Conrad Watt

Conrad Watt
University of Cambridge | Cam · Computer Laboratory

MEng

About

21
Publications
2,366
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
273
Citations
Introduction
I am a PhD student at the University of Cambridge under the supervision of Peter Sewell. My current research centres around formalising the WebAssembly language.

Publications

Publications (21)
Conference Paper
WebAssembly is a new low-level language currently being implemented in all major web browsers. It is designed to become the universal compilation target for the web, obsoleting existing solutions in this area, such as asm.js and Native Client. The WebAssembly working group has incorporated formal techniques into the development of the language, but...
Conference Paper
The JSCert project provides a Coq mechanised specification of the core JavaScript language. A key part of the project was to develop a methodology for establishing trust, by designing JSCert in such a way as to provide a strong connection with the JavaScript standard, and by developing JSRef, a reference interpreter which was proved correct with re...
Article
Mechanisations of programming language specifications are now increasingly common, providing machine-checked modelling of the specification and verification of desired properties such as type safety. However it is challenging to maintain these mechanisations, particularly in the face of an evolving specification. Existing mechanisations of the W3C...
Article
WebAssembly (Wasm) is a portable low-level bytecode language and virtual machine that has seen increasing use in a variety of ecosystems. Its specification is unusually rigorous – including a full formal semantics for the language – and every new feature must be specified in this formal semantics, in prose, and in the official reference interpreter...
Article
We present WasmRef-Isabelle, a monadic interpreter for WebAssembly written in Isabelle/HOL and proven correct with respect to the WasmCert-Isabelle mechanisation of WebAssembly. WasmRef-Isabelle has been adopted and deployed as a fuzzing oracle in the continuous integration infrastructure of Wasmtime, a widely used WebAssembly implementation. Previ...
Article
WebAssembly makes it possible to run C/C++ applications on the web with near-native performance. A WebAssembly program is expressed as a collection of higher-order ML-like modules, which are composed together through a system of explicit imports and exports using a host language, enabling a form of higher- order modular programming. We present Iris...
Preprint
Full-text available
Capability-based memory isolation is a promising new architectural primitive. Software can access low-level memory only via capability handles rather than raw pointers, which provides a natural interface to enforce security restrictions. Existing architectural capability designs such as CHERI provide spatial safety, but fail to extend to other memo...
Article
Most programs compiled to WebAssembly (Wasm) today are written in unsafe languages like C and C++. Unfortunately, memory-unsafe C code remains unsafe when compiled to Wasm—and attackers can exploit buffer overflows and use-after-frees in Wasm almost as easily as they can on native platforms. Memory- Safe WebAssembly (MSWasm) proposes to extend Wasm...
Preprint
Full-text available
Most programs compiled to WebAssembly (Wasm) today are written in unsafe languages like C and C++. Unfortunately, memory-unsafe C code remains unsafe when compiled to Wasm -- and attackers can exploit buffer overflows and use-after-frees in Wasm almost as easily as they can on native platforms. Memory-Safe WebAssembly (MSWasm) proposes to extend Wa...
Article
Software sandboxing or software-based fault isolation (SFI) is a lightweight approach to building secure systems out of untrusted components. Mozilla, for example, uses SFI to harden the Firefox browser by sandboxing third-party libraries, and companies like Fastly and Cloudflare use SFI to safely co-locate untrusted tenants on their edge clouds. W...
Chapter
Full-text available
WebAssembly (Wasm) is a new bytecode language supported by all major Web browsers, designed primarily to be an efficient compilation target for low-level languages such as C/C++ and Rust. It is unusual in that it is officially specified through a formal semantics. An initial draft specification was published in 2017 [14], with an associated mechani...
Preprint
Full-text available
Almost all SFI systems use heavyweight transitions that incur significant performance overhead from saving and restoring registers when context switching between application and sandbox code. We identify a set of zero-cost conditions that characterize when sandboxed code is well-structured enough so that security can be guaranteed via lightweight z...
Thesis
WebAssembly is the first new programming language to be supported natively by all major Web browsers since JavaScript. It is designed to be a natural low-level compilation target for languages such as C, C++, and Rust, enabling programs written in these languages to be compiled and executed efficiently on the Web. WebAssembly’s specification is man...
Preprint
Modern JavaScript includes the SharedArrayBuffer feature, which provides access to true shared memory concurrency. SharedArrayBuffers are simple linear buffers of bytes, and the JavaScript specification defines an axiomatic relaxed memory model to describe their behaviour. While this model is heavily based on the C/C++11 model, it diverges in some...
Article
Full-text available
WebAssembly (Wasm) is a safe, portable virtual instruction set that can be hosted in a wide range of environments, such as a Web browser. It is a low-level language whose instructions are intended to compile directly to bare hardware. While the initial version of Wasm focussed on single-threaded computation, a recent proposal extends it with low-le...
Conference Paper
WebAssembly (Wasm) is a low-level platform-independent bytecode language. Today, developers can compile C/C++ to Wasm and run it everywhere, at almost native speeds. Unfortunately, this compilation from C/C++ to Wasm also preserves classic memory safety vulnerabilities, such as buffer overflows and use-after-frees. New processor features (e.g., tag...
Article
Full-text available
A significant amount of both client and server-side cryptography is implemented in JavaScript. Despite widespread concerns about its security, no other language has been able to match the convenience that comes from its ubiquitous support on the "web ecosystem" - the wide variety of technologies that collectively underpins the modern World Wide Web...
Preprint
Full-text available
WebAssembly (Wasm) is the first new programming language in over 20 years to be natively supported on the web. A small-step semantics of Wasm was formally introduced by Haas et al. 2017 and mechanised in Isabelle by Watt 2018. In this report, we introduce a big-step semantics for Wasm, as well as a sound program logic for first-order, encapsulated...
Preprint
Full-text available
A significant amount of both client and server-side cryptography is implemented in JavaScript. Despite widespread concerns about its security, no other language has been able to match the convenience that comes from its ubiquitous support on the "web ecosystem" - the wide variety of technologies that collectively underpins the modern World Wide Web...

Network

Cited By