
Colin Buchanan- PhD
- University of Edinburgh
Colin Buchanan
- PhD
- University of Edinburgh
About
38
Publications
3,853
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
817
Citations
Introduction
Colin does research in neuroimaging and brain connectivity.
Current institution
Publications
Publications (38)
In this work, we propose a new class of graph measures for weighted connectivity information in the human brain based on node relative strengths: relative strength variability (RSV), measuring susceptibility to targeted attacks, and hierarchical RSV (hRSV), a first weighted statistical complexity measure for networks. Using six different network we...
In this paper, we attempt to answer two questions: 1) which regions of the human brain, in terms of morphometry, are most strongly related to individual differences in domain-general cognitive functioning (g)? and 2) what are the underlying neurobiological properties of those regions? We meta-analyse vertex-wise g-cortical morphometry (volume, surf...
Neighbourhood disadvantage may be associated with brain health but the importance of exposure at different stages of the life course is poorly understood. Utilising the Lothian Birth Cohort 1936, we explored the relationship between residential neighbourhood deprivation from birth to late adulthood, and global and local neuroimaging measures at age...
Background
The brain can be represented as a network, with nodes as brain regions and edges as region-to-region connections. Nodes with the most connections (hubs) are central to efficient brain function. Current findings on structural differences in Major Depressive Disorder (MDD) identified using network approaches remain inconsistent, potentiall...
Gene expression varies across the brain. This spatial patterning denotes specialised support for particular brain functions. However, the way that a given gene's expression fluctuates across the brain may be governed by general rules. Quantifying patterns of spatial covariation across genes would offer insights into the molecular characteristics of...
Phenotyping of major depressive disorder (MDD) can vary from study to study, which, together with heterogeneity of the disorder, may contribute to the inconsistent associations with neuroimaging features and underlie previous problems with machine-learning methods for MDD diagnostic applications. In this study, we examined the classification accura...
Graph-theoretic metrics derived from neuroimaging data have been heralded as powerful tools for uncovering neural mechanisms of psychological traits, psychiatric disorders, and neurodegenerative diseases. In N = 8,185 human structural connectomes from UK Biobank, we examined the extent to which 11 commonly-used global graph-theoretic metrics index...
Neighbourhood disadvantage may be associated with brain health but the importance at different stages of the life course is poorly understood. Utilizing the Lothian Birth Cohort 1936, we explored the relationship between residential neighbourhood deprivation from birth to late adulthood, and global and regional neuroimaging measures at age 73. We f...
Gene expression varies across the brain. This spatial patterning denotes specialised support for particular brain functions. However, general rules may govern shared spatial fluctuations in expression across the genome. Such information would offer insights into the molecular characteristics of brain areas supporting, for example, complex cognitive...
There is an increasing expectation that advanced, computationally expensive machine learning (ML) techniques, when applied to large population-wide neuroimaging datasets, will help to uncover key differences in the human brain in health and disease. We take a comprehensive approach to explore how multiple aspects of brain structural connectivity ca...
Phenotyping of major depressive disorder (MDD) in research can vary from study to study, which, together with heterogeneity of the disorder, may contribute to the inconsistent associations with various risk factors including neuroimaging features. These aspects also potentially underlie previous problems with machine learning methods using imaging...
There is increasing expectation that advanced, computationally expensive machine learning techniques, when applied to large population-wide neuroimaging datasets, will help to uncover key differences in the human brain in health and disease. We take a comprehensive approach to explore how multiple aspects of brain structural connectivity can predic...
Background
Psychotic-like experiences (PLEs) are risk factors for the development of psychiatric conditions like schizophrenia, particularly if associated with distress. As PLEs have been related to alterations in both white matter and cognition, we investigated whether cognition (g-factor and processing speed) mediates the relationship between whi...
Introduction:
This study aims to first discover plasma proteomic biomarkers relating to neurodegeneration (N) and vascular (V) damage in cognitively normal individuals and second to discover proteins mediating sex-related difference in N and V pathology.
Methods:
Five thousand and thirty-two plasma proteins were measured in 1061 cognitively norm...
There is increasing interest in using data-driven unsupervised methods to identify structural underpinnings of common mental illnesses, including Major Depressive Disorder (MDD) and associated traits such as cognition. However, studies are often limited to severe clinical cases with small sample sizes and most do not include replication.
Here, we e...
Different brain regions can be grouped together, based on cross-sectional correlations among their cortical characteristics; this patterning has been used to make inferences about ageing processes. However, cross-sectional brain data conflate information on ageing with patterns that are present throughout life. We characterised brain cortical agein...
Multi-scanner MRI studies are reliant on understanding the apparent differences in imaging measures between different scanners. We provide a comprehensive analysis of T1-weighted and diffusion MRI (dMRI) structural brain measures between a 1.5 T GE Signa Horizon HDx and a 3 T Siemens Magnetom Prisma using 91 community-dwelling older participants (a...
Multi-scanner MRI studies are reliant on understanding the apparent differences in imaging measures between different scanners. We provide a comprehensive analysis of T1-weighted and diffusion MRI (dMRI) structural brain measures between a 1.5T GE Signa Horizon HDx and a 3T Siemens Magnetom Prisma using 91 community-dwelling older participants (age...
With several initiatives well underway towards amassing large and high-quality population-based neuroimaging datasets, deep learning is set to push the boundaries of what is possible in classification and prediction in neuroimaging studies. This includes those that derive increasingly popular structural connectomes, which map out the connections (a...
Background
Aging-related cognitive decline is a primary risk factor for Alzheimer’s disease and related dementias. More precise identification of the neurobiological bases of cognitive decline in aging populations may provide critical insights into the precursors of late-life dementias.
Methods
Using structural and diffusion brain MRI data from th...
Abstract Schizophrenia is a highly heritable disorder with considerable phenotypic heterogeneity. Hallmark psychotic symptoms can be considered as existing on a continuum from non-clinical to clinical populations. Assessing genetic risk and psychotic-like experiences (PLEs) in non-clinical populations and their associated neurobiological underpinni...
Different brain regions can be grouped together, based on cross-sectional correlations among their cortical characteristics; this patterning has been used to make inferences about ageing processes. However, cross-sectional brain data conflates information on ageing with patterns that are present throughout life. We characterised brain cortical agei...
Whole-brain structural networks can be constructed using diffusion MRI and probabilistic tractography. However, measurement noise and the probabilistic nature of the tracking procedure result in an unknown proportion of spurious white matter connections. Faithful disentanglement of spurious and genuine connections is hindered by a lack of comprehen...
Using raw structural and diffusion brain MRI data from the UK Biobank (UKB; N = 3,155, ages 45-75 years) and the Lothian Birth Cohort 1936 (LBC1936; N = 534, all age 73 years), we examine aging of regional grey matter volumes ( nodes ) and white matter structural connectivity ( edges ) within networks-of-interest in the human brain connectome. In U...
Imaging-derived indices of brain structure and white-matter connectivity evince steep declines with adult age and are robustly linked to neurological disease and a wide range of psychopathologies. Risk for psychopathology may be related to rapid structural brain aging, but the specific patterns of relations are not well documented. Using structural...
Schizophrenia is a highly heritable disorder with considerable phenotypic heterogeneity. Hallmark psychotic symptoms can be considered as existing on a continuum from non-clinical to clinical populations. Assessing genetic risk and psychotic-like experiences (PLEs) in non-clinical populations and their associated neurobiological underpinnings can o...
Whole-brain structural networks can be constructed using diffusion MRI and probabilistic tractography. However, measurement noise and the probabilistic nature of the tracking procedure result in an unknown proportion of spurious white matter connections. Faithful disentanglement of spurious and genuine connections is hindered by a lack of comprehen...
Aims
Several factors are known to increase risk for cerebrovascular disease and dementia, but there is limited evidence on associations between multiple vascular risk factors (VRFs) and detailed aspects of brain macrostructure and microstructure in large community-dwelling populations across middle and older age.
Methods and results
Associations...
Aims: Several factors are known to increase risk for cerebrovascular disease and dementia, but there is limited evidence on associations between multiple vascular risk factors (VRFs) and detailed aspects of brain macro- and microstructure in large community-dwelling populations across middle- and older age.
Methods and Results: Associations between...
Structural brain networks can be constructed at a macroscopic scale using diffusion magnetic resonance imaging (dMRI) and whole-brain tractography. Under this approach, grey matter regions, such as Brodmann areas, form the nodes of a network and tractography is used to construct a set of white matter fibre tracts which form the connections. Graph-t...
Background
To investigate white matter structural connectivity changes associated with amyotrophic lateral sclerosis (ALS) using network analysis and compare the results with those obtained using standard voxel-based methods, specifically Tract-based Spatial Statistics (TBSS).MethodsMRI data were acquired from 30 patients with ALS and 30 age-matche...
We report a novel algorithm to locate vascular leakage and ischemia in retinal angiographic image sequences leveraging contextual knowledge of co-occurring pathologies. The key contributions are the use of spatio-temporal features exploiting the evolution of intensity levels over the sequence and contextual knowledge to detect ischemia. The specifi...
We report a novel prototype algorithm using contextual knowledge to locate ischemic regions in ultra-wide-field-of-view retinal fluorescein angiograms. We use high-resolution images acquired by an Optos ultra-wide-field-of-view (more than 200 degrees) scanning laser ophthalmoscope. We leverage the simultaneous occurrence of ischemia with a number o...
Abstract This study considers the problem of attaching meaning,to non-speech sound. The purpose is to ably demonstrate automated,annotation of a sound with a string of semantically appropriate words and also retrieval of sounds most relevant to a given textual query. This is achieved by constructing acoustic and semantic spaces from a database of s...