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Abstract Existing algorithms for estimating muscle forces mainly use least-activation criteria that 

do not necessarily lead to physiologically consistent results. Our objective was to assess an 

innovative forward dynamics-based optimisation, assisted by both electromyography (EMG) and 

marker tracking, for estimating the upper-limb muscle forces. A reference movement was generated 

and EMG was simulated to reproduce the desired joint kinematics. Random noise was added to both 

simulated EMG and marker trajectories in order to create 30 trials. Then, muscle forces were 

estimated using: (1) the innovative EMG-marker tracking forward optimisation; (2) a marker 

tracking forward optimisation with a least-excitation criterion; (3) and static optimisation with a 

least-activation criterion. Approaches (1) and (2) were solved using a direct multiple shooting 

algorithm. Finally, reference and estimated joint angles and muscle forces for the three optimisations 

were statistically compared using root mean square errors (RMSe), biases and statistical parametric 

mapping. The joint angles RMSe were qualitatively similar across the three optimisations: (1) 

1.63 ± 0.51°; (2) 2.02 ± 0.64°; (3) 0.79 ± 0.38°. However, the muscle forces RMSe for the EMG-

marker tracking optimisation (20.39 ± 13.24 N) was about seven times smaller than those resulting 

from the marker tracking (124.22 ± 118.22 N) and static (148.15 ± 94.01 N) optimisations. The 

originality of this novel approach was to closely track both simulated EMG and marker trajectories 

in the same objective-function, using forward dynamics. Therefore, the presented EMG-marker 

tracking optimisation led to accurate muscle forces estimations. 

Keywords Muscle forces; Musculoskeletal model; Forward dynamics; Electromyography; 

Direct multiple shooting.  
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1. Introduction 

Knowledge of muscle contribution to joint torques is necessary to determine postures and 

movement techniques that would be more likely to cause pain and/or injuries. As invasive 

methods to measure muscle forces are not applicable in clinical settings, computer 

musculoskeletal models were developed to estimate them [1]. A significant challenge is the 

musculoskeletal redundancy [2]; for example, nine muscles cross the glenohumeral joint, 

which has only three degrees-of-freedom in rotation. State-of-the-art methods for solving 

such underdetermined problems are therefore based on optimisation, which is usually 

paired with muscle models [3]. 

Static optimisation – an inverse dynamics-based algorithm combined with a least-

activation criterion [4] – is extensively used for its low computational cost and ease of 

implementation [5]. It proved to be acceptable to estimate lower-limb muscle forces during 

locomotion-related tasks that do not require lots of co-contraction in able-bodied 

participants [6-8]. By contrast, at the shoulder joint, stability is partly ensured by the 

antagonistic efforts of the rotator cuff and deltoid muscles [9-11]. Since muscle co-

contraction is not easily predicted using a least-activation/excitation criterion [12], the latter 

may not be suitable for estimating shoulder muscle forces. Another drawback of inverse 

dynamics-based algorithms is that they fail to account for the activation dynamics [13]. 

Thus, unrealistic variations of muscle forces might happen from one instant to another [14]. 

Conversely, forward dynamics-based algorithms address this non-continuity issue by 

accounting for the activation dynamics and by solving the system equations forward in time 

[14]. Muscle excitations are, in fact, iteratively optimised to track kinematics and/or contact 

forces [13, 15, 16]. However, their major shortcoming is their high convergence time (e.g., 

80-160 h with the simulated annealing algorithm [16]), related to the difficulty to find a 

solution. By developing the computed muscle control algorithm, Thelen and Anderson 

(2006) [17] addressed this convergence speed issue. Nevertheless, this algorithm remains 

dependent on static optimisation results [17] for which some weaknesses were 

aforementioned. Finally, direct collocation [18-21] and direct multiple shooting algorithms 
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[22-24] have proven their efficiency to solve forward problems in a timely manner, which 

may offer an attractive alternative to estimate muscle forces.  

Whether inverse or forward-dynamic based optimisations, existing algorithms share a 

common limitation which comes from their objective-function. In fact, experimental 

electromyography (EMG) is not included within the optimisation process, but often used 

as validation [12, 16, 25, 26]. Yet, although experimental EMG is known to be affected by 

various types of noises [27], it explicitly reflects the actual muscle activity. Hybrid EMG-

driven algorithms appear to be more convincing, since EMG is used in a feed-forward 

fashion to calculate joint torques, which are compared to the joint torques obtained from 

inverse dynamics [28, 29]. However, like any inverse dynamic-based algorithm, hybrid 

approaches heavily rely on the recording accuracy of kinematics. Indeed, since marker 

trajectories are affected by soft tissue artefacts (e.g., up to 8.7 cm on the scapula [30, 31]), 

joint torques are subjected to errors which affect muscle forces estimations [32-34].  

Since kinematic and EMG data are both prone to measurement errors [27, 28], our objective 

was to develop an innovative forward dynamics-based optimisation to estimate muscle 

forces by tracking both simulated EMG and marker trajectories, using a direct multiple 

shooting algorithm. To the best of our knowledge, no previous study has tracked both EMG 

and marker trajectories in the same objective-function for the estimation of muscle forces. 

We hypothesized that combining the two sources of information may help improve the 

optimal solution. The proposed method accuracy was assessed and compared to two 

commonly used static and dynamic optimisations combined with a least-

activation/excitation criterion. The term ‘muscle excitations’ was used to refer to 

‘simulated EMG’. 
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2. Methods 

2.1 Upper-limb musculoskeletal model 

A three-dimensional upper-limb model was created from the musculoskeletal modeling 

package developed in our laboratory (S2M Dynamic Library), based on the Rigid Body 

Dynamic Library [35]. The kinematic model consisted of eight rigid segments, namely: the 

trunk and the right clavicle, scapula, humerus, radius, ulna and hand (Fig. 1). Four joints 

were defined: the sternoclavicular (1 DOF: anterior/posterior rotation), acromioclavicular 

(1 DOF: anterior/posterior tilting), glenohumeral (3 DOFs: flexion, abduction, axial 

rotation) and elbow (1 DOF: flexion/extension). Four markers were modelled on each 

segment for a total of 28 markers (no marker was placed on the spine) (Fig. 1).  

 

Fig. 1 Anterior (A) and posterior (B) views of the right upper-limb musculoskeletal model 

derived from the S2M Dynamic Library. Colored lines and dark-circled dots represent the 

20 Hill-type muscle lines of action and the 28 markers, respectively 

The upper-limb model was driven by 20 Hill-type muscle lines of action (Table 1). Their 

geometry (origin/insertion sites and via points) and properties (optimal length, maximal 
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force, tendon slack length, pennation angle, physical cross sectional areas and maximal 

velocity) were defined based on the model of Holzbaur et al. (2005) [36], except for the 

trapezius [37]. The force produced by each line of action was estimated using a three-

elements Hill-type muscle model, with generic force-length, force-velocity and parallel 

passive elastic force-length equations [29, 38]. The following set of first-order differential 

equations (ODE) governed the muscle activation dynamics [39]: 

�̇�(𝑡, 𝐞(𝑡), 𝐚(𝑡)) =

{
 
 

 
 (𝐞(𝑡) −  𝐚(𝑡))

𝑡𝑎𝑐𝑡(0.5 + 1.5 𝐚(𝑡))
,                     𝐞(𝑡) > 𝐚(𝑡)

 
𝐞(𝑡) − 𝐚(𝑡)

𝑡𝑑𝑒𝑎𝑐𝑡
(0.5 + 1.5 𝐚(𝑡)),       𝐞(𝑡) ≤ 𝐚(𝑡)

 

(1a) 

(1b) 

where 𝐞(𝑡) and 𝐚(𝑡) are the excitations and activations, respectively, at time 𝑡. Time 

constants 𝑡𝑎𝑐𝑡 and 𝑡𝑑𝑒𝑎𝑐𝑡  (for activation and deactivation) were set at 10 and 40 ms, 

respectively [39]. Muscle forces 𝐅𝐦𝐮𝐬 were calculated from muscle activations 𝐚, maximal 

isometric forces 𝐅𝐦𝐮𝐬
𝟎 , muscle lengths 𝓵𝐦𝐮𝐬 and lengthening velocities 𝓿𝐦𝐮𝐬 (that derived 

from the joint generalised positions and velocities 𝐪 and �̇�) and the generic force-length-

velocity relation 𝑓, so that: 

𝐅𝐦𝐮𝐬(𝐪, �̇�, 𝐚) =  𝐚 ∙ 𝑓(𝐅𝐦𝐮𝐬
𝟎 , 𝓵𝐦𝐮𝐬, 𝓿𝐦𝐮𝐬), (2) 

Hence, net joint torques 𝛕𝐦𝐮𝐬 due to muscle forces were expressed as follows: 

𝛕𝐦𝐮𝐬(𝐪, �̇�, 𝐚) = − 𝓙(𝓵𝐦𝐮𝐬) 𝐅𝐦𝐮𝐬(𝐪, �̇�, 𝐚), (3) 

where 𝓙(𝓵𝐦𝐮𝐬) =  
∂𝓵𝐦𝐮𝐬

∂𝐪
 is the Jacobian matrix of the muscle lengths 𝓵𝐦𝐮𝐬. Thus, in the 

forward-dynamic process, the joint generalised accelerations �̈� of the model were written 

as: 

             �̈� =  𝓜(𝐪)−𝟏(𝛕𝐦𝐮𝐬(𝐪, �̇�, 𝐚) −  𝐍(𝐪, �̇�)�̇� − 𝐆(𝐪)), (4) 

where 𝓜 is the mass matrix; N is the nonlinear vector containing centrifugal and Coriolis 

effects and G represents the effects of gravity. 
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Please insert Table 1 here 

2.2 Two simulated datasets  

The muscle excitations of a one-second noise-free reference movement (kinematics 

described in Appendix A) were obtained by using a direct multiple shooting algorithm 

implemented in the MUSCOD-II software [23]. Muscle excitations were discretized into a 

piecewise constant representation on 30 subintervals, i.e. 31 nodes (Fig. 2). The joint state 

angles (𝐪) at each node were constrained to follow the noise-free reference joint kinematics 

(Appendix A). The excitations initial guess was set at 0.05 for all the muscles at each node.  

A second set of muscle excitations was generated with more co-contraction. Thus, the 

optimisation process was repeated, in which the excitations of five arbitrary-chosen 

muscles (PEC ribs, LAT ili., TRI med., DELT mid. and SUP muscles) were bounded 

between 0.3 and 0.95 to enforce co-contraction of their antagonist muscles. The excitations 

initial guess was set at 0.3 for these five muscles and at 0.05 for the other muscles. 

Two datasets of simulated reference excitations were then obtained: a low (first 

optimisation) and a high (second optimisation) co-contraction datasets (Fig. 2). Similarly, 

200 optimisations with random initial guesses were evaluated to determine the viable 

control space (shaded area in Fig. 2) and highlight the musculoskeletal model redundancy.  
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Fig. 2 Piecewise constant representation of the muscles excitations of the simulated noise-

free reference movement with low (LC, light purple solid line) and high (HC, dark purple 

dashed line) co-contraction. The greyed areas represent the 200 different excitations 

solutions surface  
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Marker trajectories were calculated from the noise-free reference joint kinematics. Finally, 

zero-mean Gaussian noises were created to mimic the errors usually associated with 

experimental marker trajectories and EMG measurements. In line with the STA reported at 

the clavicle, scapula, and humerus by Blache et al. (2016) [31], the standard deviations on 

marker trajectories were 0.3 cm to 1.0 cm of the mean marker trajectories (0.3 cm for 

thorax and hand; 0.4 cm for clavicle; 0.5 cm for scapula; 0.8 cm for radius and ulna; and 

1.0 cm for humerus). The standard deviation on muscle excitations was 15% of the mean 

excitations. This level of noise was chosen so that, when the noisy excitations were injected 

into the equations of dynamics (Eq. [1a-b, 4]), the joint angles (𝐪) reached their 

physiological boundaries in 0.13 ± 0.03 second. 

For each dataset (i.e. with low and high co-contraction), the two noises (on marker 

trajectories and muscle excitations) were generated 30 times – further referred as to 30 

trials. They were then added to the noise-free reference excitations and marker trajectories 

to introduce variability into the results.  

2.3 Three optimisations comparison 

Three different algorithms for estimating muscle forces were compared: two dynamic and 

one static optimisations. For each noisy trial, the generalised kinematics (𝐪, �̇�, �̈�) of the 

musculoskeletal system was calculated first, using an extended Kalman filter [40]. Then, 

the calculated joint positions (𝐪) and velocities (�̇�) were defined as initial guesses for the 

two dynamic optimisations; the joint positions, velocities and accelerations (�̈�) were 

directly used to estimate the joint torques required in static optimisation.  

Both dynamic optimisations were solved using a direct multiple shooting algorithm with 

MUSCOD-II. Control variables were the muscle excitations (𝐞) and state variables were 

the joint angles, velocities (𝐪, �̇�) and muscle activations (𝐚). Controls and states variables 

were jointly optimised with respect to each optimisation objective-function and the 

equation of dynamics (Eq. [4]). 
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2.3.1 EMG-marker tracking optimisation 

In the EMG-marker tracking forward dynamics-based optimisation, the differences 

between the noisy reference and estimated marker trajectories (𝐌) and excitations (𝐞) were 

minimised using the following least-squares formulation: 

min
𝐞
∑𝑊𝑒‖𝐞𝐍𝐎𝐈𝐒𝐄 − 𝐞‖

2 +𝑊𝑀EMTO
‖𝐌𝐍𝐎𝐈𝐒𝐄 −𝐌(𝐞)‖

2

31

𝑖=1

 

subject to: Eq. [4] 

                   0 ≤ 𝐚 ≤ 1 

                   0 ≤ 𝐞 ≤ 1 

 

(5a) 

 

(5b) 

(5c) 

(5d) 

 

where the NOISE-index refers to the noisy reference data; 𝑊𝑀EMTO  and 𝑊𝑒 are the 

weightings on marker trajectories and excitations, respectively. The noisy reference 

excitations were given as initial guesses for the control variables. The initial activations 

were calculated from the noisy reference excitations, by solving the activation dynamics 

ODE (Eq. [1a-b]). 

2.3.2 Marker tracking optimisation 

The marker tracking forward dynamics-based optimisation consisted in finding the least-

squared muscle excitations that tracked the marker trajectories, using the following 

objective-function: 

min
𝐞
𝑊𝒞∫𝐞(𝑡)

𝐓𝐞(𝑡) 𝑑𝑡

1

0

+∑𝑊𝑀MTO
‖𝐌𝐍𝐎𝐈𝐒𝐄 −𝐌(𝐞)‖

2

31

𝑖=1

 

subject to: Eq. [4] 

                   0 ≤ 𝐚 ≤ 1 

                   0 ≤ 𝐞 ≤ 1 

 

(6a) 

 

(6b) 

(6c) 

(6c) 

 

where 𝑊𝒞 = 10
−3 is the weighting on least-squared excitations and 𝑊𝑀MTO  is the 

weighting on marker trajectories. As the movement lasted one second, the squared 
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excitations (𝐞(𝑡)𝐓𝐞(𝑡)) in Eq. [6a] were integrated between 0 and 1 second. Initial muscle 

activations and excitations were both set at 0.08 for all muscles, all along the movement.  

For both EMG-marker tracking and marker tracking dynamic optimisations, the weightings 

were manually adjusted, until the tracking residuals of the marker trajectories had the same 

order of magnitude as those obtained with the Kalman filter. They were set at:  𝑊𝑒 =
1

20
, 

20 corresponding to the number of lines of action, 𝑊𝑀EMTO = 0.15, 𝑊𝑀MTO
= 0.3 and 

𝑊𝒞 = 5.10
−5.  

2.3.3 Static optimisation  

For static optimisation, joint torques were, first, calculated by inverse dynamics, using the 

joint kinematics resulting from the extended Kalman filter:  

𝛕𝐈𝐃(𝐪, �̇�, �̈�) =  𝓜(𝐪)�̈� + 𝐍(𝐪, �̇�)�̇� + 𝐆(𝐪) (7) 

Muscle activations 𝐚 were then optimised at each time t, according to a least-squares 

criterion, so that the muscle joint moments (𝛕𝐦𝐮𝐬, see Eq. [3]) matched the joint torques 

given by inverse dynamics (𝛕𝐈𝐃): 

𝒞SO = min
𝐚

1

2
 𝐚𝐓𝐚 

                                   subject to 𝛕𝐦𝐮𝐬(𝐪, �̇�, 𝐚) =  𝛕𝐈𝐃(𝐪, �̇�, �̈�) 

(8a) 

 

(8b) 

The static optimisation problem was solved using residual actuators [41] in MATLAB 

(Mathworks, Nantucket, MA), i.e. by treating the constraints as penalties in the objective-

function of a nonlinear least-squares problem. This way, 1 N.m was equivalent to 100% of 

the activation of one muscle. 

2.4 Analysis 

The marker tracking residuals were reported to assess the efficiency of each optimisation 

to track the given noisy reference marker trajectories (𝐌𝐍𝐎𝐈𝐒𝐄). For static optimisation, the 

residual actuators (i.e. 𝛕𝐦𝐮𝐬 − 𝛕𝐈𝐃) were also reported as an indicator of the algorithm 
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efficiency to manage the noise. The root mean square error (RMSe) and the bias (average 

error) were calculated between the noise-free reference and the estimated joint angles, 

muscle forces and activations. The time-integral of the squared activations was also 

reported to attest the marker tracking objective-function efficacy. A one-way ANOVA 

from the statistical parametric mapping (SPM) package [42] was used to test the 

Optimisation method effect (EMG-marker tracking vs. marker tracking vs. static 

optimisation) on the time-histories biases between the reference and estimated joint angles 

and muscle forces. The significance level was set at p < 0.05. When significant differences 

were found, Tukey post-hoc comparisons were performed. Only significant differences 

over a period longer than 0.2 second were reported.  
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3. Results 

Only the results for the high co-contraction dataset are presented in this section. The results 

referring to the low co-contraction dataset are available in Appendix C. 

3.1 Marker and kinematics tracking   

The EMG-marker tracking and marker tracking optimisations using MUSCOD-II 

converged in 68.2 ± 11.9 and 56.5 ± 27.4 minutes (mean ± standard deviation of 

n = 30 trials), respectively, for an average of 6 million calls of the forward-dynamic 

function (Intel® Core™ i5-3570 CPU @3.4 GHz). Comparatively, static optimisation on 

MATLAB converged in 2.2 ± 1.0 minutes. For static optimisation, the average residual 

actuator was - 0.23 ± 0.58 N.m, which is good. 

The tracking residuals of the marker trajectories had the same order of magnitude for the 

three optimisations (EMG-marker tracking: 0.31 ±0 .32 cm; marker tracking: 

0.43 ± 0.30 cm; static optimisation: 0.17 ± 0.06 cm). Markers placed on the distal segments 

of the kinematic chain had larger errors than those placed on the proximal segments (see 

Appendix B). On average, the bias and RMSe values of the estimated joint angles 

qualitatively showed small differences for the three optimisations (Table 2). However, for 

the elbow flexion, the SPM ANOVA revealed a significant effect of the Optimisation 

method on the biases between the reference and the estimated joint angle (Fig. 3). Post-hoc 

comparisons then indicated that the marker tracking biases were significantly different 

from the EMG-marker tracking ones and from static optimisation ones. Marker tracking 

and static optimisations biases were never significantly different. 

Please insert Table 2 here 
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Fig. 3 Reference (REF-HC) and mean ± standard deviation of the estimated joint angles 

obtained with the high co-contraction dataset. Grey-shaded zones represent the SPM 

ANOVA results, i.e. the time intervals where there is a significant Optimisation method 

effect 

3.2 Muscle activations and forces  

The time integral of the squared activations was 15.0 for the reference, 16.1 ± 14.0 for the 

EMG-marker tracking optimisation, 1.2 ± 1.1 for the marker tracking optimisation and 

11.7 ± 8.5 for static optimisation. Concerning the muscle forces, the EMG-marker tracking 

RMSe averaged across all the lines of action was 20.39 ± 13.24 N, with a bias of 

3.25 ± 4.78 N meaning a small overestimation (Table 3). RMSe for marker tracking and 

static optimisations were about seven times larger than for EMG-marker tracking 

(124.22 ± 118.22 N and 148.15 ± 94.01 N, respectively), with average negative biases, i.e. 

muscle forces were underestimated. Static optimisation showed the largest inter-trial 

variability in muscle forces and activations estimations (see biases standard deviations in 

Tables 3 and 4).  

Please insert Table 3 here 

Please insert Table 4 here 
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The SPM ANOVA revealed a significant effect of the Optimisation method on the biases 

between the reference and estimated muscle forces: on more than 95% of the movement 

for eight muscles (LAT ili., TRI med., PEC ster., PEC ribs, DELT mid., SUP, INF and BIC 

long ); on at least 50% of the movement for five muscles (LAT lum., TRI lat., BRA., PEC 

clav. and DELT pos.); on less than 35% of the movement for two muscles (LAT thor. and 

BIC short). No significant difference lasting more than 0.2 s was observed for the other 

muscles (Fig. 4). For the fifteen abovementioned muscles, post-hoc comparisons indicated 

that the biases between the reference and estimated muscle forces were significantly 

smaller with the EMG-marker tracking optimisation than with the marker tracking 

optimisation. The EMG-marker tracking and static optimisations biases were significantly 

different too. For three muscles only (LAT thor., SUP and INF), a significant difference 

was also revealed between the marker tracking and static optimisations biases. 
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Fig. 4 Reference (REF-HC) and mean ± standard deviation of the estimated muscle forces 

obtained with the high co-contraction dataset. Grey-shaded zones represent the SPM 

ANOVA results, i.e. the time intervals where there is a significant Optimisation method 

effect  



18 

4. Discussion 

The main objective of this study was to assess the efficiency of an innovative EMG-marker 

tracking optimisation in its ability to estimate muscle forces. The forward dynamic problem 

was solved using a direct multiple shooting algorithm in MUSCOD-II that was never used 

for a musculoskeletal model to date, to the best of our knowledge. Based on simulated data, 

our main finding was that tracking both muscle excitations and marker trajectories in a 

forward dynamics-based optimisation led to accurate muscle force estimates, in a few 

minutes only. By comparison to the least-activation/excitation static and dynamic 

optimisations, the error on muscle forces was reduced by six to seven times. Finally, the 

EMG-marker tracking optimisation presented a small inter-trial variability, highlighting its 

robustness to noise.  

4.1 Optimisations comparison 

The three optimisations tracked well the markers and qualitatively resulted in similar 

marker kinematics. In this respect, the EMG-marker tracking optimisation proved its ability 

to reproduce the reference movement, while noisy excitations would tend to make the 

solution diverge exponentially. Hence, although it is commonly admitted that accurately 

tracking the kinematics using a forward dynamics-based optimisation is challenging [5, 

25], our innovative approach succeeded to give as good results as static optimisation (see 

biases in Table 2), even if two different sources of information were combined. Since 

estimated kinematics are qualitatively comparable between the three optimisations, we may 

discuss the muscle forces differences.  

As expected, for 15 out of 20 lines of action, the EMG-marker tracking optimisation 

produced significantly smaller force biases than did the marker tracking and static 

optimisations. Therefore, using muscle excitations and marker trajectories as input gave 

good forces estimations, compared to existing musculoskeletal models that tracked only 

joint kinematics, for instance [25, 39]. Interestingly, for the TRI lat. and TRI med. acting 

as antagonists during the studied movement, the estimated muscle forces were smaller with 
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the two least-activation/excitation optimisations than with the EMG-marker tracking 

optimisation. In other words, in the high co-contraction condition, the forces estimations 

of the antagonistic muscles were more accurate with the EMG-marker tracking approach 

than with static optimisation or marker tracking alone. This result emphasizes that using a 

least-activation/excitation criterion may not be the most relevant method to physiologically 

estimate all muscle forces [12, 43]. The EMG-marker tracking algorithm would thus be 

recommended especially when evaluating movements with high co-contraction. 

Compared to the reference, both static and marker-tracking optimisations based on least-

activation/excitation criteria underestimated muscle forces. The latter were close to each 

other with a 23.9 N difference between their respective mean RMSe (Table 3). This 

observation is in accordance with Anderson and Pandy (2001) [5], who showed that static 

and dynamic least-activation/excitation-based optimisations provided equivalent results for 

gait. Conversely, Morrow et al. (2014) [15] observed different estimated muscle forces 

between static and dynamic optimisations during wheelchair propulsion. They stressed that 

these differences may come from the need of dynamic co-contraction and the influence of 

the activation dynamics in such propulsion task, compared with gait. However, 

musculoskeletal models (including muscle-tendon equilibrium or not), movements 

(simulated or experimental), and algorithms (including contact forces or not) were different 

between the present and cited studies. Further research is therefore needed to determine the 

aspects underlying the differences between static and dynamic optimisations and to identify 

the most relevant methods according to the joints and/or movements of interest to estimate 

muscle forces.  

Interestingly, the two dynamic optimisations presented a limited inter-trial variability in 

comparison to static optimisation, highlighting their smaller sensitivity to noise (Table 3). 

Their better performance may be explained by the muscles dynamic properties. In fact, 

while excitations were discretized into a piecewise constant representation in MUSCOD-

II, activations remained continuous due to the multiple integrations over time (Eq. [1a-b]). 

This resulted in muscles forces, joint torques and accelerations smoother than those 
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obtained with inverse kinematics/dynamics, i.e. with static optimisation. The slight 

overestimation observed with the proposed method (+3.25 ± 4.78 N) may be explained by 

the use of a Gaussian noise associated to 10 and 40 ms time constants in the activation 

dynamics ODE (Eq. [1a-b]). Consequently, forward dynamics-based optimisations should 

be preferred, especially as the EMG-marker tracking optimisation gave the best agreement 

between the estimated and reference muscle forces, with low variability. 

4.2 Algorithm novelties 

In the EMG-marker tracking optimisation, both muscle excitations and marker trajectories 

were used in the same objective-function. To the best of our knowledge, no study has 

simultaneously tracked EMG and marker trajectories to estimate muscle forces yet. For 

instance, Raison et al. (2011) [34] and Lloyd and Besier (2003) [29] used experimental 

EMG and marker data but in a hybrid approach (i.e. inverse-forward algorithm), whose 

main limitation is the propagation of errors into the kinematics when tracking the joint 

torques.  

The dynamic optimisations joint angles RMSe (< 3°) were comparable to those obtained in 

the literature, ~5° [17]. Several aspects of the proposed study may explain this accurate 

tracking: the performance of MUSCOD-II to solve forward-dynamic problems [23]; 

weightings on the different objective-function terms; and the tracking of markers instead 

of joint angles or torques [25, 44]. This choice avoided to weight each joint according to 

its range of motion [15] and, above all, to make errors propagate through the model 

kinematic chain.  

The convergence time of the two forward dynamic-based optimisations (~60 min) was 

longer than that of the computed muscle control [17], but faster than previous dynamic 

optimisations [16]. In fact, in our dynamic optimisations resolution with MUSCOD-II, the 

convergence time greatly depended on the solution accuracy (quantified by the Karush-

Kuhn-Tucker tolerance value), pre-specified to the software as a termination criterion (here 

set at 10-6) [23]. The fact remains that the direct multiple shooting algorithm was an 
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efficient method to solve our musculoskeletal problem. Indeed, the kinematics fast 

divergence when adding noise to the excitations (joints limits attained after 

0.13 ± 0.03 second) would have resulted in infeasible convergence using algorithms 

traditionally implemented to solve musculoskeletal problems. 

Future work comparing our EMG-marker tracking approach to other approaches estimating 

muscle forces in the literature – such as the CEINMS toolbox [45], in which both muscle 

excitations and joint moments are tracked – could be of interest to identify the optimal 

objective-function. 

4.3 From simulation to real data 

In this paper, we mainly focused on developing and evaluating a new tracking-assisted 

optimisation method. We thus chose to keep simple the model and data, as well as the 

studied movement. Accordingly, simulated data were preferred to experimental 

measurements to quantify the error of each optimisation method, as it allowed us to have 

an essential set of reference values. Muscle excitations were therefore generated with an 

arbitrary enforced co-contraction criterion. Besides, Gaussian noises were added to the 

marker trajectories and excitations to simulate the artefacts existing on real data. At this 

stage, our results are not physiological. In future studies, the EMG-marker tracking 

algorithm should be run using experimental EMG and marker trajectories. As experimental 

EMG is inherently noisy [27], it should be carefully treated and amplitude-normalized – in 

line with previous research [46, 47] –, while using the EMG-marker tracking approach. 

Indeed, the EMG signal quality is known to affect the muscle forces estimations, regardless 

of the method used to estimate them, as stressed by [45]. Furthermore, since deep muscles 

are difficult to access with surface EMG, the robustness of our EMG-marker tracking 

algorithm using partial EMG data should also be assessed in a near future.  

In the same vein, we chose to work with a simple generic musculoskeletal model. The later 

was developed from two separate studies to determine all the muscle parameters [36, 37], 

as no complete upper-limb muscle database could have been found in the literature. 
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Consequently, the model could be refined using additional lines of action (e.g., Delp et al. 

(2007) [41]), series elasticity and the muscle-tendon force equilibrium [48]. The muscle-

tendon parameters could also be personalized. In the real case, these parameters are either 

obtained from the literature (mean values measured from cadavers) [49] or from generic 

models using regression equations [50] or optimisation [51]. The fact is that real muscle-

tendon parameters have errors on them that might affect the muscle forces estimations. To 

address this problem, muscle-tendon parameters are usually weighted while calibrating the 

model and tuned to the subject using static optimisation [29, 51, 52]. In future 

developments of our work, the model could be calibrated from experimental data using the 

EMG-marker tracking algorithm to adjust the muscle-tendon parameters; muscle forces 

would be then estimated, still with the same approach. The direct multiple shooting 

algorithm will allow such identification of the musculotendinous parameters, as, for 

example, the maximal isometric force. 

5. Conclusion  

In conclusion, the innovative forward dynamics-based optimisation proposed in our study, 

solved with a direct multiple shooting algorithm, successfully estimated the upper-limb 

muscle forces, with smaller errors than static and dynamic least-activation/excitation 

optimisations. Indeed, our innovative approach with both simulated EMG and marker 

trajectories tracking improved muscle forces biofidelity and accuracy, while commonly 

used optimisations failed to reproduce muscle co-contraction.  
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Appendix 

Appendix A 

A.1 The MUSCOD-II software 

MUSCOD-II [23] solves optimal control problems based on the direct multiple shooting 

algorithm [22, 53]. The latter consists in dividing the integration interval in 𝑁 shorter sub-

intervals, which facilitates and speeds up the convergence of the solution [24]. Additional 

matching constraints guarantee the continuity of the overall solution over the whole time 

interval. Inequality constraints are also applied, as, for instance, the ranges of joint angles 

(𝐪), velocities (�̇�), muscle activations (𝐚) and excitations (𝐞): 

𝐪𝐦𝐢𝐧 ≤ 𝐪 ≤ 𝐪𝐦𝐚𝐱 

�̇�𝐦𝐢𝐧 ≤ �̇� ≤ �̇�𝐦𝐚𝐱 

0 ≤ 𝐚 ≤ 1 

0 ≤ 𝐞 ≤ 1 

(9a) 

(9b) 

(9c) 

(9d) 

 

In the present study, MUSCOD-II was used with the 4th/5th ODE/DAE Runge-Kutta-

Fehlberg solver module, which has a good accuracy level for a given time step [54]. 

A.2 Reference muscle excitations generation 

From an anatomical position, the simulated noise-free reference movement mainly 

consisted of an elbow flexion, hand palm facing upward. The desired joint angles and 

velocities were defined using the Yeadon quintic spline functions [55]. MUSCOD-II [23] 

was then used to obtain the reference muscle excitations that produced the desired joint 

kinematics. Control variables were the muscle excitations (𝐞) and state variables were the 

joint angles, velocities (𝐪, �̇�) and muscle activations (𝐚). Controls and states variables were 

jointly optimised with respect to each optimisation objective-function and the equation of 

dynamics (Eq. [4]). No objective-function was given while generating the optimal noise-

free reference excitations with MUSCOD-II. The movement duration was fixed at 1 

second. All aforementioned inequality constraints (Eq. [9a-d]) were specified. Specifically, 
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joint angles were forced to respect the desired kinematic values, given as initial solution, 

at each node of the problem.   
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Appendix B 

 

Fig. 5 Tracking residual of the markers for the three optimisations, averaged across all the 

markers, across the duration of the movement with high co-contraction and across the 30 

trials. Note. The EMTO, MTO and SO acronyms stand for the EMG-marker tracking, 

marker tracking and static optimisations, respectively  
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Appendix C: Results for the low co-contraction movement 

C.1 Marker and kinematics tracking  

The EMG-marker tracking and marker tracking optimisations using MUSCOD-II 

converged in 25.5 ± 5.3 and 73.9 ± 49.0 minutes (mean ± standard deviation of 

𝑛 =  30 trials), respectively, for an average of 3.6 million calls of the forward-dynamic 

function (Intel® Core™ i5-3570 CPU @3.4 GHz). Comparatively, static optimisation on 

MATLAB converged in 2.5 ± 1.0 minutes. The average residual actuator in static 

optimisation was - 0.17 ± 0.49 N.m, which is good.  

Similarly to the high co-contraction movement, the tracking residuals of the marker 

trajectories had the same order of magnitude for the three optimisations (EMG-marker 

tracking: 0.23 ± 0.10 cm; marker tracking: 0.24 ± 0.11 cm; static optimisation: 

0.17 ± 0.06 cm). Errors were larger for markers placed on the distal segments of the 

kinematic chain than for those placed on the proximal segments (Fig. 6).  

 

Fig. 6 Tracking residual of the markers for the three optimisations, averaged across all the 

markers, across the length of the movement with low co-contraction and across the 30 trials. 

Note. The EMTO, MTO and SO acronyms stand for the EMG-marker tracking, marker 

tracking and static optimisations, respectively 
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The bias and RMSe values of the estimated joint angles were similar between the three 

optimisations (Table 5). The SPM ANOVA thus revealed no significant effect of the 

Optimisation method on the biases between the reference and the estimated joint angle 

lasting more than 0.2 s, for any DOF (Fig. 7). 

 

Fig. 7 Reference (REF-LC) and mean ± standard deviation of the estimated joint angles 

obtained with the low co-contraction dataset. Grey-shaded zones represent the SPM 

ANOVA results, i.e. the time intervals where there is a significant Optimisation method 

effect 

Please insert Table 5 here 

C.2 Muscle activations and forces 

The time integral of the squared activations averaged across all the lines of action was 2.9 

for the reference, 3.2 ± 3.2 for the EMG-marker tracking optimisation, 1.2 ± 1.1 for the 

marker tracking optimisation and 11.4 ± 8.2 for static optimisation. Concerning the muscle 

forces, the EMG-marker tracking RMSe averaged across all the lines of action was 

7.61 ± 4.83 N with a bias of 2.2 ± 3.6 N, meaning a small overestimation (Table 6). RMSe 

for marker tracking (34.71 ± 29.44 N) and static (115.51 ± 75.74 N) optimisations 

presented a five- and sixteen-fold increase, respectively, with systematically negative 

biases for marker tracking optimisation (i.e. forces were underestimated for all muscles) 
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and a positive average bias for static optimisation (Table 6). Muscle forces and activations 

in static optimisation showed the largest inter-trial variability (see biases standard 

deviations in Tables 6 and 7).  

Please insert Table 6 here 

Please insert Table 7 here 

For INF, the SPM ANOVA revealed a significant effect of the Optimisation method on the 

biases between the reference and estimated muscle forces on more than 50% the movement 

(Fig. 8). For TRI lat., TRI med. and PEC clav., the significant Optimisation method effect 

was observed on less than 50% of the movement. No significant difference lasting more 

than 0.2 s was observed for the other muscles. For TRI lat. and TRI med., post-hoc only 

assessed that the EMG-marker tracking biases were significantly different from the marker 

tracking ones and from static optimisation ones (i.e. marker tracking and static 

optimisations biases were never significantly different, for these two muscles). For INF, 

post-hoc comparisons only indicated that the marker tracking biases were significantly 

different from the EMG-marker tracking ones and from static optimisation ones. For PEC 

clav., post-hoc comparisons showed that the EMG-marker tracking biases were 

significantly different from the marker tracking ones and from static optimisation ones; and 

that the marker tracking and static optimisations biases were significantly different too. 
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Fig. 8 Reference (REF-LC) and mean ± standard deviation of the estimated muscle forces 

obtained with the low co-contraction dataset. Grey-shaded zones represent the SPM 
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ANOVA results, i.e. the time intervals where there is a significant Optimisation method 

effect 
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Tables 

Table 1 List of the muscles included in the model, each represented by one line of action, 

except for the trapezius upper fibers that are represented by two lines of action, for a total 

of 20 lines of actions. The muscles abbreviations and the joint(s) they cross are also 

mentioned 

Muscles Abbreviations Joints crossed 

Thoracic latissimus dorsi  LAT thor. Glenohumeral 

Lumbar latissimus dorsi LAT lum. Glenohumeral 

Iliac latissimus dorsi LAT ili. Glenohumeral 

Triceps brachii long head TRI long Glenohumeral and elbow 

Triceps brachii lateral head TRI lat. Elbow 

Triceps brachii medial head TRI med. Elbow 

Brachioradialis  BRA Elbow 

Clavicular pectoralis major PEC clav. Glenohumeral 

Sternal pectoralis major PEC ster. Glenohumeral 

Ribs pectoralis major PEC ribs Glenohumeral 

Anterior deltoid  DELT ant. Glenohumeral 

Middle deltoid DELT mid. Glenohumeral 

Posterior deltoid DELT pos. Glenohumeral 

Supraspinatus SUP Glenohumeral 

Infraspinatus INF Glenohumeral 

Subscapularis SUB Glenohumeral 

Biceps brachii long head BIC long Glenohumeral and elbow 

Biceps brachii short head BIC short Glenohumeral and elbow 

Trapezius upper fibers (1) TRA up1 Scapulothoracic 

Trapezius upper fibers (2) TRA up2 Scapulothoracic 
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Table 2 RMSe and bias in degrees between the noise-free reference and estimated DOFs of the model with high co-contraction. Note. GH: glenohumeral; SD: 

standard deviation. The EMTO, MTO and SO acronyms stand for the EMG-marker tracking, marker tracking and static optimisations, respectively. An asterisk 

was added next to the DOF for which a significant Optimisation method effect was observed on Fig. 3. 

DOFs 

Angles (°) (mean ± sd) 

EMTO MTO SO 

RMSe Bias RMSe Bias RMSe Bias 

Clavicular rotation 2.01 ± 0.70 0.57 ± 1.98  2.21 ± 0.67  1.22 ± 1.88  1.16 ± 0.09 -0.01 ± 1.15  

Scapular tilting 2.08 ± 0.41 -0.56 ± 1.87  2.07 ± 0.40  -0.81 ± 1.80  1.27 ± 0.11 0.03 ± 1.25  

GH flexion 1.01 ± 1.49 -0.19 ± 1.55  1.11 ± 0.46  0.29 ± 1.02  0.36 ± 0.03 0.02 ± 0.35  

GH abduction 1.22 ± 0.30 -0.34 ± 1.12  1.47 ± 0.45  -0.41 ± 1.37  0.55 ± 0.06 -0.03 ± 0.52  

GH axial rotation 2.18 ± 2.68 1.02 ± 3.15  2.93 ± 1.97  1.44 ± 2.62  0.90 ± 0.13 0.00 ± 0.80  

Elbow flexion* 1.30 ± 0.87 0.22 ± 1.47  2.30 ± 2.01  -0.25 ± 2.41  0.48 ± 0.06 0.02 ± 0.45  

MEAN(mean) ± SD(mean) 1.63 ± 0.51 0.12 ± 0.60  2.02 ± 0.64  0.25 ± 0.91  0.79 ± 0.38 0.01 ± 0.02  
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Table 3 RMSe and bias between the noise-free reference and estimated muscle forces with high co-contraction (n = 30 trials), for the 20 lines of action of the 

model. Note. A positive bias corresponds to an overestimation. An asterisk was added next to the muscle for which a significant Optimisation method effect was 

observed on Fig. 4. Post-hoc comparisons systematically reported that the bias was significantly smaller with EMTO than with MTO or SO. TRI long, TRI lat., 

TRI med. were the main antagonists to the movement studied. 

Muscle lines of action 

 Forces (N) (mean ± sd) 

 EMTO MTO SO 

 RMSe Bias RMSe Bias RMSe Bias 

LAT thor.*  27.86 ± 21.16 0.86 ± 6.96 194.61 ± 4.11  -71.14 ± 1.63  181.74 ± 8.50 -59.43 ± 41.57 

LAT lum.*  9.52 ± 2.93 3.43 ± 15.69 74.59 ± 2.81  -28.48 ± 4.54  81.07 ± 2.95 15.82 ± 99.31 

LAT ili.*  10.09 ± 2.91 2.38 ± 16.72 39.02 ± 1.39  -46.07 ± 7.75  65.68 ± 9.05 -30.84 ± 51.43 

TRI long  17.13 ± 8.48 7.94 ± 22.05 91.30 ± 3.40  -90.48 ± 4.51  115.88 ± 7.98 -87.84 ± 47.96 

TRI lat.*  7.50 ± 1.06 8.41 ± 26.32 71.46 ± 0.62  -84.38 ± 10.52  76.31 ± 2.33 -6.28 ± 122.86 

TRI med.*  13.69 ± 18.98 -5.61 ± 27.22 106.37 ± 5.56  -185.10 ± 10.31  107.50 ± 4.04 -108.40 ± 127.85 

BRA*  16.07 ± 3.58 1.43 ± 7.86 30.03 ± 1.68  -71.83 ± 5.37  115.12 ± 17.00 -45.21 ± 61.99 

PEC clav.*  18.89 ± 4.18 1.38 ± 6.54 51.31 ± 2.36  -12.64 ± 1.95  68.82 ± 4.24 8.40 ± 61.53 

PEC ster.*  23.34 ± 7.20 3.07 ± 8.18 193.48 ± 5.94  -20.92 ± 4.96  189.23 ± 5.61 -6.50 ± 54.52 

PEC ribs*  17.73 ± 21.00 0.77 ± 11.94 126.77 ± 3.93  -65.48 ± 4.62  129.92 ± 6.12 -11.86 ± 90.24 

DELT ant.  21.57 ± 22.98 0.63 ± 34.19 126.40 ± 3.04  -359.26 ± 23.48  158.74 ± 13.48 -232.20 ± 221.08 

DELT mid.*  9.09 ± 1.46 6.19 ± 20.29 16.35 ± 0.50  -82.13 ± 7.24  65.16 ± 8.26 -69.15 ± 47.97 

DELT pos.*  37.13 ± 17.91 2.94 ± 20.00 371.91 ± 9.91  -191.04 ± 11.81  334.00 ± 19.27 -178.42 ± 51.41 

SUP*  22.15 ± 5.30 1.95 ± 17.25 176.15 ± 4.89  -171.19 ± 11.43  168.57 ± 5.46 -55.60 ± 150.79 

INF*  62.11 ± 39.07 16.53 ± 56.31 450.31 ± 13.52  -388.01 ± 28.98  381.16 ± 16.50 -195.68 ± 245.07 

SUB  32.49 ± 7.37 10.94 ± 29.54 37.40 ± 3.23  -29.72 ± 14.76  260.64 ± 39.33 35.07 ± 220.35 

BIC long*  28.58 ± 8.08 -0.49 ± 21.65 225.32 ± 12.11  -216.96 ± 21.30  242.76 ± 9.89 -137.01 ± 187.65 

BIC short*  21.03 ± 8.46 0.70 ± 15.97 80.78 ± 1.94  -60.58 ± 9.12  120.27 ± 7.40 -45.55 ± 93.70 

TRA up1  4.22 ± 0.69 1.88 ± 3.40 3.36 ± 0.13  -1.54 ± 0.64  35.61 ± 4.30 8.88 ± 32.92 

TRA up2  7.54 ± 1.22 -0.36 ± 5.28 17.44 ± 0.67  -15.04 ± 2.09  64.80 ± 6.53 23.07 ± 57.60 

MEAN(mean) ± SD(mean)  20.39 ± 13.24 3.25 ± 4.78 124.22 ± 118.22  -109.60 ± 110.35  148.15 ± 94.01 -58.94 ± 76.66 
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Table 4 RMSe and bias between the noise-free reference and estimated muscle activations with high co-contraction (n = 30 trials), for the 20 lines of action of the 

model. Note. A positive bias corresponds to an overestimation. 

Muscle lines of action 

 Activations (unitless) (mean ± sd) 

 EMTO MTO SO 

 RMSe Bias RMSe Bias RMSe Bias 

LAT thor.  0.11 ± 0.04  0.00 ± 0.03  0.49 ± 0.01  -0.24 ± 0.16  0.46 ± 0.02  -0.24 ± 0.16  

LAT lum.  0.07 ± 0.01  0.01 ± 0.02  0.36 ± 0.01  0.02 ± 0.12  0.39 ± 0.01  0.02 ± 0.12  

LAT ili.  0.06 ± 0.01  0.01 ± 0.03  0.13 ± 0.01  -0.05 ± 0.09  0.21 ± 0.03  -0.05 ± 0.09  

TRI long  0.10 ± 0.02  0.06 ± 0.09  0.26 ± 0.01  -0.31 ± 0.19  0.33 ± 0.02  -0.31 ± 0.19  

TRI lat.  0.04 ± 0.00  0.05 ± 0.08  0.29 ± 0.00  -0.00 ± 0.36  0.30 ± 0.01  -0.00 ± 0.36  

TRI med.  0.09 ± 0.07  -0.01 ± 0.07  0.39 ± 0.02  -0.28 ± 0.32  0.40 ± 0.02  -0.28 ± 0.32  

BRA  0.02 ± 0.00  0.01 ± 0.04  0.04 ± 0.00  -0.23 ± 0.29  0.15 ± 0.02  -0.23 ± 0.29  

PEC clav.  0.04 ± 0.01  0.02 ± 0.03  0.08 ± 0.00  0.05 ± 0.28  0.11 ± 0.01  0.05 ± 0.28  

PEC ster.  0.05 ± 0.01  0.02 ± 0.03  0.32 ± 0.01  -0.02 ± 0.17  0.31 ± 0.01  -0.02 ± 0.17  

PEC ribs  0.12 ± 0.08  0.03 ± 0.04  0.48 ± 0.02  -0.02 ± 0.26  0.49 ± 0.02  -0.02 ± 0.26  

DELT ant.  0.10 ± 0.07  0.01 ± 0.03  0.36 ± 0.01  -0.23 ± 0.21  0.47 ± 0.04  -0.23 ± 0.21  

DELT mid.  0.06 ± 0.01  0.05 ± 0.08  0.07 ± 0.00  -0.24 ± 0.19  0.30 ± 0.04  -0.24 ± 0.19  

DELT pos.  0.05 ± 0.01  0.01 ± 0.03  0.36 ± 0.01  -0.29 ± 0.09  0.33 ± 0.02  -0.29 ± 0.09  

SUP  0.09 ± 0.01  0.01 ± 0.04  0.38 ± 0.01  -0.12 ± 0.32  0.36 ± 0.01  -0.12 ± 0.32  

INF  0.09 ± 0.03  0.03 ± 0.05  0.43 ± 0.01  -0.18 ± 0.25  0.37 ± 0.02  -0.18 ± 0.25  

SUB  0.03 ± 0.01  0.01 ± 0.02  0.02 ± 0.00  0.03 ± 0.16  0.19 ± 0.03  0.03 ± 0.16  

BIC long  0.08 ± 0.01  0.01 ± 0.03  0.36 ± 0.02  -0.22 ± 0.30  0.39 ± 0.02  -0.22 ± 0.30  

BIC short  0.08 ± 0.01  0.01 ± 0.04  0.18 ± 0.00  -0.10 ± 0.22  0.28 ± 0.02  -0.10 ± 0.22  

TRA up1  0.05 ± 0.01  0.02 ± 0.03  0.03 ± 0.00  0.08 ± 0.28  0.30 ± 0.04  0.08 ± 0.28  

TRA up2  0.07 ± 0.01  0.02 ± 0.03  0.09 ± 0.00  0.16 ± 0.35  0.40 ± 0.04  0.16 ± 0.35  

MEAN(mean) ± SD(mean)  0.07 ± 0.03  0.02 ± 0.02 0.26 ± 0.16  -0.11 ± 0.14  0.33 ± 0.10  -0.11 ± 0.14  
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Table 5 RMSe and bias in degree between the noise-free reference and estimated DOFs of the model with low co-contraction. Note. GH: glenohumeral; SD: 

standard deviation 

DOFs 

Angles (°) (mean ± sd) 

EMTO MTO SO 

RMSe Bias RMSe Bias RMSe Bias 

Clavicular rotation 1.52 ± 0.29 0.18 ± 1.51 1.98 ± 0.43  0.78 ± 1.82  1.14 ± 0.08 -0.05 ± 1.12 

Scapular tilting 1.71 ± 0.25 -0.16 ± 1.64 2.18 ± 0.48  -0.87 ± 1.98  1.28 ± 0.09 0.06 ± 1.25 

GH flexion 0.63 ± 0.11 0.03 ± 0.58 0.76 ± 0.22  -0.08 ± 0.75  0.36 ± 0.03 0.01 ± 0.35 

GH abduction 0.97 ± 0.13 -0.14 ± 0.89 1.18 ± 0.33  0.09 ± 1.18  0.55 ± 0.06 -0.01 ± 0.53 

GH axial rotation 1.49 ± 0.49 -0.06 ± 1.36 1.54 ± 0.47  0.17 ± 1.51  0.88 ± 0.11 0.02 ± 0.79 

Elbow flexion 0.90 ± 0.39 0.16 ± 0.93 0.88 ± 0.48  -0.05 ± 0.97  0.48 ± 0.04 0.01 ± 0.45 

MEAN(mean) ± SD(mean) 1.20 ± 0.43 0.00 ± 0.15 1.42 ± 0.58  0.01 ± 0.53 0.78 ± 0.37 0.00 ± 0.04 
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Table 6 RMSe and bias between the noise-free reference and estimated muscle forces with low co-contraction (n = 30 trials) for the 20 lines of action of the model. 

Note. A positive bias corresponds to an overestimation. An asterisk was added next to the muscle lines of action for which a significant Optimisation method effect 

was observed on Fig. 8. 

Muscle lines of action 

 Forces (N) (mean ± sd) 

 EMTO MTO SO 

 RMSe Bias RMSe Bias RMSe Bias 

LAT thor.  6.27 ± 0.90 1.60 ± 3.11 44.55 ± 5.68  -8.39 ± 1.83  138.45 ± 9.76 3.11 ± 42.22 

LAT lum.  5.74 ± 0.45 0.55 ± 7.54 19.26 ± 2.61  -27.21 ± 7.18  60.78 ± 7.54 21.72 ± 110.97 

LAT ili.  4.06 ± 0.70 1.81 ± 7.47 16.18 ± 1.42  -21.89 ± 8.93  65.71 ± 10.49 -9.31 ± 51.48 

TRI long  3.96 ± 0.61 1.80 ± 3.02 21.61 ± 2.53  -14.40 ± 3.27  101.89 ± 10.61 -10.41 ± 49.35 

TRI lat.*  3.50 ± 0.68 4.28 ± 4.62 8.72 ± 0.74  -29.98 ± 9.72  44.78 ± 11.57 53.30 ± 124.69 

TRI med.*  5.47 ± 0.62 0.79 ± 5.83 20.92 ± 1.69  -37.62 ± 12.22  53.86 ± 7.66 35.85 ± 129.15 

BRA  7.82 ± 1.45 -0.81 ± 2.80 29.45 ± 2.90  -12.16 ± 6.60  123.71 ± 30.57 5.12 ± 57.18 

PEC clav.*  8.47 ± 1.61 0.32 ± 3.09 26.06 ± 3.40  -6.52 ± 3.18  60.23 ± 5.99 14.38 ± 63.63 

PEC ster.  8.22 ± 1.49 1.59 ± 3.63 25.72 ± 2.82  -9.88 ± 5.00  58.91 ± 5.68 8.84 ± 56.89 

PEC ribs  3.66 ± 0.54 -0.04 ± 3.87 20.51 ± 1.20  -19.02 ± 4.21  55.54 ± 7.69 35.11 ± 92.19 

DELT ant.  6.66 ± 1.09 4.48 ± 11.00 50.29 ± 3.47  -69.48 ± 23.31  146.59 ± 9.87 53.88 ± 222.99 

DELT mid.  3.86 ± 0.56 0.91 ± 3.14 8.98 ± 0.66  -15.95 ± 5.29  66.97 ± 10.03 -0.52 ± 49.78 

DELT pos.  15.35 ± 2.10 1.67 ± 7.32 82.38 ± 5.81  -21.67 ± 8.36  234.53 ± 28.28 -9.43 ± 50.78 

SUP  8.63 ± 1.31 -1.09 ± 6.99 52.72 ± 6.92  -37.32 ± 13.27  167.81 ± 13.54 67.20 ± 149.24 

INF*  18.63 ± 3.12 10.09 ± 13.93 119.29 ± 10.46  -102.88 ± 29.85  271.19 ± 23.26 88.10 ± 250.23 

SUB  17.61 ± 3.75 7.41 ± 15.88 37.05 ± 5.04  -28.26 ± 20.38  270.61 ± 37.41 44.30 ± 226.94 

BIC long  12.01 ± 1.47 0.17 ± 8.74 77.06 ± 10.80  -69.67 ± 22.04  193.30 ± 13.04 -0.17 ± 187.93 

BIC short  7.64 ± 0.99 2.59 ± 5.38 23.62 ± 2.14  -9.72 ± 8.83  95.61 ± 15.82 4.63 ± 89.85 

TRA up1  1.91 ± 0.35 0.56 ± 1.62 2.22 ± 0.24  -1.33 ± 1.00  34.18 ± 4.11 7.71 ± 32.38 

TRA up2  2.68 ± 0.46 0.46 ± 2.39 7.66 ± 0.87  -5.70 ± 3.65  65.54 ± 4.76 29.04 ± 56.58 

MEAN(mean) ± SD(mean)  7.61 ± 4.83 1.96 ± 2.75 34.71 ± 29.44   -27.45 ± 25.85 115.51 ± 75.74 22.12 ± 27.83 
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Table 7 RMSe and bias between the noise-free reference and estimated muscle activations with low co-contraction (n = 30 trials), for the 20 lines of action of the 

model. Note. A positive bias corresponds to an overestimation. 

Muscle lines of action 

 Activations (unitless) (mean ± sd) 

 EMTO MTO SO 

 RMSe Bias RMSe Bias RMSe Bias 

LAT thor.  0.04 ± 0.00  0.01 ± 0.01  0.12 ± 0.02  -0.03 ± 0.01  0.35 ± 0.02  0.01 ± 0.16  

LAT lum.  0.05 ± 0.00  0.00 ± 0.01  0.09 ± 0.01  -0.03 ± 0.01  0.29 ± 0.03  0.03 ± 0.14  

LAT ili.  0.02 ± 0.00  0.00 ± 0.01  0.05 ± 0.00  -0.04 ± 0.01  0.21 ± 0.03  -0.02 ± 0.09  

TRI long  0.03 ± 0.00  0.02 ± 0.01  0.05 ± 0.01  -0.05 ± 0.01  0.29 ± 0.03  -0.04 ± 0.19  

TRI lat.  0.01 ± 0.00  0.03 ± 0.01  0.04 ± 0.00  -0.07 ± 0.03  0.17 ± 0.04  0.16 ± 0.37  

TRI med.  0.04 ± 0.00  0.01 ± 0.02  0.07 ± 0.01  -0.10 ± 0.03  0.21 ± 0.03  0.08 ± 0.33  

BRA  0.01 ± 0.00  0.01 ± 0.01  0.04 ± 0.00  -0.05 ± 0.03  0.16 ± 0.04  0.02 ± 0.27  

PEC clav.  0.02 ± 0.00  0.01 ± 0.01  0.04 ± 0.01  -0.03 ± 0.02  0.10 ± 0.01  0.07 ± 0.29  

PEC ster.  0.02 ± 0.00  0.01 ± 0.01  0.04 ± 0.00  -0.03 ± 0.02  0.10 ± 0.01  0.03 ± 0.18  

PEC ribs  0.03 ± 0.00  0.01 ± 0.01  0.08 ± 0.00  -0.05 ± 0.01  0.22 ± 0.03  0.11 ± 0.26  

DELT ant.  0.04 ± 0.00  0.01 ± 0.01  0.15 ± 0.01  -0.06 ± 0.02  0.44 ± 0.03  0.06 ± 0.22  

DELT mid.  0.03 ± 0.00  0.02 ± 0.01  0.04 ± 0.00  -0.05 ± 0.02  0.30 ± 0.04  0.01 ± 0.19  

DELT pos.  0.03 ± 0.00  0.00 ± 0.01  0.08 ± 0.01  -0.04 ± 0.01  0.23 ± 0.03  -0.02 ± 0.08  

SUP  0.04 ± 0.00  0.00 ± 0.02  0.11 ± 0.01  -0.07 ± 0.03  0.36 ± 0.03  0.14 ± 0.31  

INF  0.03 ± 0.00  0.02 ± 0.01  0.12 ± 0.01  -0.10 ± 0.03  0.28 ± 0.02  0.09 ± 0.26  

SUB  0.01 ± 0.00  0.01 ± 0.01  0.03 ± 0.00  -0.02 ± 0.02  0.20 ± 0.03  0.03 ± 0.17  

BIC long  0.05 ± 0.00  0.01 ± 0.01  0.12 ± 0.02  -0.11 ± 0.04  0.31 ± 0.02  -0.00 ± 0.30  

BIC short  0.03 ± 0.00  0.02 ± 0.01  0.05 ± 0.01  -0.01 ± 0.02  0.22 ± 0.04  0.02 ± 0.21  

TRA up1  0.02 ± 0.00  0.01 ± 0.01  0.02 ± 0.00  -0.01 ± 0.01  0.29 ± 0.04  0.07 ± 0.28  

TRA up2  0.03 ± 0.00  0.01 ± 0.01  0.04 ± 0.00  -0.03 ± 0.02  0.40 ± 0.03  0.18 ± 0.34  

MEAN(mean) ± SD(mean)  0.03 ± 0.01  0.01 ± 0.01  0.07 ± 0.04  -0.05 ± 0.03  0.26 ± 0.09  0.05 ± 0.06  

 


