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INTRODUCTION

The usage of seismic ambient noise has recently proved its effi-
ciency in different contexts, from imaging to monitoring. The
impulse response (or Green’s function [GF]) between two sensors
can be reconstructed from the correlation of seismic noise re-
corded (Campillo and Paul, 2003). This method has provided
excellent results in imaging the Earth’s interior, from global to
regional or local scales. More recently, the method was extended
to study time-dependent variations in those GF. A change in the
delay times might originate from a change in the medium velocity
or from a dramatic change in the position of the source or of
one/many scatterers. Several studies using seismic ambient noise
have shown that small perturbations within a volcanic edifice can
be detected as changes in seismic-wave properties (Sens-Schön-
felder andWegler, 2006; Brenguier, Shapiro, et al., 2008; Duputel
et al., 2009; Mordret et al., 2010; Brenguier et al., 2011; Anggono
et al., 2012). Contrary to the use of active sources or earthquake
coda waves, the technique takes advantage of the continuous sam-
pling of the medium using around-the-clock records from seismic
stations. The method has proven its ability to evidence temporal
physical changes in fault zones (Wegler and Sens-Schönfelder,
2007; Brenguier, Campillo, et al., 2008), the lunar environment
(Sens-Schönfelder and Wegler, 2011), or to detect instrumental
errors (Stehly et al., 2007; Sens-Schönfelder, 2008).

Some codes have already been presented to compute cross
correlations of seismic noise, for example, within Seismic Analy-
sis Code (SAC) (Goldstein et al., 2003) or within Computer
Programs in Seismology (CPS) 3.3 (Herrmann, 2002). To
our knowledge, no integrated solution has been published to
go from the raw waveforms to the travel-time variations, auto-
matically detecting changes in the data archive and computing
only what is necessary on a scheduled basis (hourly, daily) and
which is also usable as a research tool to process archives.
Automating the detection is important, as, for example, data
streams coming from real-time telemetered stations contain
gaps that could be filled up later on, and provide important data
to be analyzed. Such a tool must be able to work with any
common seismic format, be reasonably fast, optimizedwhenever

possible. It should interact with a data archive and a database
with high-level helper functions in order to be pluggable and
extensible. Finally, it must produce exportable data, either in
waveform format, tabular text files, or high-quality figures. This
is the purpose of Monitoring using Seismic Noise (i.e.,
MSNoise).

We do not want to provide another black box to the users
so MSNoise is an integrated solution, its code is open,
commented, and documented. The processing workflow is sep-
arated in steps and one can easily replace one step by another
code, providing that the inputs and outputs are respected.

In this paper, the software steps are presented both from the
IT and scientific/methodological points of view. Example
graphical outputs are shown and described. We finally validate
MSNoise using archive data from the Piton de la Fournaise vol-
cano (La Réunion, France), where precursory seismic velocity
changes have been observed prior to two eruptions in October
and December 2010, during the UnderVolc project (Brenguier
et al., 2012). UnderVolc is an Agence Nationale de la Recherche
(ANR) project and stands for “UNDERstanding VOLCanic
Processes: Towards Eruption Prediction and Risk Mitigation,
an application to Piton de La Fournaise volcano, La Réunion
(2009–2013).”

MSNoise is written in Python to be fully cross platform. It
is open source and free, for noncommercial educational and
research usage. MSNoise is licensed under the European Union
Public License (EUPL v1.1). Commercial services related to
MSNoise, for example, providing consultancy or support for
its implementation or maintenance, are prohibited without
signed agreement with the original authors. MSNoise is avail-
able on http://www.msnoise.org/ (last accessed March 2014).

SOFTWARE FUNCTIONALITY

The workflow of MSNoise is pretty straightforward (Fig. 1)
and is composed of simple steps that are described extensively
on the companion website.

Installation and Configuration
MSNoise requires Python and only a few extra packages for run-
ning on any operating systems (OS). The waveform archive must
be either a known format, for example SeisComPData Structure
(SDS) or Buffer of Uniform Data structure (BUD), or one has
to define its own. MSNoise uses a database for storing configu-
ration bits, waveform metadata, and jobs. This database can be
either MySQL or sqlite, but we recommend using MySQL for
performance reasons. The package comes with an installer script
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that will initialize the connection to the database and store the
user name and password locally to allow the Configurator and all
processes to interact with the database. This Configurator GUI
(built using Enthought Tools Suite [Enthought, 2008]) shows
three different panels: the general MSNoise configuration, the
stations configuration, and the filters configuration. All configu-
ration elements are described in the online documentation.

Automatic Job Definition
Data Discovery
To automatically run every night on the data acquired during
the previous day, MSNoise needs to check the data archive for
new or modified files. Those files could have been acquired
during the last day, but could also be the data from a previously
offline station and contain useful information for, say, a month
ago. The time to search for is defined in the config. MSNoise
uses the find command (gnufind onWindows) with the -mtime
argument to locate new or modified files. Once located and
read (using obspy [Beyreuther et al., 2010; Megies et al., 2011])
they are inserted (if new) or updated (if modified) in the data
availability table. This table can then be turned into a data
availability plot (Fig. 2). Upon first run, the script must be
called with the init argument in order to avoid using themtime
argument for the find command and to insert all discovered
files in the data availability table.

Job Definition
Once all new/modified files have been identified, MSNoise will
define which days need to be processed and for which station

pair(s). For a set of N stations, there will be M pairs to com-
pute (equation 1a). If one wants auto-correlation, M will be
defined by equation (1b):

M � N × �N − 1�=2 �1a�
and

M � N × �N − 1�=2�N: �1b�

Outputs, Extensibility, and Plugability
The original goal of MSNoise is to provide δv=v plots over
time. These data can be represented as several plots, one per
station pair, one average for all station pairs, etc. MSNoise
comes with several example plots that one can duplicate or
hack to meet its needs. MSNoise uses pandas for data analysis
(McKinney, 2012) as it provides great helper functions to an-
alyse time series data (rolling average, resampling, detrending
time series containing NaNs…) and matplotlib (Hunter, 2007)
for static graphical outputs.

MSNoise has been designedwith plugability and extensibil-
ity in mind. All the communications with the database, with the
data archive or with the cross-correlation files go through helper
functions. None of the processing steps makes direct connec-
tions to the database or to the data files. Extension makers are
advised to look at the documentation of the functions to build
their extensions. A good starting point is to have a look at the
example output plots provided with the package. We want to
emphasize that although we currently prove MSNoise is work-
ing as expected (see theValidation section below), one might be
interested in modifying or using other computation routines.
This can be easily done by replacing steps in the workflow.

COMPUTATION

Our approach for continuously measuring seismic velocity
changes of the Earth’s Interiors relies on three steps.
(1) The first step is computing cross-correlation functions
(CCFs) of ambient seismic noise time series at different dates
for individual pairs of seismic sensors; (2) measuring travel-
time delays of different arrivals (direct or coda waves) between
these individual CCFs and a defined reference CCF, and
(3) averaging these travel-time delays for different correlation
lag times over different sensor pairs and interpreting these
travel-time delays using a simple model of uniform relative
velocity change within the studied area (δv=v � constant).

Computation of Cross-Correlation Functions
For each cross-correlation job, the waveforms are preprocessed
and then analyzed. Jobs are independent, so several computa-
tions can be run in parallel, usually depending on ones’
CPU-RAM-Disk speed triplet.

Waveform Preprocessing
For each station, all files that potentially contain data for the
day are opened. The traces are then merged and split, to obtain

▴ Figure 1. Schematic view of the MSNoise workflow, the one-
time installation part enters the routine workflow before the job
definition step.
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the most continuous chunks possible. The different chunks are
then demeaned, tapered, and merged again to a one day long
trace. If shorter than one day, the trace is padded with zeroes. If
longer, it is cut to match the start/end of the day. Subsequently,
each one day long trace is low passed, high passed then deci-
mated, or downsampled. Decimation is faster, but only allows
decimation by integer factors, whereas the downsampling
supports any factor which allows the usage of heterogeneous
station configurations. Decimation/Downsampling are config-
urable, and users are advised to test both. The resampling
method used in MSNoise comes from the audio world and
provides excellent quality results (de Castro Lopo, 2013).
Low-pass and down-sampling values must be defined together
properly.

Processing
Once all waveforms are loaded in memory, the computation is
done by iteration on the station pairs, on the different com-
ponents to compute and then on the different filters for each
defined window (30 minutes slices by default, configurable).

R � N cos�Az� � E sin�Az�
T � N sin�Az� − E cos�Az�:

�2�

The radial (R) and transverse (T ) components are calcu-
lated from the rotation of the east (E) and north (N ) compo-
nents. The rotation angle is defined as the azimuth (Az)
between the two sensors.

In order to attenuate the parasitic signals from seismic
events (being local, regional, or global), we apply aWindsoriz-
ing (Tukey, 1962) of three times RMS to the traces as a first-
processing step. A second step consists of whitening the
amplitude of the signal between two configured frequencies.

The cross correlation is conducted in the frequency do-
main. Let x�t� and y�t� be two time series and X�f � and Y �f �
their Fourier transforms. The correlation operation is then de-
fined as

C�f � � X��f � × Y �f �; �3�

with X��f � being the complex conjugate of X�f �. If
x�t� � y�t�, then the operation is called auto correlation.
The CCF c�t� is the inverse Fourier transform of C�f �. If con-
figured (not by default), the c�t� for each 30 minutes slice can be
stored to an output directory on the computer. Again, if con-
figured (default), the day stack of the non-zero, non-infinite, and
non-NaN 48 × 30 minutes c�t� are stored.

▴ Figure 2. Data availability for the UnderVolc project: days with at least some data are plotted in gray and the N number of available
stations for each date is summarized in the lower part. This plot is made automatically using the plot_data_availability.py script.
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Stacking Strategy and Export
MSNoise is capable of using a reference function (REF) defined
by absolute or relative dates span. For example, an absolute range
could be from 1 January 2010 to 31 December 2011 and a
relative range could be the last 200 days. To define this reference,
we propose to plot all CCF already computed and check for their

consistency. Once a stable enough period has been identified, it
can be defined as the reference function (REF) for further
analysis.

The correlation coefficient of each daily CCF with a given
REF can be evaluated and is already a good indicator that some-
thing happened under, around or to ones’ sensors (Fig. 3).

▴ Figure 3. Cross-correlation functions (CCFs) through time for two random stations (YA.UV02 and YA.UV05) of the UnderVolc project
(above). The horizontal dashed lines represent the limits in the negative and positive time lags defining two domains that are compared to
the reference (here, a stack of all available data). Correlation coefficients are determined by comparing different moving-window stacks
to the reference (lower four graphs). Eruptions of the Piton de la Fournaise are shown as red vertical bands.
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Signals in the negative and positive time lags can sometimes be
different (Mordret et al., 2010), as shown on Figure 3. A
change in the velocity should bring smooth changes in the cor-
relation, whereas changes in the origin of the seismic noise or in
the position of some of the scatterers should dramatically
change the correlation (Wegler and Sens-Schönfelder, 2007).

Computing velocity variations by comparing daily CCF
with the REF can bring strong variations because of noisy
CCF. Cross correlating an increasing number of days stacked
together with the REF helps deciding a reasonable number of
days for which the correlation coefficient reaches 0.96. A
drawback of taking a too long moving-window stack is an im-
mediate decrease in resolution. Liu et al. (2010) have demon-
strated that the choice of the window size might highlight or
hide features in the data, so we made MSNoise capable of
exporting multiple moving-window stacks, for example, 2, 5,
10, and 30 days stacks. Once the user has defined the reference
and a (some) reasonable moving average(s), both need to be
exported before computing the relative travel-time variations.
Similarly, the definition of REF requires attention. If one takes
the whole archive as reference, but it actually contains strong-
velocity variations, the quality of the reference will be greatly
diminished (Duputel et al., 2009; Mordret et al., 2010). The
investigation of stable periods compared with the total data
length is highly recommended.

Only data for new/modified dates need to be exported. If
any cross-correlation (CC) job has been marked “Done” within
the last day, the stacks will be calculated, and a new travel-time
variation (DTT) job will be inserted in the database. Note, the
subsequent δt=t calculations will only be done for dates for
which new/modified CC is available, or for which a new
REF has been determined. If one defines a moving-window
REF, then the REF stack will need to be calculated every time,
and the travel-time variations will need to be completely recal-
culated too. With a fixed REF, only the δt=t for the previous
day should be calculated, which makes the whole process faster.

As described in Hadziioannou et al. (2009), the accuracy
of seismic velocity change measurements relies on the recon-
struction of stable in time CCF. As a first step, one must thus
ensure that sufficiently long noise time series have been corre-
lated in order to reach, for every sensor pair, a coherence be-
tween individual and the reference CCFs of a certain threshold.
An obvious trade-off is the longer the time series, the higher the
coherence, but the lower the time resolution.

Relative Travel-Time Variations
Time Delay Measurements
Two techniques can be used to estimate the time delays: the
moving-window cross spectrum analysis (MWCS; first intro-
duced by Ratdomopurbo and Poupinet, 1995) and passive inter-
ferometry (Sens-Schönfelder and Wegler, 2006). Although two
studies highlighted the stability of the second technique over the
first (Duputel et al., 2009; Hadziioannou et al., 2009), the
MWCS technique has the advantage of operating in the fre-
quency domain, in which the bandwidth of coherent signal
in the correlation function can be clearly defined (Clarke et al.,

2011). Furthermore, the recent development of the technique by
Clarke et al. (2011) has led to some improvement of MWCS
technique, particularly the estimation of statistical parameters
which allows assessment of the variability above which pertur-
bations can be reliably observed. In MSNoise, time delays are
computed following the methodology of Clarke et al. (2011),
rewritten in Python for consistency. In the Validation section
of this paper, we compare the results obtained by MSNoise with
the ones obtained using Daniel Clarke’s measured FORTRAN
program (personal comm., 2011).

The current CCF is compared with the reference. Both
time series are sliced in several overlapping windows. Each slice
is mean adjusted and cosine tapered (1% taper at both ends)
before Fourier transformation to the frequency domain.
F cur�ν� and F ref �ν� are the first halves of the Hermitian sym-
metric Fourier-transformed segments that were padded with
zeroes to a length equal to the next power of 2 of their length.
The cross spectrum X�ν� is defined as

X�ν� � F ref �ν� × F�
cur�ν�; �4�

in which asterisk denotes the complex conjugation. X�ν� is
then smoothed by convolution with a Hanning window.
The similarity of the two time series is assessed using the cross
coherence between energy densities in the frequency domain:

C�ν� � jX�ν�j��������������������������������������
jF ref �ν�j2jF cur�ν�j2

q ; �5�

in which the overline here represents the smoothing of the en-
ergy spectra for F ref and F cur and of the spectrum of X . The
mean coherence for the segment is defined as the mean of C�ν�
in the frequency range of interest. The time delay between the
two cross correlations is found in the unwrapped phase, ϕ�ν�,
of the cross spectrum and is linearly proportional to frequency:

ϕj � mνj ; m � 2πδt: �6�

The time shift for each window between two signals is the
slope m of a weighted linear regression of the samples within
the frequency band of interest. The weights are those intro-
duced by Clarke et al. (2011), which incorporate both the
cross-spectral amplitude and cross coherence, unlike Poupinet
et al. (1984). The errors are estimated using the weights (thus
the coherence) and the squared misfit to the modeled slope:

em �
�����������������������������������X
j

�
wjνjP
i
wiν

2
i

�
2
σ2ϕ

vuut ; �7�

in which w are weights, ν are cross coherences, and σ2ϕ is the
squared misfit of the data to the modeled slope and is calcu-
lated as

σ2ϕ �

P
j
�ϕj −mνj�2

N − 1
: �8�

Seismological Research Letters Volume 85, Number 3 May/June 2014 719



The output of this process is a table containing, for each
moving window: the central time lag, the measured delay, its
error, and the mean coherence of the segment. Tables are saved
as text files (comma-separated values [csv]) to the disk. For any
given day, MSNoise computes M sets (1) of delay time versus
lag time and saves the result in text files.

Velocity Variations Computation
If one assumes a relative velocity variation δv=v homogeneous
in space and a relative time shift δt=t between the reference
and the current CF, it has been demonstrated (Ratdomopurbo
and Poupinet, 1995) that

δv=v � −δt=t: �9�
In the following sections, we will mainly speak about δt=t

because this is the raw information stored by MSNoise, and
one can easily convert it to δv=v when needed.

The MWCS delay-time tables saved at the previous step
can then be visualized as a delay matrix for each day (Fig. 4),

evidencing the slight delay differences between pairs as a func-
tion of the time lag. MSNoise is able to compute δt=t for each
station pair, but also for a filtered weighted average of the pairs.
An extra line is added at the bottom of the matrix once all
station pairs are loaded. This line, called the “ALL” line within
MSNoise, will contain a filtered column weighted average of
the delay times. For each column (lag time), delay times must
satisfy given rules to be included in the weighted mean calcu-
lation. Example rules are presented for the UnderVolc data in
the Validation section.

The selection of the minimum and maximum lag times for
the time shift computations is of much importance. As scat-
tered waves traveling along longer paths accumulate larger time
delays, most of the studies performed in volcanic environment
were using the late arrivals of the CCF (e.g., Duputel et al.,
2009, 5–20 s or Mordret et al., 2010, 10–30 s). An exception
arises from the recent study of Anggono et al. (2012), in which
�10 to �1 s of lag times are used. Because of poor waveform
similarity in the coda part (>10 s), they neither used the

▴ Figure 4. Example delay, error, phase coherence, data selection, and delay time variation matrices, here for all station pairs available
on 12 October 2010 during the UnderVolc project. Each line of the matrices corresponds to a station pair, whereas each column of the four
first matrices is the central time lag of the moving windows in the MWCS process. Each matrix has its own color scale. The bottom line of
the matrices is the filtered column weighted average (see text for details) and is called “ALL” within MSNoise. The “ALL” line is only
calculated between -left_maxlag:-left_minlag and right_minlag:right_maxlag time lags (dashed lines). Each δt = t value determined by the
weighted least-square regression (forced to cross the origin or not) of the selected data is represented as a scatter point with error bars.
The red vertical line is the δt = t (no forcing: 0:074%� 0:009% and with forcing: 0:074%� 0:008%) determined for the “ALL” line and the
green line is the weighted average (without forcing: 0:081%� 0:065% and with forcing: 0:074%� 0:069%) of all δt = t . Forced and not-
forced δt = t values are very similar, but the error on the latter is an order of magnitude larger than on the former.
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MWCS nor the stretching method, but compared the maxi-
mum of the daily CCF with the one from a reference CCF.
We advise the user to perform preliminary tests in different
windows and to avoid working around zero time lag. More-
over, the CCF is merely symmetric on volcanoes especially
at short lag times (i.e., the ballistic waves described by Duputel
et al., 2009). This might evidence an inhomogeneous distribu-
tion of sources, a preferred location for the scatterers which act
as secondary sources (Paul, 2005; Stehly et al., 2006) or reflect
clock problems (Sens-Schönfelder, 2008). Mordret et al.
(2010) averaged the causal and anticausal parts of the CCFs
to achieve a better coherency and stability of the reconstructed
wavefield. However, one can also decide to solely work in the
causal or acausal part of the retrieved CCFs. Ambient noise
sources change in time (change in spectrum, in location and
amplitude), and thus seismic velocity changes may be biased
by these changes. These changes in the noise source properties
mostly affect the direct reconstructed waves. In order to esti-
mate this bias, one may thus, in a preliminary step, measure
seismic velocity changes taking into account only measured
travel-time shifts of the direct or early arrivals of the CCFs.

A weighted least-square regression (WLS) is subsequently
computed for each M � 1 line of the matrix, through the sat-
isfying points (in black in the data selection matrix on Fig. 4).
The WLS is computed two times, first by allowing for a con-
stant (equation 10a) and second by forcing the regression to
cross the origin ([0,0]) (equation 10b). Errors on each param-
eter are computed, ea and em for a andm, respectively, in equa-
tion (10a)) and em0 for m0 in equation (10b). The presence of

a significantly non-null constant a can reflect a possible instru-
ment drift. The results, for a single day, can be plotted as a
scatter plot of δt=t versus pair number (Fig. 4, right two plots)
or as a matrix (Fig. 5). The former also shows the slopes de-
termined for the “ALL” line (red vertical line) and the
weighted average value of the slopes determined for all pairs
(green line). In this example, results are highly similar, but, even
visually, some station pairs seem to behave differently. The ma-
trix (Fig. 5) helps in identifying station groups, which could be
analyzed together. As an example in the case of the UnderVolc
project, one could define two groups: “crater stations” and
“large interdistance stations”, for example,

δt � a�mt �10a�
and

δt0 � m0t; �10b�
in which the subscript 0 is added to stress the [0,0] forcing.

The six values (the slopes m and m0, the constant a, and
their uncertainties) are saved to the disk, for each pair and for
the “ALL” line, in order to be easily readable by plotting or
exporting routines.

VALIDATION

To validate our processing work flow, we tested it against the
same data set that was used to successfully identify precursory
velocity changes under the Piton de la Fournaise volcano for
eruptions in October and December 2010 (Brenguier et al.,
2012) during the UnderVolc project.

Data and Parameters
The data set consists of 21 broadband three-component seis-
mic stations placed on the Piton de la Fournaise volcano at
various interdistances ranging from <1 to >10 km (Fig. 6).
Most of the stations were installed by the beginning of Novem-
ber 2009 and were removed at the end of June 2011 (Fig. 2). In
fact, most of the station locations were taken over by Observ-
atoire Volcanologique du Piton de la Fournaise (OVPF) net-
work, using new station codes. A total of 11,393 Z-component
files have been processed in this test. For computing the CCF,
the 100 Hz waveforms have been bandpassed between 0.01 and
8.0 Hz, then decimated to 20 Hz (factor 5). Only ZZ compo-
nents have been calculated for different stations (no auto cor-
relation). Each day was cut in 30 minute slices, and the
resulting CCFs were saved to disk, together with the daily stack.
Stacks have been calculated for 2, 5, 10, and 30 moving-
window days. The MWCS frequency band is 0.2–0.85 Hz and
is computed for 10 second sliding windows overlapping by
50%. For δt=t calculations, both causal and acausal parts are
used, lag times between�5 and�50 s are selected. Remaining
selection parameters are 0.5 minimum coherence, 0.1 s maxi-
mum error, and 0.5 s maximum dt. Example timing on a 4
vCPU virtual machine and data volumes are given in Tables 1
and 2.

▴ Figure 5. Example matrix for the δt = t values presented as a
scatter plot on Figure 4. Each row or column is representing a
unique station, so each cell a station pair. The color of the cell
depends on the calculated δt = t (the slope) for each pair. Here,
the diagonal is empty because auto correlation was not com-
puted. Thanks to the reciprocity principle, CCFs are only computed
once per station pair.
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Results
The δv=v variations of the volcano during the UnderVolc
project as obtained by applying the same methodology on
the delay times calculated with the FORTRAN code of Clarke
et al. (2011) and MSNoise show very similar results (Fig. 7).
Slight differences below 0.02% are noted, whereas the signal of
the eruptions is stronger than 0.05%. A general trend is present
and denotes an apparent slight change in the velocity of 0.2%
per year. This long-term component (LTV) sensu Brenguier,
Shapiro, et al. (2008), can be removed to highlight shorter
time-scale variations. Analyzing both codes in depth, we as-
sume that the little differences might come from differences
either in the way the cosine-smoothing function is constructed,
or in the phase calculation code. We choose to use well-tested
numerical routines included in the numpy, scipy (Jones et al.,
2001; Oliphant, 2006), and statsmodels (Seabold and Perktold,
2010) packages instead of rewriting Clarke’s FORTRAN
functions.

Eruptions of November 2009, January 2010, October
2011, and December 2011 are preceded by a decrease of
the δv=v (going up on Fig. 8). There seem to be no precursory
signs of October 2009 eruption. We evidence the November
2009, October 2010, and December 2010 eruptions with a pre-
cursory time of about 15 days. For the last two eruptions, an
increase of the δv=v is noticed during the day before the actual
eruption. This could be explained by a velocity increase at
depth, by the stronger seismic activity during the hours preced-
ing the eruption or by the presence of eruptive tremor in the
minutes before. The last two are provoking a change in the
noise source provenance and are disturbing the system. It is
worth noting the decorrelation of the moving-stack function
relative to the REF, five days before the eruption (Fig. 3). As Liu
et al. (2010) have shown, a change in the stacking duration
might highlight or erase signal in the evolution of the δv=v
curve. We show on Figure 3 the different decorrelation pat-
terns when 2, 5, 10, or 30 days stacks are compared with the
same REF. For example, precursory changes of δv=v before the
November 2009 eruption are visible for stack durations up to
10 days, but are completely erased when using the 30 day stack
(Fig. 8). Short period (of less or equal to a few days) variations
are visible on the 1, 2, and 5 day stacks (Fig. 8) and could have
different origins, for example, linked with “local” causes like
changes in the barometric pressure, rainfall, or seismic activity,
or more “regional” ones like changes in the noise source posi-
tions. Although possible, the short period of a few days makes
the “regional” causes less likely than the “local” ones.

CONCLUSIONS AND PERSPECTIVES

We present the first complete software package for computing
and monitoring relative velocity variations using ambient seis-
mic noise. MSNoise is a fully integrated solution that automati-
cally scans data archives and determines which jobs need to be
done whenever the scheduled task is executed. The whole pack-
age is written in Python, open source and freely available on
http://www.msnoise.org (last accessed March 2014). The
processing steps have been tested against codes used to success-
fully identify precursory velocity variations (Clarke et al.,
2011) under the Piton de La Fournaise volcano (La Réunion
Island, France) during the UnderVolc project (Brenguier et al.,
2012). Using the same data set, results of both processing codes
are highly similar. MSNoise is pluggable and extensible and is
de facto a useful tool for researchers as they can only focus on

▴ Figure 6. Station map of the UnderVolc project. Stations are the
white triangles and paths between each station pair are drawn in
white overlaid on a digital elevation model (DEM) of the Piton de la
Fournaise volcano. The station map without the DEM is created
automatically using the plot_station_map.py script.

Table 1
Timing of the Different Steps of the Workflow

Step Timing
Installation 10 minutes
Configuration 5 minutes
Scanning data archive 30 minutes
Identifying 102,626 new jobs 30 minutes
Processing cross-correlation jobs (1 filter) 21 hours
Stacking REFs for 210 pairs 33 minutes
Stacking 4 moving windows for all pairs 6 hours
Computing MWCS 8 hours
Computing δt = t 1 hour

Table 2
Volume of the Archive and the Outputs of MSNoise

Element Volume
UnderVolc Data archive 382 GB
1-day stack for 210 pairs, 1 filter 5.9 GB
REFs for 210 pairs 13 MB
Each moving-window stack for 210 pairs, 1 filter 6.0 GB
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implementing their processing code, while benefiting from its
robust framework.

Our approach relies on the assumption that every
wavepacket of the coda part of the reconstructed CCFs has
experienced a uniform relative velocity change (δv=v �
constant) along its travel path. This is a strong assumption that
may not be valid in all cases. The consequence is that the mea-
sured relative seismic velocity change may strongly differ from
“real” δv=v’s within the studied medium. A main limitation
arises from the fact that the coda wavepackets may travel areas
of nonuniform velocity changes. In that case, the measured
δv=v is an average of the real δv=v, and one may, for example,
misinterpret a change of δv as an increase of δv=v whereas it
could simply be associated with a spatial extent of a constant
value δv=v.

Finally, althoughwe present the validation onMSNoise in a
volcanic environment, its application should not be restricted to
this specific case, and we are looking forward to seeing
applications applied to different contexts and to receiving com-
ments and contributions from other research groups. Contribu-
tions could be, for example, a new correlation algorithm, a new
δt=t calculation technique, the implementation of attenuation
computation (like in Prieto et al., 2011), the usage of the delay

matrices to locate variations of δv=v, or decorrelation at differ-
ent time lags (like in Larose et al., 2010; Obermann et al., 2013).
Other contributions could include the analysis of much higher-
frequency data (higher than 1 kHz such as in Olivier et al.,
2012), or the usage of the CCF as input to an frequency-time
analysis (FTAN) analysis (as described in Levshin et al., 1989)
for computing dispersion and subsequent inversion of 1D sur-
face-wave velocity profiles. We are planning to implement the
possibility to define multiple references in the same way as the
multiple stacks and the possibility to define several “station
groupings” similar to the “ALL” (see Velocity Variations Com-
putation section).

ACKNOWLEDGMENTS

Corentin Caudron’s Ph.D. work is supported by the Belspo
(Action 2 Grant WI/33/J02). Thomas Lecocq’s 1 month stay
at the Observatoire Volcanologique du Piton de la Fournaise
(OVPF) has been partly supported by the Institut du Physique
du Globe (IPGP). The data used for the analysis were collected
by the IPGP/OVPF, and the Institut des Sciences de la Terre
(ISTerre) within the framework of the ANR_08_RISK_011/
UnderVolc project. The sensors are property of the French

▴ Figure 7. (a) Relative seismic velocity variations in the Piton de la Fournaise volcano during the UnderVolc project, using D. Clarke’s
FORTRAN code for MWCS (green) and using our implementation (red), eruptions are marked as red vertical lines. (b) The absolute differ-
ence in percent between the two results (red) and the number of station pairs available for each day of the project (blue).

Seismological Research Letters Volume 85, Number 3 May/June 2014 723



▴ Figure 8. Comparison of the detrended δv = v results obtained using MSNoise for five different moving-window stacks (1, 2, 5, 10, and 30
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