Conceição BettencourtUniversity College London | UCL · Queen Square Institute of Neurology
Conceição Bettencourt
PhD
About
148
Publications
31,528
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
3,257
Citations
Introduction
Additional affiliations
January 2013 - July 2018
August 2018 - May 2020
UCL Queen Square Institute of Neurology
Position
- Research Associate
Description
- Working on (epi)genetics of neurodegenerative diseases
May 2012 - June 2012
Education
January 2006 - February 2010
September 1998 - June 2002
Publications
Publications (148)
Hereditary spastic paraplegias constitute a heterogeneous group of neurodegenerative diseases encompassing pure and complicated forms, for which at least 52 loci and 31 causative genes have been identified. Although mutations in the SPAST gene explain approximately 40% of the pure autosomal dominant forms, molecular diagnosis can be challenging for...
Importance
The core clinical and neuropathological feature of the autosomal dominant spinocerebellar ataxias (SCAs) is cerebellar degeneration. Mutations in the known genes explain only 50% to 60% of SCA cases. To date, no effective treatments exist, and the knowledge of drug-treatable molecular pathways is limited. The examination of overlapping...
Machado-Joseph disease (or spinocerebellar ataxia type 3) is a late-onset polyglutamine neurodegenerative disorder caused by a mutation in the ATXN3 gene, which encodes for the ubiquitously expressed protein ataxin-3. Previous studies on cell and animal models have suggested that mutated ataxin-3 is involved in transcriptional dysregulation. Starti...
Objective:
The polyglutamine diseases, including Huntington's disease (HD) and multiple spinocerebellar ataxias (SCAs), are amongst the commonest hereditary neurodegenerative diseases. They are caused by expanded CAG tracts, encoding glutamine, in different genes. Longer CAG repeat tracts are associated with earlier ages at onset, but this does no...
Multiple system atrophy (MSA) is a fatal late-onset neurodegenerative disease. Although presenting with distinct pathological hallmarks, which in MSA consist of glial cytoplasmic inclusions (GCIs) containing fibrillar α-synuclein in oligodendrocytes, both MSA and Parkinson’s disease are α-synucleinopathies. Pathologically, MSA can be categorized in...
Abnormal α-synuclein (αSyn), including an oligomeric form of αSyn, accumulates and causes neuronal dysfunction in the brains of patients with multiple system atrophy. Neuroprotective drugs that target abnormal αSyn aggregation have not been developed for the treatment of multiple system atrophy. In addition, treating diseases at an early stage is c...
Multiple system atrophy (MSA) is a rare neurodegenerative disease characterized by neuronal loss and gliosis, with oligodendroglial cytoplasmic inclusions (GCIs) containing α-synuclein being the primary pathological hallmark. Clinical presentations of MSA overlap with other parkinsonian disorders, such as Parkinson’s disease (PD), dementia with Lew...
Machado-Joseph disease (MJD) is an autosomal dominant spinocerebellar ataxia (SCA) caused by a polyglutamine expansion in the ataxin-3 protein, which initiates a cascade of pathogenic events, including transcriptional dysregulation. Genotype-phenotype correlations in MJD are incomplete, suggesting an influence of additional factors, such as epigene...
Multiple system atrophy (MSA) is a rare neurodegenerative disease characterized by neuronal loss and gliosis, with oligodendroglial cytoplasmic inclusions (GCI's) containing alpha-synuclein being the primary pathological hallmark. Clinical presentations of MSA overlap with other parkinsonian disorders such as Parkinson's disease (PD), dementia with...
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene cause autosomal dominant Parkinson’s disease (PD), with the most common causative mutation being the LRRK2 p.G2019S within the kinase domain. LRRK2 protein is highly expressed in the human brain and also in the periphery, and high expression of dominant PD genes in immune cells suggests inv...
Background
Frontotemporal lobar degeneration (FTLD) is an umbrella term describing the neuropathology of a clinically, genetically and pathologically heterogeneous group of diseases, which includes frontotemporal dementia and progressive supranuclear palsy. About 90% of the FTLD cases show either TDP‐43 or tau pathology (FTLD‐TDP or FTLD‐tau, respe...
Understanding the contribution of immune mechanisms to Parkinson's disease pathogenesis is an important challenge, potentially of major therapeutic implications. To further elucidate the involvement of peripheral immune cells, we studied epigenome-wide DNA methylation in isolated populations of CD14+ monocytes, CD19+ B cells, CD4+ T cells, and CD8+...
Machado-Joseph disease (MJD) is a rare late-onset polyglutamine neurodegenerative disease caused by the expansion of a CAG repeat in the ATXN3 gene encoding the ataxin-3 (ATXN3) protein. Several studies have identified changes in the abundance of select transcripts and proteins in blood samples of MJD mutation carriers. Here, we aimed to: 1) identi...
Diffuse gliomas in adults encompass a heterogenous group of central nervous system neoplasms. In recent years, extensive (epi-)genomic profiling has identified several glioma subgroups characterized by distinct molecular characteristics, most importantly IDH1/2 and histone H3 mutations. A group of 16 diffuse gliomas classified as “adult-type diffus...
Introduction: Mutations in the Leucine Rich Repeat Kinase 2 (LRRK2) gene cause autosomal dominant Parkinsons disease (PD) with the most common causative mutation being the LRRK2 p.G2019S within the kinase domain. LRRK2 protein is highly expressed in the human brain and also in the periphery, and high expression of dominant PD genes in immune cells...
Genetics and omics studies of Alzheimer's disease and other dementia subtypes enhance our understanding of underlying mechanisms and pathways that can be targeted. We identified key remaining challenges: First, can we enhance genetic studies to address missing heritability? Can we identify reproducible omics signatures that differentiate between de...
Frontotemporal lobar degeneration (FTLD) includes a heterogeneous group of disorders pathologically characterized by the degeneration of the frontal and temporal lobes. In addition to major genetic contributors of FTLD such as mutations in MAPT, GRN, and C9orf72, recent work has identified several epigenetic modifications including significant diff...
Neurodegenerative diseases encompass a heterogeneous group of conditions characterised by the progressive degeneration of the structure and function of the central or peripheral nervous systems. The pathogenic mechanisms underlying these diseases are not fully understood. However, a central feature consists of regional aggregation of proteins in th...
Frontotemporal lobar degeneration (FTLD) includes a heterogeneous group of disorders pathologically characterized by the degeneration of the frontal and temporal lobes. In addition to major genetic contributors of FTLD such as mutations in MAPT, GRN, and C9orf72, recent work has identified several epigenetic modifications including significant diff...
Frontotemporal lobar degeneration (FTLD) is an umbrella term describing the neuropathology of a clinically, genetically and pathologically heterogeneous group of diseases, including frontotemporal dementia (FTD) and progressive supranuclear palsy (PSP). Among the major FTLD pathological subgroups, FTLD with TDP-43 positive inclusions (FTLD-TDP) and...
Background
Effective development and retention of talented early-career researchers (ECRs) is essential to the continued success of biomedical science research fields. To this end, formal mentorship programmes (where researchers are paired with one or more mentors beyond their direct manager) have proven to be successful in providing support and ex...
Aims
Epigenetic clocks are widely applied as surrogates for biological age in different tissues and/or diseases, including several neurodegenerative diseases. Despite white matter (WM) changes often being observed in neurodegenerative diseases, no study has investigated epigenetic ageing in white matter.
Methods
We analysed the performances of two...
Background:
The increasing availability of large high-dimensional data from experimental medicine, population-based and clinical cohorts, clinical trials, and electronic health records has the potential to transform dementia research. Our ability to make best use of this rich data will depend on utilisation of advanced machine learning and artific...
The increasing availability of large high‐dimensional data from experimental medicine, population‐based and clinical cohorts, clinical trials, and electronic health records has the potential to transform dementia research. Our ability to make best use of this rich data will depend on utilisation of advanced machine learning and artificial intellige...
Frontotemporal lobar degeneration (FTLD) is an umbrella term describing the neuropathology of a clinically, genetically and pathologically heterogeneous group of diseases, including frontotemporal dementia (FTD) and progressive supranuclear palsy (PSP). Among the major FTLD pathological subgroups, FTLD with TDP-43 positive inclusions (FTLD-TDP) and...
Aims
Epigenetic clocks are widely applied as surrogates for biological age in different tissues and/or diseases, including several neurodegenerative diseases. Despite white matter (WM) changes often being observed in neurodegenerative diseases, no study has investigated epigenetic ageing in white matter.
Methods
We analysed the performances of two...
Dysregulation of autophagy, one of the major processes through which abnormal proteins are degraded, is a cardinal feature of synucleinopathies, including Lewy body diseases [Parkinson's disease (PD) and dementia with Lewy bodies (DLB)] and multiple system atrophy (MSA), which are characterized by the presence of abnormal α-synuclein in neurons and...
Aims and methods:
Synaptic dysfunction in Parkinson's disease is caused by propagation of pathogenic α-synuclein between neurons. Previously, in multiple system atrophy (MSA), pathologically characterised by ectopic deposition of abnormal α-synuclein predominantly in oligodendrocytes, we demonstrated that the occurrence of memory impairment was as...
Frontotemporal lobar degeneration (FTLD) is a group of heterogeneous neurodegenerative disorders affecting the frontal and temporal lobes of the brain. Nuclear loss and cytoplasmic aggregation of the RNA-binding protein TDP-43 represents the major FTLD pathology, known as FTLD-TDP. To date, there is no effective treatment for FTLD-TDP due to an inc...
Untranslated regions are involved in the regulation of transcriptional and post-transcriptional processes. Characterization of these regions remains poorly explored for ATXN3, the causative gene of Machado-Joseph disease (MJD). Although a few genetic modifiers have been identified for MJD age at onset (AO), they only explain a small fraction of the...
Objective
A group of genes have been reported to be associated with myopathies with tubular aggregates (TAs). Many cases with TAs still lack of genetic clarification. This study aims to explore the genetic background of cases with TAs in order to improve our knowledge of the pathogenesis of these rare pathological structures.
Methods
Thirty-three...
Machado-Joseph disease (MJD/SCA3) is a neurodegenerative polyglutamine disorder exhibiting a wide spectrum of phenotypes. The abnormal size of the (CAG)n at ATXN3 explains ~55% of the age at onset variance, suggesting the involvement of other factors, namely genetic modifiers, whose identification remains limited. Our aim was to find novel genetic...
Frontotemporal lobar degeneration (FTLD) is a group of heterogeneous neurodegenerative disorders affecting the frontal and temporal lobes of the brain. Nuclear loss and cytoplasmic aggregation of the RNA-binding protein TDP-43 represents the major FTLD pathology, known as FTLD-TDP. To date, there is no effective treatment for FTLD-TDP due to an inc...
Mutations in LRRK2 are the most frequent cause of familial Parkinson’s disease (PD), with common LRRK2 non-coding variants also acting as risk factors for idiopathic PD. Currently, therapeutic agents targeting LRRK2 are undergoing advanced clinical trials in humans, however, it is important to understand the wider implications of LRRK2 targeted tre...
Neurodegenerative movement disorders (NMDs) are age dependent disorders that are characterised by the degeneration and loss of neurons, typically accompanied by pathological accumulation of different protein aggregates in the brain, which lead to motor symptoms. NMDs include Parkinson’s disease, multiple system atrophy, progressive supranuclear pal...
We studied a subset of patients with autopsy-confirmed multiple system atrophy who presented a clinical picture that closely
resembled either Parkinson’s disease or progressive supranuclear palsy. These mimics are not captured by the current diagnostic
criteria for multiple system atrophy. Among 218 autopsy-proven multiple system atrophy cases revi...
Mutations in nuclear-encoded protein subunits of the mitochondrial ribosome are an increasingly recognised cause of oxidative phosphorylation system (OXPHOS) disorders. Among them, mutations in the MRPL44 gene, encoding a structural protein of the large subunit of the mitochondrial ribosome, have been identified in four patients with OXPHOS defects...
Aims
MSA is a fatal neurodegenerative disease. Similar to Parkinson’s disease (PD), MSA is an α‐synucleinopathy, and its pathological hallmark consists of glial cytoplasmic inclusions (GCIs) containing α‐synuclein in oligodendrocytes. We previously identified consistent changes in MOBP and HIP1 DNA methylation status in MSA. We hypothesized that if...
Objective
To identify the genetic cause of complex neuropathy in two siblings from a consanguineous family.Methods
The patients were recruited from our clinic. Muscle biopsy and whole-exome sequencing (WES) were performed. Fibroblasts cell lines from the index patient, unaffected parents, and three normal controls were used for cDNA analysis and we...
Multiple system atrophy (MSA) is a rare adult-onset neurodegenerative disease of unknown cause, with no effective therapeutic options, and no cure. Limited work to date has attempted to characterize the transcriptional changes associated with the disease, which presents as either predominating parkinsonian (MSA-P) or cerebellar (MSC-C) symptoms. We...
Multiple system atrophy (MSA) is a rare adult-onset neurodegenerative disease of unknown cause, with no effective therapeutic options, and no cure. Limited work to date has attempted to characterize the transcriptional changes associated with the disease, which presents as either predominating parkinsonian (MSA-P) or cerebellar (MSC-C) symptoms. We...
AMPA receptors (AMPARs) are tetrameric ligand-gated channels made up of combinations
of GluA1-4 subunits encoded by GRIA1-4 genes. GluA2 has an especially important role
because, following post-transcriptional editing at the Q607 site, it renders heteromultimeric
AMPARs Ca2+-impermeable, with a linear relationship between current and trans-membrane...
See Karakaya and Wirth (doi:10.1093/brain/awz273) for a scientific commentary on this article.
Neurofascin (NFASC) isoforms are immunoglobulin cell adhesion molecules involved in node of Ranvier assembly. Efthymiou et al. identify biallelic NFASC variants in ten unrelated patients with a neurodevelopmental disorder characterized by variable degrees...
Molecular alterations reflecting pathophysiologic changes thought to occur many years before the clinical onset of Machado-Joseph disease (MJD)/spinocerebellar ataxia type 3 (SCA3), a late-onset polyglutamine disorder, remain unidentified. The absence of molecular biomarkers hampers clinical trials, which lack sensitive measures of disease progress...
Mutations in KAT6A encoding a histone acetyltransferase involved in chromatin remodeling and in other genes involved in histone acetylation and/or deacetylation have been implicated in broad phenotypes of congenital and developmental abnormalities. However, limited genotype–phenotype correlations are available for some of the most rare or recently...
Supplementary Information
Supplementary Information Tables
Supplementary FIG. 1. Haplotype analysis for the region on chromosome 11 surrounding PDE2A c.1439A>G (indicated in red), with markers and their positions (Bp) displayed on the left.
Background:
We investigated a family that presented with an infantile-onset chorea-predominant movement disorder, negative for NKX2-1, ADCY5, and PDE10A mutations.
Methods:
Phenotypic characterization and trio whole-exome sequencing was carried out in the family.
Results:
We identified a homozygous mutation affecting the GAF-B domain of the 3'...
4th Congress of the European-Academy-of-Neurology (EAN), Lisbon, PORTUGAL, JUN 16-19, 2018
Background
Autosomal recessive hereditary spastic paraplegia (HSP) due to AP4M1 mutations is a very rare neurodevelopmental disorder reported for only a few patients.
Methods
We investigated a Greek HSP family using whole exome sequencing (WES).
Results
A novel AP4M1A frameshift insertion, and a very rare missense variant were identified in all t...
Multiple system atrophy (MSA) is one of the few neurodegenerative disorders where we have a significant understanding of the clinical and pathological manifestations but where the aetiology remains almost completely unknown. Research to overcome this hurdle is gaining momentum through international research collaboration and a series of genetic and...
We report on a homozygous frameshift deletion in DDX59 (c.185del: p.Phe62fs*13) in a family presenting with oro-facio-digital syndrome phenotype associated to a broad neurological involvement characterized by microcephaly, intellectual disability, epilepsy, and white matter signal abnormalities associated with cortical and sub-cortical ischemic eve...
The metabotropic glutamate receptor 1 (mGluR1) is abundantly expressed in the mammalian central nervous system, where it regulates intracellular calcium homeostasis in response to excitatory signaling. Here, we describe heterozygous dominant mutations in GRM1, which encodes mGluR1, that are associated with distinct disease phenotypes: gain-of-funct...
(The American Journal of Human Genetics 101, 451–458; September 7, 2017) Through an unfortunate oversight, Sandeep Jayawant was omitted from the author list. He is affiliated with the Department of Paediatrics, Oxford University Hospitals NHS Trust, Oxford OX3 9DU, UK, and his name appears correctly in the author list above and in the online versio...
The metabotropic glutamate receptor 1 (mGluR1) is abundantly expressed in the mammalian central nervous system, where it regulates intracellular calcium homeostasis in response to excitatory signaling. Here, we describe heterozygous dominant mutations in GRM1, which encodes mGluR1, that are associated with distinct disease phenotypes: gain-of-funct...
Objectives:
To analyse and describe the clinical and genetic spectrum of Charcot-Marie-Tooth disease (CMT) caused by mutations in the neurofilament light polypeptide gene (NEFL).
Methods:
Combined analysis of newly identified patients with NEFL-related CMT and all previously reported cases from the literature.
Results:
Five new unrelated patie...
Age at onset in spinocerebellar ataxia type 3 (SCA3/MJD) is incompletely explained by the size of the CAG tract at the ATXN3 gene, implying the existence of genetic modifiers. A role of inflammation in SCA3 has been postulated, involving altered cytokines levels; promoter variants leading to alterations in cytokines expression could influence onset...
Over 30 diseases are caused by expansion of microsatellite sequences; nine by expanded CAG tracts encoding polyglutamines. These include Huntington's disease (HD), several spinocerebellar ataxias (SCAs), and spinal and bulbar muscular atrophy. Longer CAG repeats are associated with earlier age-at-onset (AAO), but studies suggest additional modifyin...
Background
Over 30 human diseases are caused by expansion of unstable microsatellite sequences. Nine of these are caused by expanded CAG tracts encoding polyglutamines in different genes. This subgroup of diseases, usually referred to as the polyglutamine diseases which include Huntington’s disease (HD), several spinocerebellar ataxias (SCAs), and...
The autosomal recessive spinocerebellar ataxias are an exciting field of study, with a growing number of causal genes and an expanding phenotypic spectrum. SYNE1 was originally discovered in 2007 as the causal gene underlying autosomal recessive spinocerebellar ataxia 1, a disease clinically thought to manifest with mainly pure cerebellar ataxia. S...
Genetic factors have been suggested to be involved in the pathogenesis of sporadic inclusion body myositis (sIBM). SQSTM1 and VCP are two key genes associated with several neurodegenerative disorders but have yet to be thoroughly investigated in sIBM. A candidate gene analysis was conducted using whole-exome sequencing data from 181 sIBM patients,...
The autosomal recessive spinocerebellar ataxias are an exciting field of study, with a growing number of causal genes and an expanding phenotypic spectrum. SYNE1 was originally discovered in 2007 as the causal gene underlying autosomal recessive spinocerebellar ataxia 1, a disease clinically thought to manifest with mainly pure cerebellar ataxia. S...