
Galley Proof 12/01/2006; 17:01 File: jec54.tex; BOKCTP/Haina p. 1

Journal of Embedded Computing 1 (2005) 1–11 1
IOS Press

A cache design for high performance
embedded systems

P. Foglia∗, D. Mangano and C.A. Prete
Department of Information Engineering, University of Pisa, Pisa, Italy

Abstract. Future embedded applications will require high performance processors integrating fast and low-power cache. Dynamic
Non-Uniform Cache Architectures (D-NUCA) have been proposed to overcome the performance limit introduced by wire
delays when designing large cache. In this paper, we propose an alternative design of D-NUCA cache, namely Triangular
D-NUCA Cache, to reduce power consumption and silicon area occupancy of D-NUCA cache. We compare the performances of
Triangular D-NUCA cache with the ones achieved by conventional rectangular organization. Results show that our approach is
particular useful in the embedded application domain, as it permits the utilization of half-sized NUCA cache with performance
improvements.

Keywords: Cache memories, NUCA memories, wire delay, power consumption, embedded systems

Future mobile embedded environments need to sup-
port sophisticated applications such as speech recog-
nition, visual feature recognition, secure wireless net-
working, and general media processing. These appli-
cations are computation intensive, and require more
performance than the one current embedded processor
can deliver [16,17]. Traditional ways to increase per-
formances of embedded processors include technology
scaling (with the consequent performance increase due
to the Moore’s law) [17], and the tuning of cache hier-
archy parameters [18]. Both the techniques will be no
more fully applicable to the design of future embedded
processors and systems, due to the wire delay problem
and the power requirement of embedded hand-held ap-
plications. In fact, traditional cache tuning and technol-
ogy scaling techniques determine increased chip power
consumption [17,18], increased chip area devoted to
the memory subsystem [14,15], and an increased wire
delay (also due to the increased memory area), which,
in turn, limits the overall processor performances [1].
As a consequence, new design techniques for processor
architecture and memory hierarchy are required.

Focusing the attention on the memorysubsystem, the
NUCA (Non Uniform Cache Architecture) Caches [7,

∗Corresponding author. E-mail: foglia@iet.unipi.it.

8] have been recently proposed to overcome the bot-
tleneck due to the growing wire delays in general pur-
pose systems. NUCA caches are large L2 caches, or-
ganized in sub-banks. Each sub-bank can be accessed
independently, with an access time depending on its
physical distance from the cache controller (it is the
only delay that must be paid for accessing the particu-
lar bank), thus achieving non uniform access time. By
properly interconnecting the sub-banks, and by a suit-
able mapping and search strategy, NUCA architectures
have proven to out-perform traditional cache in spite of
technology scaling and wire delay effects [7,8].

In this paper, we present an alternative design of
D-NUCA cache, targeting the minimization of both
silicon area and power consumption. Because of the
geometric shape, we named our proposal Triangular
Dynamic NUCA (TD-NUCA). Basically, TD-NUCA
caches are D-NUCA caches with a variable number of
banks when moving in the opposite direction of the
controller. They exploits the fact that, in D-NUCA
caches, the banks are not accessed with the same fre-
quency, so that the number of banks within a way can
be reduced, with a low performance degradation, and a
significant reduction of static power consumption. This
is an important issue in the design of embedded sys-
tem, as cache memory may consume up to 50% of to-

ISSN 1740-4460/05/$17.00 2005 – IOS Press and the authors. All rights reserved

Galley Proof 12/01/2006; 17:01 File: jec54.tex; BOKCTP/Haina p. 2

2 P. Foglia et al. / A cache design for high performance embedded systems

tal chip power, while static energy dissipation is going
to account for an increasing portion of total energy in
nanoscale technology [19,20].

The results of our investigation show that, in the
general purpose case, TD-NUCA design enables to
reduce the silicon area by approximately 50%, while
paying some performance degradation. In the cases
typical of embedded applications (where single appli-
cations are running, and they are known in advance),
TD-NUCA cache permits a silicon area reduction of
approximately 50%, while outperforming the solutions
based on DNUCA cache.

The rest of this paper is organized as follows. Sec-
tion 2 presents the rationale of our idea. Section 3 de-
scribes the main issues related to D-NUCA design and
presents previous works. The details of our proposal
are shown in Section 4, while we report the results of
our evaluation in Section 5. Section 6 summarizes the
work and presents the conclusions.

1. Rationale of TD-NUCA caches

In the NUCA architecture proposed in [7,8], the L2
cache is organized in banks, which define a rectangular
memory geometry. Each bank may be accessed inde-
pendently, with an access time depending on the phys-
ical location of the bank. An interconnection infras-
tructure, based on switch (in the simpler design), on a
wormhole routed 2-D mesh with point-to-point links,
or, better, on a more general Network on Chip [23–25]
is utilized to guarantee the bank-controller communi-
cations. DNUCA cache achieves 1.5 times the IPC of a
traditional Uniform Cache Architecture (UCA) of any
size [7,8].

A typical distribution of the bank accesses in a rect-
angular D-NUCA cache, when adopting the most per-
forming policies ([7,8]), is showed in Fig. 1. Such
a distribution is a consequence of the best migration
mechanism [2], which implies that the most accessed
data migrate near the controller, while less used data
move toward the opposite side and possibly are evicted
from the cache. The exact shape of accesses distribu-
tion depends on several issues (i.e. the locality of the
applications, the mapping policy, the migration policy,
etc.), but it has a qualitative distribution as the one
shown in Fig. 1.

By analyzing the accesses distribution of Fig. 1, our
idea is to modify the original D-NUCA design, by elim-
inating from the cache the banks related to the less used
data, i.e. by implementing a cache with a decreasing

C

Fig. 1. Qualitative accesses distribution in a D-NUCA cache. Due to
the migration policy, the most accessed banks are within the darker
area.

number of entries within a way, when moving in the op-
posite direction of the controller. In this way, we could
be able to reduce the cache size, and consequently the
cache area, with low (or null) performance degrada-
tion. The advantages of such design are twofold: as
the proposed cache is based on the same design of D-
NUCA cache, it masquerades wire delay effects. On
the other side, by eliminating banks, the cache static
power consumption [11,39–42] can be reduced. This
is an important issue in the design of embedded sys-
tems, as cache memory may consume up to 50% of to-
tal chip power, while static energy dissipation is going
to account for an increasing portion of total energy in
current and future technologies [19,20].

The above considerations lead to a triangular organi-
zation, i.e. a Triangular D-NUCA (TD-NUCA) cache
memory. According to Fig. 1, the TD-NUCA organi-
zation allows to keep in cache only the most accessed
lines. Such geometry may imply a higher miss rate
with respect to conventional D-NUCA caches. This
increase depends on the importance (i.e. the number of
accesses) of the eliminated banks and on the relation-
ship between the mapping of address space to banks
and the locality of the applications running on the sys-
tem. As typically happens in designing such architec-
tures, the best solution will be a good compromise be-
tween performance, mapping, silicon area occupancy
and power consumption.

We consider the two organizations showed in Fig. 2.
In the increasing organization, the number of banks
per-column increases when moving toward the opposite
side of the controller. In the decreasing organization,
the number of banks per-column decreases when mov-
ing toward the controller. According to the accesses
distribution, the decreasing organization should meet
lower access-time (and higher performance) than the
increasing one. In fact, in the decreasing organization,
data can be found with more frequency in the fastest
ways (i.e. in the banks nearer to the controller), while
the opposite is true for the decreasing one. On the other

Galley Proof 12/01/2006; 17:01 File: jec54.tex; BOKCTP/Haina p. 3

P. Foglia et al. / A cache design for high performance embedded systems 3

CC

Fig. 2. Increasing and decreasing TD-NUCA organizations.
TD-NUCA caches are NUCA caches, in which the number of banks
changes when moving among the columns. In the increasing orga-
nization, the number of banks per-column increases when moving
toward the opposite side of the controller. In the decreasing orga-
nization, the number of banks per-column decreases when moving
toward the opposite side of the controller.

hand, by using specific techniques [11], the increasing
organization could allow a higher reduction of power
consumption. In fact, static power consumption can be
reduced, apart by decreasing cache size, by using tran-
sistors with different threshold voltages [11,39–42]. In
a triangular increasing implementation, the most used
banks (those one nearer to the controller) are imple-
mented with higher power-consuming and faster tran-
sistors, whereas the further banks are implementedwith
lower power consuming but slower transistors [11].
According to these ideas, in the increasing solution,
the major area is devoted to the implementation of the
larger, slower and less power consuming ways.

2. D-NUCA caches and related works

Although significant prior work has evaluated large
cache design [4,5], the D-NUCA cache architecture has
been proposed in [7,8]. In the following, we report the
main issues related to the design of D-NUCA caches,
and the main works related to the optimization of D-
NUCA caches and the reduction of power consumption
in high performance caches for embedded systems. We
compare the main results of such works with ours.

The NUCA design space is very large; its exploration
has to address mainly the questions ofMapping, Search
andMovement policies. AMapping Policy defines the
number of addressable banks and how memory lines
are mapped to banks; aSearch Policy defines the set of
possible locations for a line; aMovement Policy defines
the way in which a line is moved, either while resident
in the cache or across different lifetimes in the cache.

As for the mapping policy, at an extreme there are
the S-NUCA strategies, in which a line of data can be
mapped to a single statically determined bank. At the
other extreme, a line could be mapped into any cache
bank, and in this case the cache is organized according

to a full-associative approach. Although in the work [7,
8], the designers of D-NUCA caches remark that such
solution could be employed, they highlight that, in the
full-associative approach, the overhead of locating the
line may be too large. Therefore, they proposed an
intermediate solution called spread sets, in which the
NUCA cache is treated as a set-associative structure,
each set is spread across multiple banks, and each bank
holds one way of the set.

Mainly two search techniques have been analyzed:
incremental and multicast searches. In the first, the
banks are searched in order, starting from the closest
bank until the requested line is found or a miss occurs
in the last bank.1 In the multicast search, the requested
address is multicast to some or all of the banks in the
requested bank set.2 Other hybrid solutions and a tech-
nique for reducing the miss resolution time have been
analyzed.

The proposed movement policy is namedgenera-
tional promotion and is a variant of the traditionally
LRU. In the dynamic NUCA contest, the LRU policy
has the drawback of requiring a heavy movement of
lines among banks. According to the generational pro-
motion policy, when a hit occurs on a cache line, it
is swapped with the line in the bank that is the next
closest to the controller. For the placement of an in-
coming line resulting from a miss (replacement strat-
egy), mainly head, middle, random and tail insertion
techniques have been proposed. With respect to what
to do with a victim upon a replacement, mainly two
possible techniques have been proposed,zero-copy and
one-copy. In the first, the victim is evicted from the
cache, while in the one-copy the victim is moved to a
higher access-time bank.

Another important issue is related to the communi-
cation infrastructure for interconnecting the cache con-
troller to all the banks. The two approaches showed in
Fig. 3 have been proposed: private per-bank channels
and a two-dimensional switched network. Because of
the area overhead due to the wires, the first approach
restricts the number of banks; the latter approach re-
duces the area overhead due to the wires, but provides
a smaller bandwidth.

As for optimizations and applications of D-NUCA
caches, a fully-associative approach for NUCA mem-

1Incremental search policy minimizes the number of message in
the cache network at the cost of reduced performance.

2Multicast search offers higher performance than incremental
search, at the cost of increased energy consumption and network
contention.

Galley Proof 12/01/2006; 17:01 File: jec54.tex; BOKCTP/Haina p. 4

4 P. Foglia et al. / A cache design for high performance embedded systems

C
C

Fig. 3. Private per-bank channels and switched network. The first solution uses different links to interconnect each bank to the controller. In the
switched network, the channels are shared among the different banks. In this case, the number of links is smaller than the number of banks.

ory has been proposed [9]. In particular, a Globally
Asynchronous Locally Synchronous (GALS) Network
on Chip (NoC) has been employed as communication
infrastructure, to overcome the limit of fully-associative
implementations.

D-NUCA memories have also been analyzed in the
contest of on chip multiprocessor as shared level-two
caches [2]. In such a work, commercial and scientific
workloads have been employed, and results show that
migration mechanisms are less effective for CMPs, as
40–60% of L2 cache hits in commercial workloads are
satisfied by the central banks. These banks are equally
far from each processor, but they exhibit the higher
access time.

An approach for reducing the power consumption in
NUCA cache memories has been proposed in [11]. In
such a proposal, the key idea is to allow the ways within
a cache to be accessed at different speeds. Each ways is
implemented with different technology transistors, so
that the slower ways are also the less power consuming.

A lot of works have been done on the design of low
power cache. These studies are consequence of the
importance of the cache on processor performances,
and the increased power consumption (both static and
dynamic) of the memory subsystem [19,20].

An important trend in the design of low power, high
performance hardware consists in partitioning hard-
ware components in smaller and less energy-consuming
units [26]. This trend has been utilized in the design of
processor internal architectures [27] and cache memo-
ries [12]. Following such approach, Kim et al. [26] pro-
posed sub-cache to reduce power consumption of L1
instruction cache in embedded systems. In sub-cache
architectures, a cache is split into several smaller units,
each of which is a cache by itself. Another approach to
reduce power consumption consists in adding a small
instruction cache (tiny cache). It has been proposed by
Jouppi [29], in the field of general purpose systems, and
it has been applied to the design of instruction cache
for embedded systems [28]. Similarly, filter cache has

been utilized to minimize energy consumption of in-
struction cache [30]: the idea is that if most of a pro-
gram’s time is spent in loop, then most hits occur in the
filter cache.

These papers address the problem of reducing cache
power consumption in general purpose and embedded
systems. Like our work, most of these solutions utilize
sub-banking or similar issues (little cache and/or sub-
cache), but they not deal with the wire delay problem,
so, differently from our work, they will be no more fully
applicable to the design of future high performance,
low power embedded processors.

Other techniques have been developed to reduce
power consumption, but in most of the cases, they incur
in additional latencies, so they are not fully applicable
to the design of high performance embedded proces-
sors. With thedelayed access [26,31], less consuming
architectures are obtained by activating only the cache
bank that will be accessed: the access to data array is
delayed until the access to the tag array indicates the
right way. Other schemas try to predict the way which
is accessed [32], or try to change the number of ways
activated depending on the application behaviors [33].

Also configurable cache architectures have been
studied. The first proposals deal with performance is-
sues, while more recent works consider also power con-
sumption. Ranganathan et al. [35] proposed config-
urable cache architecture for general purpose proces-
sors. When used in media applications, a large cache
may not give benefits due to the data characteristics of
media applications. In this case, the authors propose to
dynamically reconfigure part of the cache, to be used
for other processor activities, such as instruction reuse.
Kim et al. [36] proposed a multifunction cache architec-
ture, which partitions the cache into a dedicated cache
and a configurable cache. The configurable part can
be used to implement computations, which take advan-
tage of on-chip resources when an application does not
need the whole cache. Zhang et al., propose specific
hardware on-chip implementing cache tuning heuris-

Galley Proof 12/01/2006; 17:01 File: jec54.tex; BOKCTP/Haina p. 5

P. Foglia et al. / A cache design for high performance embedded systems 5

Fig. 4. Example of banks organizations of four-ways D-NUCA and TD-NUCA cache memories. The numbers superimposed on the banks
represent the hopes needed to communicate with the controller.

tic, with the aim of reducing power consumptions in
embedded processors [20]. They propose also [34] a
reconfigurable cache architecture, in which cache size
(by shutting up or down ways), line size and associa-
tivity (via way concatenations) may be tuned to the ap-
plication needs. Way shutdown cache methods have
been proposed by Albonesi [37] and by the designers
of the Motorola M*CORE processor [38]. In these ap-
proaches, a designer would initially profile a program
to determine how many ways could be shut down with-
out causing too much performance degradation. Al-
bonesi also discusses dynamic way shutdown and ac-
tivation for different regions of a program. As NUCA
and TD-NUCA cache are highly reconfigurable, we
plan to extend our work on TD-NUCA by evaluating
reconfigurable techniques. In particular, we can con-
sider a TD-NUCA cache as a NUCA cache obtained
by applying way shutdown techniques. Besides, both
TD-NUCA and D-NUCA caches introduce another di-
mension in the design space: mapping and searching
algorithm can be dynamically changed, due to the flex-
ibility offered by NOC infrastructure. In this paper,
we want to explore the potential benefits of applying
such techniques. In another work, we plan to explore
the feasibility and the cost of applying reconfigurable
techniques to D-NUCA and TD-NUCA caches.

3. Design of TD-NUCA caches

In order to completely define the TD-NUCA model,
besides the size and the numbers of blocks, the defi-
nition of the mapping, search, movement and replace-
ment policies is needed. We evaluated different solu-
tions, and we report in this paper only the meaning-

fully results. We mainly refer to the increasing TD-
NUCA organization, but the whole work can be easily
extended to the decreasing solution.

With respect to the mapping policy, we adopt a
spread-sets approach for the TD-NUCA organization.
Differently from the original proposal [7,8], in our
case, all of the bank sets share some banks in a simi-
lar way to the shared mapping proposed for rectangu-
lar D-NUCA caches. Figure 4 shows the comparison
between four-way D-NUCA and four-way increasing
TD-NUCA memories.

Similarly to the mapping policies proposed in prior
work, for TD-NUCA designs we adopt the simple map-
ping and fair mapping policies. The two different map-
ping policies are shown in Fig. 5. In the simple mapping
policy, a cache line of a generic bank can be mapped in
the next way into two different banks.3 The main draw-
back of this solution is that some memory addresses
can be mapped only into the banks with high delay,
whereas other memory addresses can be mapped only
into banks with low delay. In the fair mapping policy,
the two possible destinations for each cache line have
the same delay, so that the average access times across
all paths are equalized.4

As for the search policy, we adapted theincremental
and multicast search policies (Fig. 6). In the incre-
mental search, the banks are searched in order, starting
from the closest bank until the requested line is found
or a miss occurs in the last bank. According to this
technique, a request is routed toward the first bank of

3The sets are defined by all of the possible paths shown in Fig. 5,
i.e. those that lead from the controller to the banks on the end column.

4Also for this solution the sets are defined by all of the possible
paths that lead from the controller to the banks on the end column.

Galley Proof 12/01/2006; 17:01 File: jec54.tex; BOKCTP/Haina p. 6

6 P. Foglia et al. / A cache design for high performance embedded systems

Fig. 5. Simple and Fair Mapping policy of TD-NUCA caches. The arrows represent the possible destinations when moving from a way to the
next one. The Simple mapping policy is on the left, the Fair mapping is on the right. With the Fair mapping, the average access times across all
paths are equalized.

Fig. 6. Example of access with incremental search and multicast search. In both the cases, the bright lines indicate the path followed by a request
while searching for a hit. The banks accessed in the search process are those bright.

the set, where, if no hit occurs, the request is routed
through the shortest path toward the next bank of the
set. This is repeated until a hit or a miss occurs. Unfor-
tunately, this solution is effective only for the simple
mapping. In fact, using the incremental search in con-
junction with the fair mapping policy, in some cases the
requests have to follow longer paths than the shortest
ones, and the average access time to the banks is worse
than the one in the rectangular D-NUCA. In order to
overcome such a limitation, our final choice is to use
the multicast search technique. In this case, all of the
requests are routed in a middle channel from where
they proceed in parallel across both the columns and
the rows. Figure 6 shows an example of path followed
by a request in both the search techniques, in the case
of fair mapping policy.

With respect to movement policy, we employ the
generation promotion technique proposed for rectan-

Table 1
Details of benchmarks utilized for the performance evaluation. The
parameters FFWD and RUN represent, respectively, the number of
instructions skipped to reach the start of simulation and the number
of simulated instructions

SPECINT2000 Phase L2 load acc/
FFWD RUN Million instr.

176.gcc 2,367 B 300 M 25.900
181.mcf 5 B 200 M 260.620
256.bzip2 744 B 1 B 9.300
300.twolf 511 B 200 M 22.500

gular D-NUCA caches. For the replacement policy,
we considertail insertion in conjunction to azero-copy
policy andrandom insertion in conjunction to aone-
copy policy.

We modified the extended sim-alpha simulator [3]
for supporting the TD-NUCA organizations. As in [7,
8], we derived the physical parameters of cache mem-

Galley Proof 12/01/2006; 17:01 File: jec54.tex; BOKCTP/Haina p. 7

P. Foglia et al. / A cache design for high performance embedded systems 7

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

Cache size

IPC
Rec. D-NUCA

Inc. TD-NUCA

Dec. TD-NUCA

2 M B- 1M B- 1M B 4 M B -2 M B -2 M B 8 M B- 4 M B- 4 M B 16 M B- 8 M B- 8 M B

Fig. 7. Average IPC of rectangular D-NUCA and TD-NUCA caches versus cache size. Data assumes sizes of 2 MB, 4 MB, 8 MB, 16 MB for
D-NUCA cache, and sizes of 1 MB, 2 MB, 4 MB and 8 MB for TD-NUCA cache.

0

0,05

0,1

0,15

0,2

0,25

0,3

2 M B- 1M B- 1M B 4 M B -2 M B -2 M B 8 M B- 4 M B- 4 M B 16 M B- 8 M B- 8 M B

Cache size

Miss Rate
Rec. D-NUCA

Inc. TD-NUCA

Dec. TD-NUCA

Fig. 8. Average Miss-rate of rectangular D-NUCA and TD-NUCA caches versus cache size. Data assumes sizes of 2 MB, 4 MB, 8 MB, 16 MB
for D-NUCA cache, and size of 1 MB, 2 MB, 4 MB and 8 MB for TD-NUCA cache.

ories by using Cacti [12]. In order to perform a mean-
ingful comparison and validate the changes to the sim-
ulator, we repeated the simulations also for rectangular
D-NUCA caches.

4. Results

Our performance evaluation has been performed via
execution driven simulation, by utilizing a modified
version of the sim-alpha simulator [3]. The simulated

workloads are derived from the SPECINT2000 bench-
marks; Table 1 shows the related parameters.

The simulated processor is the Alpha 21264, which
is a 64-bit load and store RISC architecture. The main
characteristics of such processor includes a seven stage
pipeline, an issue width of six instructions, four integer
units, two pipelined floating-point units, a 64 KB level-
1 instruction and data caches. We assume a constant L2
cache area and vary the technology generation to scale
cache capacity within that area, according to the SIA
Roadmap [13] predictions. Table 1 lists the number of
L2 accesses per 1 million instructions. We analyze the

Galley Proof 12/01/2006; 17:01 File: jec54.tex; BOKCTP/Haina p. 8

8 P. Foglia et al. / A cache design for high performance embedded systems

0

0,2

0,4

0,6

0,8

1

1,2

1,4

2 M B- 1M B- 1M B 4 M B -2 M B -2 M B 8 M B- 4 M B -4 M B 16 M B- 8 M B- 8 M B

Cache size

IPC
Rec. D-NUCA

Inc. TD-NUCA

Dec. TD-NUCA

Fig. 9. IPC versus cache size and cache architecture when the running application is gcc. The most performing architecture is based on TD-NUCA
decreasing cache, with a cache size of 2 M bytes.

0

0,1

0,2

0,3

0,4

0,5

2M B -1M B -1M B 4 M B -2 M B -2 M B 8M B -4M B -4M B 16M B -8M B -8M B

Cache size

IPC
Rec. D-NUCA

Inc. TD-NUCA

Dec. TD-NUCA

Fig. 10. IPC versus cache size when the running application ismcf.

same cases and use the same performance parameters
(i.e. IPC and Miss Rate) of [7,8], to get comparable
results.

The baseline configurations for our evaluation use
fair mapping, multicast search, single bank promotion
upon each hit and tail insertion. We explored differ-
ent memory sizes, i.e. 1 MB, 2 MB, 4 MB and 8 MB,
and compare the results respectively with 2 MB, 4 MB,
8 MB and 16 MB rectangular D-NUCA caches. Fig-
ures 7 and 8 summarize the simulation results obtained
by averaging the results among the benchmarks.

The smallest gap between the IPCs (i.e. the best
case) is achieved with 16 MB D-NUCA and 8 MB TD-
NUCAs. The 16 MB D-NUCA cache has 16x16 banks,
whereas the 8 MB TD-NUCAs have four columns of
two banks, four columns of four banks, four columns of

eight banks and four columns of sixteen banks.5 First,
we observe that the increasing solution has a lower IPC
than the increasing one. Since the miss rate is very
low in both cases, such a result is due to the different
average access times. The IPC of the architecture de-
ploying decreasing TD-NUCA cache is approximately
the same of the one utilizing rectangular D-NUCA,
whereas, in the increasing cache, the IPC is reduced by
approximately 9%.

The greatest gap between the IPCs (i.e. the worst
case) is achieved with 8 MB D-NUCA and 4 MB TD-
NUCAs (i.e. 8-4-4 configuration). In such case, the

5This is one possible way of reducing the banks of a D-NUCA
cache, to derive a TD-NUCA cache. Other configurations are possi-
ble, and we plan to explore such designs in a future work.

Galley Proof 12/01/2006; 17:01 File: jec54.tex; BOKCTP/Haina p. 9

P. Foglia et al. / A cache design for high performance embedded systems 9

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

2 M B- 1M B- 1M B 4 M B -2 M B -2 M B 8 M B- 4 M B- 4 M B 16 M B- 8 M B- 8 M B

Cache size

IPC
Rec. D-NUCA

Inc. TD-NUCA

Dec. TD-NUCA

Fig. 11. IPC versus cache size and cache architecture when the running application is twolf. The most performing architecture is based on
TD-NUCA decreasing cache, with a cache size of 2 M bytes.

1,22
1,24
1,26
1,28
1,3

1,32
1,34
1,36
1,38
1,4

1,42

2 M B- 1M B- 1M B 4 M B -2 M B -2 M B 8 M B- 4 M B- 4 M B 16 M B- 8 M B- 8 M B

Cache size

IPC
Rec. D-NUCA

Inc. TD-NUCA

Dec. TD-NUCA

Fig. 12. IPC versus cache size when the running application isbzip2.

rectangular organization has 16x8 banks, whereas the
TD-NUCAs have each two columns of two banks, two
columns of four banks, two columns of eight banks
and two columns of sixteen banks. Also the decreas-
ing cache introduces performance degradation, reduc-
ing the IPC by approximately 16% with respect to the
rectangular cache. However, the performances of the
decreasing cache are higher than the increasing one.

Taken as a whole, the figures show that the solutions
adopting decreasing TD-NUCA caches perform better
than the increasing ones. As the miss rate (Fig. 8) ex-
hibited by the two configurations is almost the same, the
IPC difference is mainly due to the different resulting
access time: in a decreasing TD-NUCA cache, data hit
in the faster ways, while in the increasing TD-NUCA
cache in the slower.

The Figs 9, 10, 11 and 12, present the comparison
among the IPC of rectangular D-NUCA and TD-NUCA
caches respectively for thegcc, mcf, bzip2 and twolf
benchmarks. These figures show that, in some cases,
the decreasing TD-NUCA design is more performing
than the rectangular design. These cases are for the
gcc benchmark, when adoptinga 2 M decreasing TD-
NUCA cache, and for the twolf benchmark with a 2 M
decreasing TD-NUCA cache. In such cases, the archi-
tectures based on TD-NUCA cache present the high-
est IPC. This means that, if the design issue is the re-
alization of the most performing system running only
the gcc or the twolf application, the optimal solution
is based on the TD-NUCA cache, with a cache con-
figuration whose size is half of the most performing
D-NUCA cache. Such results indicate that TD-NUCA
cache can be utilized in application specific domains,

Galley Proof 12/01/2006; 17:01 File: jec54.tex; BOKCTP/Haina p. 10

10 P. Foglia et al. / A cache design for high performance embedded systems

i.e. in embedded systems, in order to minimize silicon
area, and maximize performance. As the main differ-
ence between D-NUCA cache and TD-NUCA cache
lies in the mapping policies, i.e. the correspondence
of banks and memory addresses, the results indicate
that further improvement can be achieved by exploring
different and ad hoc mapping policies and geometries,
with a design-simulate-analyze methodology, which is
typical of the design of cache memory in embedded
system [12,21,22].

5. Conclusion

In this paper, we proposed TD-NUCA caches, an op-
timization of DNUCA cache memories, in terms of size
and power consumption. In particular, we deal with
two different variants of TD-NUCA organization, in-
creasing and decreasing TD-NUCA caches. The results
of our investigation show that decreasing TD-NUCA
caches allow a reduction of the silicon area approxi-
mately by 50% without heavy performance degrada-
tion. Besides, the triangular design outperforms the
rectangular design in some specific domain applica-
tions, although implementing half-sized caches. Such
a result enables to use TD-NUCA caches in applica-
tion specific and embedded domains, where low power
consumption and high performance are strong require-
ments of upcoming systems.

As for the future works, we plan to further improve
the performances of D-NUCA and TD-NUCA caches,
with efforts on the mapping and search policies. The
support of the emergingNetwork on Chip infrastruc-
tures can become the key technology to achieve such
improvement, while also others geometries can be con-
sidered.

Acknowledgement

This work has been supported by the Italian MIUR
(Ministero dell’Istruzione, Universit̀a e Ricerca Sci-
entifica), under the FIRB Project “Innovative Archi-
tectures for High Performance Processors”. Stephen
Keckler furnishes us the Sim-Alpha and modified Sim-
Alpha simulators. We are particular grateful to Simone
Grechi and Emiliano Taglione, who help us in setting-
up the simulator, and perform the initial evaluations.

References

[1] V. Agarwal, M.S. Hrishikesh, S.W. Keckler and D. Burger,
Clock rate vs. IPC: The end of the road for conventional micro-
processors, in Proceedings of the 27th Annual International
Symposium on Computer Architecture, June 2000, 248–259.

[2] B.M. Beckmann and D.A. Wood,Managing Wire-Delay in
Large Chip Multi-Processor Caches, in Proceedings of the
37th International Symposium on Microarchitecture, 2004.

[3] R. Desikan, D. Burger, S.W. Keckler and T.M. Austin, Simal-
pha: A validated execution-driven alpha 21264 simulator.
Technical Report TR-01-23, Department of Computer Sci-
ences, University of Texas at Austin, 2001.

[4] E.G. Hallnor and S.K. Reinhardt,A fully associative software-
managed cache design, in Proceedings of the 27th Interna-
tional Symposium on Computer Architecture, June 2000, 107–
116.

[5] R.E. Kessler,Analysis of Multi-Megabyte Secondary CPU
Cache Memories, PhD thesis, University of Wisconsin-
Madison, December 1989.

[6] R.E. Kessler, M.D. Hill and D.A. Wood, A comparison of
trace-sampling techniques for multi-megabyte caches,IEEE
Transactions on Computers 43(6) (June 1994), 664–675.

[7] C. Kim, D. Burger and S.W. Keckler,An Adaptive, Non-
Uniform Cache Structure for Wire-Delay Dominated On-Chip
Caches, Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS), October
2002, 211–222.

[8] C. Kim, D. Burger and S.W. Keckler, Nonuniform cache ar-
chitectures for wire-delay dominated on-chip caches,IEEE
Micro 23(6) (November/December 2003), 99–107.

[9] A. Kodama and T. Sato, A Non-Uniform Cache Architecture
on Networks-on-Chip: A Fully Associative Approach with
Pre-Promotion. 10th International Symposium on Integrated
Circuits, Devices and Systems (ISIC), CD-ROM, September
2004.

[10] D.A. Patterson and J.L. Hennessy,Computer Architecture:
A Quantitative Approach, (2nd edition), Morgan Kaufmann
Publishers, INC., San Mateo, CA, 1996.

[11] A. Sakanaka and T. Sato,A Leakage-Energy-Reduction Tech-
nique for High-Associativity Caches in Embedded Systems,
Workshop on Memory Access for Decoupled Architectures
and Related Issues (MEDEA), New Orleans (LU), September
2003, 51–56.

[12] S. Wilton and N. Jouppi, Cacti: An enhanced cache access and
cycle time model,EEE Journal of Solid-State Circuits 31(5)
(May 1996), 677–688.

[13] The national technology roadmap for semiconductors. Semi-
conductor Industry Association, 1999.

[14] R. Otten and P. Stravers,Challenges in Phisical Chip De-
sign, Proceedings of the International Conference on Com-
puter Aided Design, San José(CA), USA, November 2000,
84–91.

[15] P.R. Groeneveld,Physical Design Challenges for Billion Tran-
sistor Chips, Proceedings of the 2002 IEEE International Con-
ference on Computer Design: VLSI in Computers and Proces-
sors (ICCD’02), Freiburg, Germany, September 2002, 78–83.

[16] M. Schlett, Trends in Embedded-Microprocessor Design,
IEEE Computer 31(8) (August 1998), 44–49.

[17] B. Mathew, A. Davis and M. Parker,A Low Power Archi-
tecture for Embedded Perception, Proceedings of the Interna-
tional Conference on Compilers, Architecture and Synthesis
for Embedded Systems (CASES), Washington DC, Sep. 2004,
46–56.

Galley Proof 12/01/2006; 17:01 File: jec54.tex; BOKCTP/Haina p. 11

P. Foglia et al. / A cache design for high performance embedded systems 11

[18] A. Gosh and T. Girvagis, Cache Optimization for Embedded
Processor Cores: An Analytical Approach,ACM Transactions
on Design Automation of Electronic Systems (TODAES) 9(4)
(October 2004), 419–440.

[19] C. Zhang, F. Vahid and W. Naijar,A highly configurable cache
architecture for embedded systems, in Proceedings of the 30th
Annual International Symposium on Computer Architecture.
San Diego, California, June 2003, 136–146.

[20] C. Zhang, F. Vahid and W. Naijar, A Highly Configurable
Cache Architecture for Low Energy Embedded Systems,ACM
Transactions on Embedded Computing Systems (TECS) 4(2)
(May 2005), 363–387.

[21] T. Sato, Evaluating Trace Cache on Moderate-Scale Proces-
sors,IEEE Computer 147(6) (2000).

[22] A. Ghosh and T. Givargis, Cache Optimization for Embedded
Processor Cores: An Analytical Approach,ACM Transactions
on Design Automation of Electronic Systems (TODAES) 9(4)
(October 2004), 419–440.

[23] L. Benini and G.D. Micheli,Powering networks on chips, in
Proc. International System Synthesis Symposium, 2001, 33–
38.

[24] W.J. Dally and B. Towles,Route packets, not wires: On chip
interconnection networks, in Proc. Design Automation Con-
ference, 2001, 684–689.

[25] M. Sgroi, M. Sheets, A. Mihal, K. Keutzer, S. Malik, J. Rabaey
and A. Sangiovanni-Vincentelli,Addressing the system-on-a-
chip interconnect woes through communication-based design,
in Proc. Design Automation Conference, 2001, 667–672.

[26] S. Kim, N. Vijaykrishnan, M. Kandemir, A. Sivasubramaniam
and M.J. Irwin, Partitioned instruction cache architecture for
energy efficiency,ACM Transactions on Embedded Comput-
ing Systems (TECS) 2(2) (2003).

[27] J. Cruz, A. Gonźalez, M. Valero and N.P. Topham,Multiple-
Banked Register File Architectures, Proc. of 27th. Ann. Int.
Symposium on Computer Architecture (ISCA 2000) Vancou-
ver (Canada), June 12–14, 2000, 316–325.

[28] A. Gordon-Ross, S. Cotterell and F. Vahid, Tiny Instruction
Caches for Low Power Embedded Systems,ACM Transac-
tions on Embedded Computing System 2(4) (2003), 449–491.

[29] N. Jouppi,Improving direct-mapped cache performance by
the addition of a small fully-associative cache and prefetch
buffers, in the 17th International Symposium on Computer
Architecture, Seattle, Washington, May 1990, 364–373.

[30] J. Kin, M. Gupta and W.H. MangioneSmith,The Filter Cache:
An Energy Efficient Memory Structure, International Sympo-
sium on Microarchitecture, 1997, 184–193.

[31] A.P. Chandrakasan, W.J. Bowhill and F. Fox,Design of High-
Performance Microprocessor Circuits, Wiley-IEEE Press,
2000.

[32] K. Inoue, T. Ishihara and K. Murakami,Way-predicting set-
associative cache for high performance and low energy con-
sumption, in Proceedings of the 1999 international symposium
on Low power electronics and design, San Diego, CA, 1999,
273–275.

[33] M.D. Powell, A. Agarwal, T.N. Vijaykumar, B. Falsafi and
K. Roy, Reducing set-associative cache energy via way-
prediction and selective direct-mapping, in Proc. of the 34th
annual ACM/IEEE international symposium on Microarchi-
tecture, Austin, Texas, 2001, 54–65.

[34] C. Zhang, F. Vahid and R. Lysecky, A self-tuning cache archi-
tecture for embedded systems,ACM Transactions on Embed-
ded Computing Systems 3(2) (2004).

[35] P. Ranganathan, S. Adve and N. Jouppi,Reconfigurable caches
and their application to media processing, in Proceedings
of the 27th Annual international Symposium on Computer
Architecture, Vancouver, Canada, 2000, 214–224.

[36] H. Kim, A.K. Somani and A. Tyagi, A reconfigurable multi-
function computing cache architecture,IEEE Transactions on
VLSI Systems 9(4) (August 2001), 509–523.

[37] D.H. Albonesi, Selective cache ways: on-demand cache
resource allocation, in Proceedings of the 32nd Annual
ACM/IEEE international Symposium on Microarchitecture,
Haifa, Israel, November 1999, 248–259.

[38] A. Malik, B. Moyer and D. Cermak,A low power unified cache
architecture providing power and performance flexibility, in
Proceedings of the 2000 international Symposium on Low
Power Electronics and Design, Rapallo, Italy, July 2000, 241–
243.

[39] R. Fujioka, K. Katayama, R. Kobayashi, H. Ando and T. Shi-
mada,A preactivating mechanism for a VT-CMOS cache using
address prediction, in Proceedings of the 2002 International
Symposium on Low Power Electronics and Design, Monterey,
CA, August 2002, 247–250.

[40] T. Ishihara and K. Asada,An Architectural Level Energy Re-
duction Technique For Deep-Submicron Cache Memories, in
Proceedings of the 2002 Conference on Asia South Pacific De-
sign Automation, Yokohama, Japan, January 2002, 282–288.

[41] S. Kaxiras, Z. Hu, G.J. Narlikar and R. McLellan,Cache-Line
Decay: A Mechanism to Reduce Cache Leakage Power, in
Proceedings of the First International Workshop on Power-
Aware Computer Systems-Revised Papers, LNCS Vol. 2008,
2001, 82–96.

[42] S. Yang, M.D. Powell, B. Falsafi and T.N. Vijaykumar,Ex-
ploiting choice in resizable cache design to optimize deep-
submicron processor energy-delay, in Proceedings of the
Eighth International Symposium on High-Performance Com-
puter Architecture, Boston, MA, Feb. 2002, 151–161.

