been documented. White-tailed deer ( Odocoileus virginianus) , the predominant cervid in North America, are susceptible to SARS-CoV-2 infection, and experimentally infected fawns transmit the virus to...
Article
Flux balance analysis (FBA) and associated techniques operating on stoichiometric genome-scale metabolic models play a central role in quantifying metabolic flows and constraining feasible phenotypes. At the heart of these methods lie two important assumptions: (i) the biomass precursors and energy requirements neither change in response to growth...
Article
Full-text available
Significance SARS-CoV-2 infection proceeds through the binding of viral surface spike protein to the human ACE2 protein. The global spread of the infection has led to the emergence of fitter and more transmissible variants with increased adaptation both in human and nonhuman hosts. Molecular simulations of the binding event between the spike and AC...
Article
Full-text available
Group contribution (GC) methods are conventionally used in thermodynamics analysis of metabolic pathways to estimate the standard Gibbs energy change (ΔrG′o) of enzymatic reactions from limited experimental measurements. However, these methods are limited by their dependence on manually curated groups and inability to capture stereochemical informa...
Article
Full-text available
The growth and development of maize (Zea mays L.) largely depends on its nutrient uptake through root. Hence, studying its growth, response, and associated metabolic reprogramming to stress conditions is becoming an important research direction. A genome-scale metabolic model (GSM) for the maize root was developed to study its metabolic reprogrammi...
Preprint
Full-text available
Flux balance analysis (FBA) and associated techniques operating on stoichiometric genome-scale metabolic models play a central role in quantifying metabolic flows and constraining feasible phenotypes. At the heart of these methods lie two important assumptions: (i) the biomass precursors and energy requirements neither change in response to growth...
Article
Full-text available
Background The emergence of SARS-CoV-2 underscores the need to better understand the evolutionary processes that drive the emergence and adaptation of zoonotic viruses in humans. In the betacoronavirus genus, which also includes SARS-CoV and MERS-CoV, recombination frequently encompasses the receptor binding domain (RBD) of the Spike protein, which...
Preprint
Full-text available
Classification of proteins into their respective functional categories remains a long-standing key challenge in computational biology. Machine Learning (ML) based discriminative algorithms have been used extensively to address this challenge; however, the presence of small-sized, noisy, unbalanced protein classification datasets where high sequence...
Article
The heterogeneity of the aromatic products originating from lignin catalytic depolymerization remains one of the major challenges associated with lignin valorization. Microbes have evolved catabolic pathways that can funnel heterogeneous intermediates to a few central aromatic products. These aromatic compounds can subsequently undergo intra- or ex...
Article
Full-text available
Marine nitrogen-fixing microorganisms are an important source of fixed nitrogen in oceanic ecosystems. The colonial cyanobacterium Trichodesmium and diatom symbionts were thought to be the primary contributors to oceanic N2 fixation until the discovery of the unusual uncultivated symbiotic cyanobacterium UCYN-A (Candidatus Atelocyanobacterium thala...
Preprint
The growth and development of maize (Zea mays L.) largely depends on its nutrient uptake through root. Hence, studying its growth, response, and associated metabolic reprogramming to stress conditions is becoming an important research direction. A genome-scale metabolic model (GSM) for the maize root was developed to study its metabolic reprogrammi...
Preprint
Full-text available
The association of the receptor binding domain (RBD) of SARS-CoV-2 viral spike with human angiotensin converting enzyme (hACE2) represents the first required step for viral entry. Amino acid changes in the RBD have been implicated with increased infectivity and potential for immune evasion. Reliably predicting the effect of amino acid changes in th...
Article
Full-text available
Nitrogen fixing-cyanobacteria can significantly improve the economic feasibility of cyanobacterial production processes by eliminating the requirement for reduced nitrogen. Anabaena sp. ATCC 33047 is a marine, heterocyst forming, nitrogen fixing cyanobacteria with a very short doubling time of 3.8 h. We developed a comprehensive genome-scale metabo...
Article
Full-text available
Clostridium acetobutylicum and Clostridium ljungdahlii grown in a syntrophic culture were recently shown to fuse membranes and exchange cytosolic contents, yielding hybrid cells with significant shifts in gene expression and growth phenotypes. Here, we introduce a dynamic genome-scale metabolic modeling framework to explore how cell fusion alters t...
Article
As photoautotrophic organisms, cyanobacteria capture and store solar energy in the form of biomass. Cyanobacterial biomass has been an important component of diet and nutrition in several regions for centuries. Synthetic biology strategies are currently being applied to increase the yield and productivity of cyanobacterial biomass by optimizing sol...
Article
Kinetic formalisms of metabolism link metabolic fluxes to enzyme levels, metabolite concentrations and their allosteric regulatory interactions. Though they require the identification of physiologically relevant values for numerous parameters, kinetic formalisms uniquely establish a mechanistic link across heterogeneous omics datasets and provide a...
Article
C-MFA is currently the only technique capable of elucidating intracellular metabolic fluxes. Generally, in ¹³C-MFA studies the reactions that can carry flux are mostly pre-specified by only considering canonical pathways and ignoring alternate ones. This may bias flux elucidation and cause labeling data to erroneously confirm implied assumptions. B...
Article
Full-text available
Many platform chemicals can be produced from renewable biomass by microorganisms, with organic acids making up a large fraction. Intolerance to the resulting low pH growth conditions, however, remains a challenge for the industrial production of organic acids by microorganisms. Issatchenkia orientalis SD108 is a promising host for industrial produc...
Article
Understanding the governing principles behind organisms’ metabolism and growth underpins their effective deployment as bioproduction chassis. A central objective of metabolic modeling is predicting how metabolism and growth are affected by both external environmental factors and internal genotypic perturbations. The fundamental concepts of reaction...
Article
Full-text available
This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. SARS-CoV-2 is a novel highly virulent pathogen which gains entry to human cells by binding with the cell surface receptor-angiotensin converting enzyme (ACE2)...
Preprint
We previously described the design of triacetic acid lactone (TAL) biosensor “AraC-TAL1”, based on the AraC regulatory protein. While useful as a tool to screen for enhanced TAL biosynthesis, this variant shows elevated background (leaky) expression, poor sensitivity, and relaxed inducer specificity, including responsiveness to orsellinic acid (OA)...
Article
Full-text available
Insertions and deletions (indels) in protein sequences alter the residue spacing along the polypeptide backbone and consequently open up possibilities for tuning protein function in a way that is inaccessible by amino acid substitution alone. We describe an optimization-based computational protein redesign approach centered around predicting benefi...
Article
Full-text available
Solving environmental and social challenges such as climate change requires a shift from our current non-renewable manufacturing model to a sustainable bioeconomy. To lower carbon emissions in the production of fuels and chemicals, plant biomass feedstocks can replace petroleum using microorganisms as biocatalysts. The anaerobic thermophile Clostri...
Article
Full-text available
Initial microbial colonization and later succession in the gut of human infants are linked to health and disease later in life. The timing of the appearance of the first gut microbiome, and the consequences for the early life metabolome, are just starting to be defined. Here, we evaluated the gut microbiome, proteome and metabolome in 88 African-Am...
Preprint
Full-text available
The emergence of SARS-CoV-2 is responsible for the pandemic of respiratory disease known as COVID-19, which emerged in the city of Wuhan, Hubei province, China in late 2019. Both vaccines and targeted therapeutics for treatment of this disease are currently lacking. Viral entry requires binding of the viral spike receptor binding domain (RBD) with...
Article
Full-text available
Cultivated meat refers to animal cells grown in cell culture, rather than obtained from animal slaughter, for use as nourishment. Drawing on technologies and products developed for the pharmaceutical and biomedical industries, this recent biotechnological industry is undergoing rapid expansion and is positioned to mitigate concerns of industrial an...
Preprint
Full-text available
Solving environmental and social challenges such as climate change requires a shift from our current non-renewable manufacturing model to a sustainable bioeconomy. To lower carbon emissions in the production of fuels and chemicals, plant biomass feedstocks can replace petroleum using microorganisms as catalysts. The anaerobic thermophile Clostridiu...
Preprint
Full-text available
SARS CoV2 is a novel highly virulent pathogen which gains entry to human cells by binding with the cell surface receptor angiotensin converting enzyme (ACE2). We contrasted the binding interactions between human ACE2 and coronavirus spike protein receptor binding domains (RBDs) from (i) SARS-CoV2, (ii) the related but less virulent OC43 (Singapore...
Article
Full-text available
Thermodynamics constitutes a key determinant of flux and enzyme efficiency in metabolic networks. Here, we provide new insights into the divergent thermodynamics of the glycolytic pathways of C. thermocellum and T. saccharolyticum , two industrially relevant thermophilic bacteria whose metabolism still is not well understood. We report that while t...
Article
Full-text available
Genetic sources of phenotypic variation have been a focus of plant studies aimed at improving agricultural yield and understanding adaptive processes. Genome‐wide association studies identify the genetic background behind a trait by examining associations between phenotypes and single‐nucleotide polymorphisms (SNPs). Although such studies are commo...
Article
Full-text available
Kinetic models predict the metabolic flows by directly linking metabolite concentrations and enzyme levels to reaction fluxes. Robust parameterization of organism-level kinetic models that faithfully reproduce the effect of different genetic or environmental perturbations remains an open challenge due to the intractability of existing algorithms. T...
Article
Full-text available
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
Article
Full-text available
Artificial water channels are synthetic molecules that aim to mimic the structural and functional features of biological water channels (aquaporins). Here we report on a cluster-forming organic nanoarchitecture, peptide-appended hybrid[4]arene (PAH[4]), as a new class of artificial water channels. Fluorescence experiments and simulations demonstrat...
Article
Full-text available
Nature relies on a wide range of enzymes with specific biocatalytic roles to carry out much of the chemistry needed to sustain life. Enzymes catalyze the interconversion of a vast array of molecules with high specificity—from molecular nitrogen fixation to the synthesis of highly specialized hormones and quorum‐sensing molecules. Ever increasing em...
Article
Full-text available
Abstract Living organisms in analogy with chemical factories use simple molecules such as sugars to produce a variety of compounds which are necessary for sustaining life and some of which are also commercially valuable. The metabolisms of simple (such as bacteria) and higher organisms (such as plants) alike can be exploited to convert low value in...
Article
Cyanobacteria are oxygenic photoautotrophs that serve as potential platforms for the production of biochemicals from cheap and renewable raw materials - sunlight, water, and carbon dioxide. Systems level analysis of the metabolic network of these organisms could enable the successful engineering of these organisms for the enhanced production of tar...
Article
Full-text available
Kinetic models of metabolic networks offer the promise of quantitative phenotype prediction. The mechanistic characterization of enzyme catalyzed reactions allows for tracing the effect of perturbations in metabolite concentrations and reaction fluxes in response to genetic and environmental perturbation that are beyond the scope of stoichiometric...
Article
Full-text available
Rhodosporidium toruloides is a red, basidiomycetes yeast that can accumulate a large amount of lipids and produce carotenoids. To better assess this non-model yeast's metabolic capabilities, we reconstructed a genome-scale model of R. toruloides IFO0880's metabolic network (iRhto1108) accounting for 2204 reactions, 1985 metabolites and 1108 genes....
Article
Full-text available
Background: The gut microbiota is a heterogeneous group of microbes that is spatially distributed along various sections of the intestines and across the mucosa and lumen in each section. Understanding the dynamics between the spatially differential microbial populations and the driving forces for the observed spatial organization will provide valu...
Article
Clostridium thermocellum is a candidate for consolidated bioprocessing by carrying out both cellulose solubilization and fermentation. However, despite significant efforts the maximum ethanol titer achieved to date remains below industrially required targets. Several studies have analyzed the impact of increasing ethanol concentration on C. thermoc...
Preprint
Kinetic models predict the metabolic flows by directly linking metabolite concentrations and enzyme levels to reaction fluxes. Robust parameterization of organism-level kinetic models that faithfully reproduce the effect of different genetic or environmental perturbations remains an open challenge due to the intractability of existing algorithms. T...
Preprint
Full-text available
Background Rhodosporidium toruloides is a basidiomycetes yeast that can accumulate large amount of lipids and natively produce carotenoids. To better assess this non-model yeast’s metabolic capabilities, we reconstruct a genome-scale model of R. toruloides IFO0880’s metabolic network ( iRhto 1108) using recent functional genomics and phenotypic dat...
Article
Full-text available
The Entner-Doudoroff (ED) and Embden-Meyerhof-Parnas (EMP) glycolytic pathways are largely conserved across glycolytic species in nature. Is this a coincidence, convergent evolution or there exists a driving force towards either of the two pathway designs? We addressed this question by first employing a variant of the optStoic algorithm to exhausti...
Article
Full-text available
Phototrophic organisms such as cyanobacteria utilize the sun’s energy to convert atmospheric carbon dioxide into organic carbon, resulting in diurnal variations in the cell’s metabolism. Flux balance analysis is a widely accepted constraint-based optimization tool for analyzing growth and metabolism, but it is generally used in a time-invariant man...
Data
List of reactions whose flux was constrained in a TPM by the amount of pigment being produced in that TPM. (XLSX)
Data
List of metabolite annotations used in Fig 2 and Fig 4 with metabolite transfer fluxes across all TPMs. (XLSX)
Data
Fluxes of all nutrient exchanges present in CycleSyn. (XLSX)
Data
List of reactions with active constraints in wild-type Synechocystis. (XLSX)
Data
The updated iSyn731 genome-scale model. (XLSX)
Data
Escher map used to generate metabolic flux maps in Fig 7 (JSON file). (JSON)
Data
CycleSyn model in SBML format. (ZIP)
Data
Distribution of total number (black bars) and transcriptionally constrained reactions (grey bars) across metabolic pathways in the updated iSyn731 genome-scale model. (PNG)
Data
Transfer fluxes (in mmol per gDW hr) of all biomass precursors, over all time points for wild-type Synechocystis. (XLSX)
Data
List of reactions from mutant (nitrogen-fixing) Synechocystis with non-overlapping flux ranges as compared to wild-type Synechocystis. (XLSX)
Article
Synechococcus elongatus UTEX 2973 (Synechococcus 2973) has the shortest reported doubling time (2.1 h) among cyanobacteria, making it a promising platform for the solar-based production of biochemicals. In this meta-analysis, its intracellular flux distribution was recomputed using genome-scale isotopic nonstationary 13C-metabolic flux analysis giv...
Article
Significance There has been recent interest in fast-growing microbes to accelerate discoveries in medicine, biology, and biotechnology. Additionally, microbes with rapid-growth properties are of significant industrial interest as a chassis for bioproduction. While such microbes have been identified, the determinants of their rapid growth remain poo...
Article
Full-text available
Monodispersed angstrom-size pores embedded in a suitable matrix are promising for highly selective membrane-based separations. They can provide substantial energy savings in water treatment and small molecule bioseparations. Such pores present as membrane proteins (chiefly aquaporin-based) are commonplace in biological membranes but difficult to im...

Network

Cited By