Conceição Bettencourt

Conceição Bettencourt
University College London | UCL · Queen Square Institute of Neurology

PhD

About

148
Publications
31,528
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
3,257
Citations
Additional affiliations
January 2013 - July 2018
University College London
Position
  • Research Associate
Description
  • Working on neurogenetics
August 2018 - May 2020
UCL Queen Square Institute of Neurology
Position
  • Research Associate
Description
  • Working on (epi)genetics of neurodegenerative diseases
May 2012 - June 2012
Amsterdam University Medical Center
Position
  • Postdoctoral Visiting Researcher
Education
January 2006 - February 2010
University of the Azores
Field of study
  • Genetics
September 1998 - June 2002
University of the Azores
Field of study
  • Biology

Publications

Publications (148)
Article
Hereditary spastic paraplegias constitute a heterogeneous group of neurodegenerative diseases encompassing pure and complicated forms, for which at least 52 loci and 31 causative genes have been identified. Although mutations in the SPAST gene explain approximately 40% of the pure autosomal dominant forms, molecular diagnosis can be challenging for...
Article
Full-text available
Importance The core clinical and neuropathological feature of the autosomal dominant spinocerebellar ataxias (SCAs) is cerebellar degeneration. Mutations in the known genes explain only 50% to 60% of SCA cases. To date, no effective treatments exist, and the knowledge of drug-treatable molecular pathways is limited. The examination of overlapping...
Article
Machado-Joseph disease (or spinocerebellar ataxia type 3) is a late-onset polyglutamine neurodegenerative disorder caused by a mutation in the ATXN3 gene, which encodes for the ubiquitously expressed protein ataxin-3. Previous studies on cell and animal models have suggested that mutated ataxin-3 is involved in transcriptional dysregulation. Starti...
Article
Full-text available
Objective: The polyglutamine diseases, including Huntington's disease (HD) and multiple spinocerebellar ataxias (SCAs), are amongst the commonest hereditary neurodegenerative diseases. They are caused by expanded CAG tracts, encoding glutamine, in different genes. Longer CAG repeat tracts are associated with earlier ages at onset, but this does no...
Article
Full-text available
Multiple system atrophy (MSA) is a fatal late-onset neurodegenerative disease. Although presenting with distinct pathological hallmarks, which in MSA consist of glial cytoplasmic inclusions (GCIs) containing fibrillar α-synuclein in oligodendrocytes, both MSA and Parkinson’s disease are α-synucleinopathies. Pathologically, MSA can be categorized in...
Article
Full-text available
Abnormal α-synuclein (αSyn), including an oligomeric form of αSyn, accumulates and causes neuronal dysfunction in the brains of patients with multiple system atrophy. Neuroprotective drugs that target abnormal αSyn aggregation have not been developed for the treatment of multiple system atrophy. In addition, treating diseases at an early stage is c...
Article
Full-text available
Multiple system atrophy (MSA) is a rare neurodegenerative disease characterized by neuronal loss and gliosis, with oligodendroglial cytoplasmic inclusions (GCIs) containing α-synuclein being the primary pathological hallmark. Clinical presentations of MSA overlap with other parkinsonian disorders, such as Parkinson’s disease (PD), dementia with Lew...
Article
Full-text available
Machado-Joseph disease (MJD) is an autosomal dominant spinocerebellar ataxia (SCA) caused by a polyglutamine expansion in the ataxin-3 protein, which initiates a cascade of pathogenic events, including transcriptional dysregulation. Genotype-phenotype correlations in MJD are incomplete, suggesting an influence of additional factors, such as epigene...
Preprint
Full-text available
Multiple system atrophy (MSA) is a rare neurodegenerative disease characterized by neuronal loss and gliosis, with oligodendroglial cytoplasmic inclusions (GCI's) containing alpha-synuclein being the primary pathological hallmark. Clinical presentations of MSA overlap with other parkinsonian disorders such as Parkinson's disease (PD), dementia with...
Article
Full-text available
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene cause autosomal dominant Parkinson’s disease (PD), with the most common causative mutation being the LRRK2 p.G2019S within the kinase domain. LRRK2 protein is highly expressed in the human brain and also in the periphery, and high expression of dominant PD genes in immune cells suggests inv...
Article
Background Frontotemporal lobar degeneration (FTLD) is an umbrella term describing the neuropathology of a clinically, genetically and pathologically heterogeneous group of diseases, which includes frontotemporal dementia and progressive supranuclear palsy. About 90% of the FTLD cases show either TDP‐43 or tau pathology (FTLD‐TDP or FTLD‐tau, respe...
Article
Full-text available
Understanding the contribution of immune mechanisms to Parkinson's disease pathogenesis is an important challenge, potentially of major therapeutic implications. To further elucidate the involvement of peripheral immune cells, we studied epigenome-wide DNA methylation in isolated populations of CD14+ monocytes, CD19+ B cells, CD4+ T cells, and CD8+...
Preprint
Full-text available
Machado-Joseph disease (MJD) is a rare late-onset polyglutamine neurodegenerative disease caused by the expansion of a CAG repeat in the ATXN3 gene encoding the ataxin-3 (ATXN3) protein. Several studies have identified changes in the abundance of select transcripts and proteins in blood samples of MJD mutation carriers. Here, we aimed to: 1) identi...
Article
Diffuse gliomas in adults encompass a heterogenous group of central nervous system neoplasms. In recent years, extensive (epi-)genomic profiling has identified several glioma subgroups characterized by distinct molecular characteristics, most importantly IDH1/2 and histone H3 mutations. A group of 16 diffuse gliomas classified as “adult-type diffus...
Preprint
Full-text available
Introduction: Mutations in the Leucine Rich Repeat Kinase 2 (LRRK2) gene cause autosomal dominant Parkinsons disease (PD) with the most common causative mutation being the LRRK2 p.G2019S within the kinase domain. LRRK2 protein is highly expressed in the human brain and also in the periphery, and high expression of dominant PD genes in immune cells...
Article
Genetics and omics studies of Alzheimer's disease and other dementia subtypes enhance our understanding of underlying mechanisms and pathways that can be targeted. We identified key remaining challenges: First, can we enhance genetic studies to address missing heritability? Can we identify reproducible omics signatures that differentiate between de...
Article
Full-text available
Frontotemporal lobar degeneration (FTLD) includes a heterogeneous group of disorders pathologically characterized by the degeneration of the frontal and temporal lobes. In addition to major genetic contributors of FTLD such as mutations in MAPT, GRN, and C9orf72, recent work has identified several epigenetic modifications including significant diff...
Article
Full-text available
Neurodegenerative diseases encompass a heterogeneous group of conditions characterised by the progressive degeneration of the structure and function of the central or peripheral nervous systems. The pathogenic mechanisms underlying these diseases are not fully understood. However, a central feature consists of regional aggregation of proteins in th...
Preprint
Full-text available
Frontotemporal lobar degeneration (FTLD) includes a heterogeneous group of disorders pathologically characterized by the degeneration of the frontal and temporal lobes. In addition to major genetic contributors of FTLD such as mutations in MAPT, GRN, and C9orf72, recent work has identified several epigenetic modifications including significant diff...
Article
Full-text available
Frontotemporal lobar degeneration (FTLD) is an umbrella term describing the neuropathology of a clinically, genetically and pathologically heterogeneous group of diseases, including frontotemporal dementia (FTD) and progressive supranuclear palsy (PSP). Among the major FTLD pathological subgroups, FTLD with TDP-43 positive inclusions (FTLD-TDP) and...
Article
Background Effective development and retention of talented early-career researchers (ECRs) is essential to the continued success of biomedical science research fields. To this end, formal mentorship programmes (where researchers are paired with one or more mentors beyond their direct manager) have proven to be successful in providing support and ex...
Article
Aims Epigenetic clocks are widely applied as surrogates for biological age in different tissues and/or diseases, including several neurodegenerative diseases. Despite white matter (WM) changes often being observed in neurodegenerative diseases, no study has investigated epigenetic ageing in white matter. Methods We analysed the performances of two...
Article
Background: The increasing availability of large high-dimensional data from experimental medicine, population-based and clinical cohorts, clinical trials, and electronic health records has the potential to transform dementia research. Our ability to make best use of this rich data will depend on utilisation of advanced machine learning and artific...
Article
The increasing availability of large high‐dimensional data from experimental medicine, population‐based and clinical cohorts, clinical trials, and electronic health records has the potential to transform dementia research. Our ability to make best use of this rich data will depend on utilisation of advanced machine learning and artificial intellige...
Preprint
Full-text available
Frontotemporal lobar degeneration (FTLD) is an umbrella term describing the neuropathology of a clinically, genetically and pathologically heterogeneous group of diseases, including frontotemporal dementia (FTD) and progressive supranuclear palsy (PSP). Among the major FTLD pathological subgroups, FTLD with TDP-43 positive inclusions (FTLD-TDP) and...
Preprint
Aims Epigenetic clocks are widely applied as surrogates for biological age in different tissues and/or diseases, including several neurodegenerative diseases. Despite white matter (WM) changes often being observed in neurodegenerative diseases, no study has investigated epigenetic ageing in white matter. Methods We analysed the performances of two...
Article
Dysregulation of autophagy, one of the major processes through which abnormal proteins are degraded, is a cardinal feature of synucleinopathies, including Lewy body diseases [Parkinson's disease (PD) and dementia with Lewy bodies (DLB)] and multiple system atrophy (MSA), which are characterized by the presence of abnormal α-synuclein in neurons and...
Article
Aims and methods: Synaptic dysfunction in Parkinson's disease is caused by propagation of pathogenic α-synuclein between neurons. Previously, in multiple system atrophy (MSA), pathologically characterised by ectopic deposition of abnormal α-synuclein predominantly in oligodendrocytes, we demonstrated that the occurrence of memory impairment was as...
Article
Full-text available
Frontotemporal lobar degeneration (FTLD) is a group of heterogeneous neurodegenerative disorders affecting the frontal and temporal lobes of the brain. Nuclear loss and cytoplasmic aggregation of the RNA-binding protein TDP-43 represents the major FTLD pathology, known as FTLD-TDP. To date, there is no effective treatment for FTLD-TDP due to an inc...
Article
Full-text available
Untranslated regions are involved in the regulation of transcriptional and post-transcriptional processes. Characterization of these regions remains poorly explored for ATXN3, the causative gene of Machado-Joseph disease (MJD). Although a few genetic modifiers have been identified for MJD age at onset (AO), they only explain a small fraction of the...
Article
Full-text available
Objective A group of genes have been reported to be associated with myopathies with tubular aggregates (TAs). Many cases with TAs still lack of genetic clarification. This study aims to explore the genetic background of cases with TAs in order to improve our knowledge of the pathogenesis of these rare pathological structures. Methods Thirty-three...
Article
Machado-Joseph disease (MJD/SCA3) is a neurodegenerative polyglutamine disorder exhibiting a wide spectrum of phenotypes. The abnormal size of the (CAG)n at ATXN3 explains ~55% of the age at onset variance, suggesting the involvement of other factors, namely genetic modifiers, whose identification remains limited. Our aim was to find novel genetic...
Preprint
Full-text available
Frontotemporal lobar degeneration (FTLD) is a group of heterogeneous neurodegenerative disorders affecting the frontal and temporal lobes of the brain. Nuclear loss and cytoplasmic aggregation of the RNA-binding protein TDP-43 represents the major FTLD pathology, known as FTLD-TDP. To date, there is no effective treatment for FTLD-TDP due to an inc...
Article
Full-text available
Mutations in LRRK2 are the most frequent cause of familial Parkinson’s disease (PD), with common LRRK2 non-coding variants also acting as risk factors for idiopathic PD. Currently, therapeutic agents targeting LRRK2 are undergoing advanced clinical trials in humans, however, it is important to understand the wider implications of LRRK2 targeted tre...
Article
Full-text available
Neurodegenerative movement disorders (NMDs) are age dependent disorders that are characterised by the degeneration and loss of neurons, typically accompanied by pathological accumulation of different protein aggregates in the brain, which lead to motor symptoms. NMDs include Parkinson’s disease, multiple system atrophy, progressive supranuclear pal...
Article
We studied a subset of patients with autopsy-confirmed multiple system atrophy who presented a clinical picture that closely resembled either Parkinson’s disease or progressive supranuclear palsy. These mimics are not captured by the current diagnostic criteria for multiple system atrophy. Among 218 autopsy-proven multiple system atrophy cases revi...
Article
Full-text available
Mutations in nuclear-encoded protein subunits of the mitochondrial ribosome are an increasingly recognised cause of oxidative phosphorylation system (OXPHOS) disorders. Among them, mutations in the MRPL44 gene, encoding a structural protein of the large subunit of the mitochondrial ribosome, have been identified in four patients with OXPHOS defects...
Article
Full-text available
Aims MSA is a fatal neurodegenerative disease. Similar to Parkinson’s disease (PD), MSA is an α‐synucleinopathy, and its pathological hallmark consists of glial cytoplasmic inclusions (GCIs) containing α‐synuclein in oligodendrocytes. We previously identified consistent changes in MOBP and HIP1 DNA methylation status in MSA. We hypothesized that if...
Article
Full-text available
Objective To identify the genetic cause of complex neuropathy in two siblings from a consanguineous family.Methods The patients were recruited from our clinic. Muscle biopsy and whole-exome sequencing (WES) were performed. Fibroblasts cell lines from the index patient, unaffected parents, and three normal controls were used for cDNA analysis and we...
Article
Full-text available
Multiple system atrophy (MSA) is a rare adult-onset neurodegenerative disease of unknown cause, with no effective therapeutic options, and no cure. Limited work to date has attempted to characterize the transcriptional changes associated with the disease, which presents as either predominating parkinsonian (MSA-P) or cerebellar (MSC-C) symptoms. We...
Preprint
Full-text available
Multiple system atrophy (MSA) is a rare adult-onset neurodegenerative disease of unknown cause, with no effective therapeutic options, and no cure. Limited work to date has attempted to characterize the transcriptional changes associated with the disease, which presents as either predominating parkinsonian (MSA-P) or cerebellar (MSC-C) symptoms. We...
Article
Full-text available
AMPA receptors (AMPARs) are tetrameric ligand-gated channels made up of combinations of GluA1-4 subunits encoded by GRIA1-4 genes. GluA2 has an especially important role because, following post-transcriptional editing at the Q607 site, it renders heteromultimeric AMPARs Ca2+-impermeable, with a linear relationship between current and trans-membrane...
Article
Full-text available
See Karakaya and Wirth (doi:10.1093/brain/awz273) for a scientific commentary on this article. Neurofascin (NFASC) isoforms are immunoglobulin cell adhesion molecules involved in node of Ranvier assembly. Efthymiou et al. identify biallelic NFASC variants in ten unrelated patients with a neurodevelopmental disorder characterized by variable degrees...
Article
Full-text available
Molecular alterations reflecting pathophysiologic changes thought to occur many years before the clinical onset of Machado-Joseph disease (MJD)/spinocerebellar ataxia type 3 (SCA3), a late-onset polyglutamine disorder, remain unidentified. The absence of molecular biomarkers hampers clinical trials, which lack sensitive measures of disease progress...
Article
Full-text available
Mutations in KAT6A encoding a histone acetyltransferase involved in chromatin remodeling and in other genes involved in histone acetylation and/or deacetylation have been implicated in broad phenotypes of congenital and developmental abnormalities. However, limited genotype–phenotype correlations are available for some of the most rare or recently...
Data
Supplementary FIG. 1. Haplotype analysis for the region on chromosome 11 surrounding PDE2A c.1439A>G (indicated in red), with markers and their positions (Bp) displayed on the left.
Article
Full-text available
Background: We investigated a family that presented with an infantile-onset chorea-predominant movement disorder, negative for NKX2-1, ADCY5, and PDE10A mutations. Methods: Phenotypic characterization and trio whole-exome sequencing was carried out in the family. Results: We identified a homozygous mutation affecting the GAF-B domain of the 3'...
Article
4th Congress of the European-Academy-of-Neurology (EAN), Lisbon, PORTUGAL, JUN 16-19, 2018
Article
Full-text available
Background Autosomal recessive hereditary spastic paraplegia (HSP) due to AP4M1 mutations is a very rare neurodevelopmental disorder reported for only a few patients. Methods We investigated a Greek HSP family using whole exome sequencing (WES). Results A novel AP4M1A frameshift insertion, and a very rare missense variant were identified in all t...
Article
Full-text available
Multiple system atrophy (MSA) is one of the few neurodegenerative disorders where we have a significant understanding of the clinical and pathological manifestations but where the aetiology remains almost completely unknown. Research to overcome this hurdle is gaining momentum through international research collaboration and a series of genetic and...
Article
Full-text available
We report on a homozygous frameshift deletion in DDX59 (c.185del: p.Phe62fs*13) in a family presenting with oro-facio-digital syndrome phenotype associated to a broad neurological involvement characterized by microcephaly, intellectual disability, epilepsy, and white matter signal abnormalities associated with cortical and sub-cortical ischemic eve...
Article
Full-text available
The metabotropic glutamate receptor 1 (mGluR1) is abundantly expressed in the mammalian central nervous system, where it regulates intracellular calcium homeostasis in response to excitatory signaling. Here, we describe heterozygous dominant mutations in GRM1, which encodes mGluR1, that are associated with distinct disease phenotypes: gain-of-funct...
Article
(The American Journal of Human Genetics 101, 451–458; September 7, 2017) Through an unfortunate oversight, Sandeep Jayawant was omitted from the author list. He is affiliated with the Department of Paediatrics, Oxford University Hospitals NHS Trust, Oxford OX3 9DU, UK, and his name appears correctly in the author list above and in the online versio...
Article
Full-text available
The metabotropic glutamate receptor 1 (mGluR1) is abundantly expressed in the mammalian central nervous system, where it regulates intracellular calcium homeostasis in response to excitatory signaling. Here, we describe heterozygous dominant mutations in GRM1, which encodes mGluR1, that are associated with distinct disease phenotypes: gain-of-funct...
Article
Objectives: To analyse and describe the clinical and genetic spectrum of Charcot-Marie-Tooth disease (CMT) caused by mutations in the neurofilament light polypeptide gene (NEFL). Methods: Combined analysis of newly identified patients with NEFL-related CMT and all previously reported cases from the literature. Results: Five new unrelated patie...
Article
Full-text available
Age at onset in spinocerebellar ataxia type 3 (SCA3/MJD) is incompletely explained by the size of the CAG tract at the ATXN3 gene, implying the existence of genetic modifiers. A role of inflammation in SCA3 has been postulated, involving altered cytokines levels; promoter variants leading to alterations in cytokines expression could influence onset...
Article
Over 30 diseases are caused by expansion of microsatellite sequences; nine by expanded CAG tracts encoding polyglutamines. These include Huntington's disease (HD), several spinocerebellar ataxias (SCAs), and spinal and bulbar muscular atrophy. Longer CAG repeats are associated with earlier age-at-onset (AAO), but studies suggest additional modifyin...
Conference Paper
Background Over 30 human diseases are caused by expansion of unstable microsatellite sequences. Nine of these are caused by expanded CAG tracts encoding polyglutamines in different genes. This subgroup of diseases, usually referred to as the polyglutamine diseases which include Huntington’s disease (HD), several spinocerebellar ataxias (SCAs), and...
Article
Full-text available
The autosomal recessive spinocerebellar ataxias are an exciting field of study, with a growing number of causal genes and an expanding phenotypic spectrum. SYNE1 was originally discovered in 2007 as the causal gene underlying autosomal recessive spinocerebellar ataxia 1, a disease clinically thought to manifest with mainly pure cerebellar ataxia. S...
Article
Full-text available
Genetic factors have been suggested to be involved in the pathogenesis of sporadic inclusion body myositis (sIBM). SQSTM1 and VCP are two key genes associated with several neurodegenerative disorders but have yet to be thoroughly investigated in sIBM. A candidate gene analysis was conducted using whole-exome sequencing data from 181 sIBM patients,...
Article
The autosomal recessive spinocerebellar ataxias are an exciting field of study, with a growing number of causal genes and an expanding phenotypic spectrum. SYNE1 was originally discovered in 2007 as the causal gene underlying autosomal recessive spinocerebellar ataxia 1, a disease clinically thought to manifest with mainly pure cerebellar ataxia. S...