Cornelia WelteRadboud University | RU · Department of Microbiology
Cornelia Welte
Dr. rer. nat.
Professor at Radboud University
About
118
Publications
24,150
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
3,049
Citations
Introduction
Additional affiliations
Education
November 2008 - July 2011
January 2006 - June 2006
October 2003 - August 2008
Publications
Publications (118)
Anaerobic methanotrophic archaea (ANME) are crucial to planetary carbon cycling. They oxidise methane in anoxic niches by transferring electrons directly to nitrate or metal oxides and alternatively to sulfate-reducing bacteria. Due to their physiological complexity, none of the ANME species have been isolated, hampering the biochemical investigati...
Methane is a potent greenhouse gas, an important energy source, and a potential biosignature on extraterrestrial planetary bodies. The relative abundances of doubly substituted (“clumped”) methane isotopologues ( ¹³ CH 3 D and ¹² CH 2 D 2 ) offer important information on the sources and sinks of methane. However, the clumped isotope signatures of m...
The greenhouse gas methane is an important contributor to global warming, with freshwater sediments representing important potential methane sources. Anaerobic methane-oxidizing archaea mitigate methane release into the atmosphere by coupling the oxidation of methane to the reduction of extracellular electron acceptors or through interspecies elect...
Freshwater wetlands and coastal sediments are becoming hotspots for the emission of the greenhouse gas methane. Eutrophication-induced deposition of organic matter leads to elevated methanogenesis and sulfate reduction, thereby increasing the concentrations of methane and toxic sulfide, respectively. However, the effects of sulfide stress on the an...
The Southern green shield bug, Nezara viridula, is an invasive piercing and sucking pest insect that feeds on crops and poses a threat to global food production. Insects live in close relationships with microorganisms providing their host with unique capabilities, such as resistance to toxic plant metabolites. In this study, we investigated the res...
Phytophagous insects engage in symbiotic relationships with bacteria that contribute to digestion, nutrient supplementation, and development of the host. The analysis of shield bug microbiomes has been mainly focused on the gut intestinal tract predominantly colonized by Pantoea symbionts, and other microbial community members in the gut or other o...
Climate change-driven sea level rise threatens freshwater ecosystems and elicits salinity stress in microbiomes. Methane emissions in these systems are largely mitigated by methane-oxidizing microorganisms. Here, we characterized the physiological and metabolic response of freshwater methanotrophic archaea to salt stress. In our microcosm experimen...
Coastal zones account for 75% of marine methane emissions, despite covering only 15% of the ocean surface area. In these ecosystems, the tight balance between methane production and oxidation in sediments prevents most methane from escaping into seawater. However, anthropogenic activities could disrupt this balance, leading to an increased methane...
The Southern green shield bug, Nezara viridula, is an invasive piercing and sucking pest insect that feeds on crop plants and poses a threat to global food production. Given that insects are known to live in a close relationship with microorganisms, our study provides insights into the community composition and function of the N. viridula-associate...
Methane emissions present a significant environmental challenge in both natural and engineered aquatic environments. Denitrifying anaerobic methane oxidation (N-DAMO) has the potential for application in wastewater treatment plants. However, our understanding of the N-DAMO process is primarily based on studies conducted on environmental samples or...
Anaerobic methanotrophic (ANME) archaea are environmentally important, uncultivated microorganisms that oxidize the potent greenhouse gas methane. During methane oxidation, ANME archaea engage in extracellular electron transfer (EET) with other microbes, metal oxides, and electrodes through unclear mechanisms. Here, we cultivate ANME-2d archaea (‘C...
The biological route of nitrate reduction has important implications for the bioavailability of nitrogen within ecosystems. Nitrate reduction via nitrite, either to ammonium (ammonification) or to nitrous oxide or dinitrogen (denitrification), determines whether nitrogen is retained within the system or lost as a gas. The acidophilic sulfate-reduci...
Glutamine synthetases (GS) catalyze the ATP-dependent ammonium assimilation, the initial step of nitrogen acquisition that must be under tight control to fit cellular needs. While their catalytic mechanisms and regulations are well-characterized in bacteria and eukaryotes, only limited knowledge exists in archaea. Here, we solved two archaeal GS st...
Massive efforts are invested in developing innovative CO2‐sequestration strategies to counter climate change and transform CO2 into higher‐value products. CO2‐capture by reduction is a chemical challenge, and attention is turned toward biological systems that selectively and efficiently catalyse this reaction under mild conditions and in aqueous so...
Plants produce a variety of secondary metabolites in response to biotic and abiotic stresses. Although they have many functions, a subclass of toxic secondary metabolites mainly serve plants as deterring agents against herbivores, insects, or pathogens. Microorganisms present in divergent ecological niches, such as soil, water, or insect and rumen...
Massive efforts are invested in developing innovative CO2‐sequestration strategies to counter climate change and transform CO2 into higher‐value products. CO2‐capture by reduction is a chemical challenge, and attention is turned toward biological systems that selectively and efficiently catalyse this reaction under mild conditions and in aqueous so...
Global urbanization of waterways over the past millennium has influenced microbial communities in these aquatic ecosystems. Increased nutrient inputs have turned most urban waters into net sources of the greenhouse gases carbon dioxide (CO2) and methane (CH4). Here, canal walls of five Dutch cities were studied for their biofilm CH4 oxidation poten...
Anthropogenic activities are influencing aquatic environments through increased chemical pollution and thus are greatly affecting the biogeochemi-cal cycling of elements. This has increased greenhouse gas emissions, particularly methane, from lakes, wetlands, and canals. Most of the methane produced in anoxic sediments is converted into carbon diox...
Thermokarst lakes are important conduits for organic carbon sequestration, soil organic matter (soil-OM) decomposition and release of atmospheric greenhouse gases in the Arctic. They can be classified as either floating-ice lakes, which sustain a zone of unfrozen sediment (talik) at the lakebed year-round, or as bedfast-ice lakes, which freeze all...
Anaerobic methanotrophic (ANME) archaea are environmentally important uncultivated microorganisms mitigating the release of the potent greenhouse gas methane. During methane oxidation ANME archaea engage in extracellular electron transfer (EET) with other microorganisms, metal oxides, and electrodes, through a currently unknown mechanism. To shed l...
Acetyl-CoA synthetase (ACS) and acetate ligase (ACD) are widespread among microorganisms, including archaea, and play an important role in their carbon metabolism, although only a few of these enzymes have been characterized. Anaerobic methanotrophs (ANMEs) have been reported to convert methane anaerobically into CO2, polyhydroxyalkanoate, and acet...
Agricultural drainage ditches are subjected to high anthropogenic nitrogen input leading to eutrophication and greenhouse gas emissions. Nitrate-dependent anaerobic methane oxidation (N-DAMO) could be a promising remediation strategy to remove methane (CH4) and nitrate (NO3-) simultaneously. Therefore, we aimed to evaluate the potential of N-DAMO t...
Organic micropollutants (OMPs) consist of widely used chemicals such as pharmaceuticals and pesticides that can persist in surface and groundwaters at low concentrations (ng/L to μg/L) for a long time. The presence of OMPs in water can disrupt aquatic ecosystems and threaten the quality of drinking water sources. Wastewater treatment plants (WWTPs)...
Glutamine synthetases catalyze the ATP-dependent ammonium assimilation, the initial step of nitrogen acquisition that must be tightly regulated to fit cellular needs. While their catalytic mechanisms and regulation are well-characterized in bacteria and eukaryotes, only limited knowledge exists about the archaeal representatives. Here, we natively...
The drinking water quality in Southeast Asia is at risk due to arsenic (As) groundwater contamination. Intensive use of fertilizers may lead to nitrate (NO3-) leaching into aquifers, yet very little is known about its effect on iron (Fe) and As mobility in water. We ran a set of microcosm experiments using aquifer sediment from Vietnam supplemented...
Benzimidazole fungicides are frequently detected in aquatic environments and pose a serious health risk. Here, we investigated the metabolic capacity of the recently discovered complete ammonia-oxidizing (comammox) Nitrospira inopinata and kreftii to transform a representative set of benzimidazole fungicides (i.e., benzimidazole, albendazole, carbe...
Anaerobic methanotrophic (ANME) archaea obtain energy from the breakdown of methane, yet their extrachromosomal genetic elements are little understood. Here we describe large plasmids associated with ANME archaea of the Methanoperedens genus in enrichment cultures and other natural anoxic environments. By manual curation we show that two of the pla...
Thermokarst lakes are important conduits for organic carbon (OC) sequestration, soil organic matter (SOM) processing and atmospheric greenhouse gas (GHG) release in the Arctic. They can be classified as either floating-ice lakes, which sustain a zone of unfrozen sediment (talik) at the lakebed year-round, or as bedfast-ice lakes, which freeze all t...
The drinking water quality of millions of people in South and Southeast Asia is at risk due to arsenic (As) contamination of groundwater and insufficient access to water treatment facilities. Intensive use of nitrogen (N) fertilizer increases the possibility of nitrate (NO 3 ⁻ ) leaching into aquifers, yet very little is known about how the N cycle...
Nitropropionic acid (NPA) is a widely distributed naturally occurring nitroaliphatic toxin produced by leguminous plants and fungi. The Southern green shield bug feeds on leguminous plants and shows no symptoms of intoxication. Likewise, its gut-associated microorganisms are subjected to high levels of this toxic compound. In this study, we isolate...
Archaea belonging to the phylum Bathyarchaeota are the predominant archaeal species in cold, anoxic marine sediments and additionally occur in a variety of habitats, both natural and man-made. Metagenomic and single-cell sequencing studies suggest that Bathyarchaeota may have a significant impact on the emissions of greenhouse gases into the atmosp...
Pharmaceuticals are relatively new to nature and often not completely removed in wastewater treatment plants (WWTPs). Consequently, these micropollutants end up in water bodies all around the world posing a great environmental risk. One exception to this recalcitrant conversion is paracetamol, whose full degradation has been linked to several micro...
Insects are associated with a plethora of different microbes of which we are only starting to understand their role in shaping insect-plant interactions. Besides directly benefitting from symbiotic microbial metabolism, insects obtain and transmit microbes within their environment, making them ideal vectors and potential beneficiaries of plant dise...
Freshwater ecosystems are an important source of the greenhouse gas methane (CH4), and their emissions are expected to increase due to eutrophication. Two commonly applied management techniques to reduce eutrophication are the addition of phosphate-binding lanthanum modified bentonite (LMB, trademark Phoslock©) and dredging, but their effect on CH4...
Pharmaceuticals are relatively new to nature and often not completely removed in wastewater treatment plants (WWTPs). Consequently, these micropollutants end up in water bodies all around the world posing a great environmental risk. One exception to this recalcitrant conversion is paracetamol, whose full degradation has been linked to several micro...
VAAM-Forschungspreis 2022
Methane is a potent greenhouse gas, contributing considerably to global warming. The emission of methane is governed by the balance of the activity of methanogenic archaea producing methane, and methanotrophic bacteria and archaea oxidizing it. A deeper understanding of the interactions between these microbial groups as we...
Anaerobic methanotrophic (ANME) archaea have recently been reported to be capable of using insoluble extracellular electron acceptors via extracellular electron transfer (EET). In this study, we investigated EET by a microbial community dominated by "Candidatus Methanoperedens" archaea at the anode of a bioelectrochemical system (BES) poised at 0 V...
Microbial communities are key drivers of carbon, sulfur, and nitrogen cycling in coastal ecosystems, where they are subjected to dynamic shifts in substrate availability and exposure to toxic compounds. However, how these shifts affect microbial interactions and function is poorly understood. Unraveling such microbial community responses is key to...
Methane (CH4) is a potent greenhouse gas significantly contributing to the climate warming we are currently facing. Microorganisms play an important role in the global CH4 cycle that is controlled by the balance between anaerobic production via methanogenesis and CH4 removal via methanotrophic oxidation. Research in recent decades advanced our unde...
Coastal zones account for significant global marine methane emissions to the atmosphere. In coastal ecosystems, the tight balance between microbial methane production and oxidation in sediments prevents most methane from escaping to the water column. Anthropogenic activities, causing eutrophication and bottom water deoxygenation, could disrupt this...
Anaerobic methanotrophic (ANME) archaea conserve energy from the breakdown of methane, an important driver of global warming, yet the extrachromosomal genetic elements that impact the activities of ANME archaea are little understood. Here we describe large plasmids associated with ANME archaea of the Methanoperedens genus. These have been maintaine...
Urbanised environments have been identified as hotspots of anthropogenic methane emissions. Especially urban aquatic ecosystems are increasingly recognised as important sources of methane. However, the microbiology behind these emissions remains unexplored. Here, we applied microcosm incubations and molecular analyses to investigate the methane‐cyc...
Northern latitude peatlands act as important carbon sources and sinks, but little is known about the greenhouse gas (GHG) budgets of peatlands that were submerged beneath the North Sea during the last glacial–interglacial transition.
We found that whilst peat formation was diachronous, commencing between 13 680 and 8360 calibrated years before the...
Microbial communities are key drivers of carbon, sulfur and nitrogen cycling in coastal ecosystems, where they are subjected to dynamic shifts in substrate availability and exposure to toxic compounds. However, how these shifts affect microbial interactions and function is poorly understood. Unraveling such microbial community responses is key to u...
Pharmaceuticals find their way to the aquatic environment via wastewater treatment plants (WWTPs). Biotransformation plays an important role in mitigating environmental risks; however, a mechanistic understanding of involved processes is limited. The aim of this study was to evaluate potential relationships between first-order biotransformation rat...
Methane-generating archaea drive the final step in anaerobic organic compound mineralization and dictate the carbon flow of Earth’s diverse anoxic ecosystems in the absence of inorganic electron acceptors. Although such Archaea were presumed to be restricted to life on simple compounds like hydrogen (H 2 ), acetate or methanol, an archaeon, Metherm...
Pharmaceuticals are often not fully removed in wastewater treatment plants (WWTPs) and are thus being detected at trace levels in water bodies all over the world posing a risk to numerous organisms. These organic micropollutants (OMPs) reach WWTPs at concentrations sometimes too low to serve as growth substrate for microorganisms; thus, co‐metaboli...
In recent years, the externalization of electrons as part of respiratory metabolic processes has been discovered in many different bacteria and some archaea. Microbial extracellular electron transfer (EET) plays an important role in many anoxic natural or engineered ecosystems. In this study, an anaerobic methane-converting microbial community was...
Methoxylated aromatic compounds (MACs) are important components of lignin found in significant amounts in the subsurface. Recently, the methanogenic archaeon Methermicoccus shengliensis was shown to be able to use a variety of MACs during methoxydotrophic growth. After a molecular survey, we found that the hyperthermophilic non‐methanogenic archaeo...
Methanogenic archaea operate an ancient, if not primordial, metabolic pathway that releases methane as an end-product. This last step is orchestrated by the methyl-coenzyme M reductase (MCR), which uses a nickel-containing F430-cofactor as the catalyst. MCR astounds the scientific world by its unique reaction chemistry, its numerous post-translatio...
Microbial methane oxidation is a major biofilter preventing larger emissions of this powerful greenhouse gas from marine coastal areas into the atmosphere. In these zones, various electron acceptors such as sulfate, metal oxides, nitrate, or oxygen can be used. However, the key microbial players and mechanisms of methane oxidation are poorly unders...
Pharmaceuticals are often not fully removed in wastewater treatment plants (WWTPs) and are thus being detected at trace levels in water bodies all over the world posing a risk to numerous organisms. These organic micropollutants (OMPs) reach WWTPs at concentrations sometimes too low to serve as growth substrate for microorganisms, thus co-metabolis...
Pharmaceuticals find their way to the aquatic environment via wastewater treatment plants (WWTPs) and biodegradation plays an important role in mitigating environmental risks, however a mechanistic understanding of involved processes is limited. The aim of this study was to evaluate potential relationships between first-order biodegradation rate co...
Northern latitude peatlands act as important carbon sources and sinks but little is known about the greenhouse gas (GHG) budget of peatlands submerged beneath the North Sea during the last glacial-interglacial transition. We found that whilst peat formation was diachronous, commencing between 13,680 and 8,360 calibrated years before the present, st...
The anaerobic oxidation of methane is important for mitigating emissions of this potent greenhouse gas to the atmosphere and is mediated by anaerobic methanotrophic archaea. In a 'Candidatus Methanoperedens BLZ2' enrichment culture used in this study, methane is oxidized to CO 2 with nitrate being the terminal electron acceptor of an anaerobic resp...
Microbial methane oxidation is a major biofilter preventing larger emissions of this powerful greenhouse gas from marine coastal areas into the atmosphere. In these zones, various electron acceptors such as sulfate, metal oxides, nitrate or oxygen can be utilized. However, the key microbial players and mechanisms of methane oxidation are poorly und...
We present the high-quality draft genome of Methanobacterium subterraneum DF, a hydrogenotrophic methanogen that was isolated from deer feces. This organism has potentially been overlooked in previous studies. Interestingly, its genome encoded bile salt hydrolase, a crucial enzyme for bile salt tolerance that is found in gut organisms.
Methane is the second most important greenhouse gas on earth. It is produced by methanogenic archaea, which play an important role in the global carbon cycle. Three main methanogenesis pathways are known: in the hydrogenotrophic pathway H2 and carbon dioxide are used for methane production, whereas in the methylotrophic pathway small methylated car...
Wastewater treatment plants (WWTPs) are crucial for producing clean effluents from polluting sources such as hospitals, industries, and municipalities. In recent decades, many new organic compounds have ended up in surface waters in concentrations that, while very low, cause (chronic) toxicity to countless organisms. These organic micropollutants (...
Permafrost covers a quarter of the northern hemisphere land surface and contains twice the amount of carbon that is currently present in the atmosphere. Future climate change is expected to reduce its near-surface cover by over 90% by the end of the 21st century, leading to thermokarst lake formation. Thermokarst lakes are point sources of carbon d...
The cabbage root fly Delia radicum is a worldwide pest that causes yield losses of many common cabbage crops. The bacteria associated with D. radicum are suggested to influence the pest status of their host. In this study, we characterized insect-associated bacteria of D. radicum across multiple life stages and of their diet plant (turnip, Brassica...
Plants of the Brassicales order, including Arabidopsis and many common vegetables, produce toxic isothiocyanates to defend themselves against pathogens. Despite this defence, plant pathogenic microorganisms like Pectobacterium cause large yield losses in fields and during storage of crops. The bacterial gene saxA was previously found to encode isot...