• Home
  • ETH Zurich
  • Department of Environmental Systems Science
  • Colin Averill
Colin Averill

Colin Averill
ETH Zurich | ETH Zürich · Department of Environmental Systems Science

Doctor of Philosophy

About

43
Publications
23,029
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
2,465
Citations
Introduction
Soils are alive. Incredibly diverse forest microbial communities have profound impacts on our world that we are just beginning to grasp. My team studies the forest microbiome. How does incredible microbial diversity affect which trees are in a forest, forest carbon sequestration and climate change forecasts? We focus on the ecology of mycorrhizal fungi - fungi that form a symbiosis with the roots of most plants on Earth – however we are broadly interested in links between microbes and ecosystems
Additional affiliations
September 2015 - present
Boston University
Position
  • PostDoc Position
September 2010 - August 2015
University of Texas at Austin
Position
  • PhD Student

Publications

Publications (43)
Article
Full-text available
Soil contains more carbon than the atmosphere and vegetation combined. Understanding the mechanisms controlling the accumulation and stability of soil carbon is critical to predicting the Earth's future climate. Recent studies suggest that decomposition of soil organic matter is often limited by nitrogen availability to microbes and that plants, vi...
Article
Respiration of soil organic carbon is one of the largest fluxes of CO2 on earth. Understanding the processes that regulate soil respiration is critical for predicting future climate. Recent work has suggested that soil carbon respiration may be reduced by competition for nitrogen between symbiotic ectomycorrhizal fungi that associate with plant roo...
Article
Most tree roots on Earth form a symbiosis with either ecto‐ or arbuscular mycorrhizal fungi. Nitrogen fertilization is hypothesized to favor arbuscular mycorrhizal tree species at the expense of ectomycorrhizal species due to differences in fungal nitrogen acquisition strategies, and this may alter soil carbon balance, as differences in forest myco...
Article
Full-text available
Soil organisms represent the most biologically diverse community on land and govern the turnover of the largest organic matter pool in the terrestrial biosphere. The highly complex nature of these communities at local scales has traditionally obscured efforts to identify unifying patterns in global soil biodiversity and biogeochemistry. As a result...
Article
Full-text available
Soil microorganisms shape ecosystem function, yet it remains an open question whether we can predict the composition of the soil microbiome in places before observing it. Furthermore, it is unclear whether the predictability of microbial life exhibits taxonomic- and spatial-scale dependence, as it does for macrobiological communities. Here, we leve...
Article
1. Rapid technological advancements and increasing data availability have improved the capacity to monitor and evaluate Earth’s ecology via remote sensing. However, remote sensing is notoriously ‘blind’ to fine‐scale ecological processes such as interactions among plants, which encompass a central topic in ecology. 2. Here, we discuss how remote se...
Article
Full-text available
Due to massive energetic investments in woody support structures, trees are subject to unique physiological, mechanical, and ecological pressures not experienced by herbaceous plants. Despite a wealth of studies exploring trait relationships across the entire plant kingdom, the dominant traits underpinning these unique aspects of tree form and func...
Article
Full-text available
Small genes (<150 nucleotides) have been systematically overlooked in phage genomes. We employ a large-scale comparative genomics approach to predict >40,000 small-gene families in ∼2.3 million phage genome contigs. We find that small genes in phage genomes are approximately 3-fold more prevalent than in host prokaryotic genomes. Our approach enric...
Preprint
Fungi and bacteria are the two dominant groups of soil microbial communities worldwide. By controlling the turnover of soil organic matter, these organisms directly regulate the exchange of carbon between the soil and the atmosphere. Fundamental differences in the physiology and life history of bacteria and fungi suggest that variation in the bioge...
Article
Full-text available
Most trees on Earth form a symbiosis with either arbuscular mycorrhizal or ectomycorrhizal fungi. By forming common mycorrhizal networks, actively modifying the soil environment and other ecological mechanisms, these contrasting symbioses may generate positive feedbacks that favour their own mycorrhizal strategy (that is, the con-mycorrhizal strate...
Article
Full-text available
Most trees form symbioses with ectomycorrhizal fungi (EMF) which influence access to growth-limiting soil resources. Mesocosm experiments repeatedly show that EMF species differentially affect plant development, yet whether these effects ripple up to influence the growth of entire forests remains unknown. Here we tested the effects of EMF compositi...
Preprint
Full-text available
A bstract Due to massive energetic investments in woody support structures, trees are subject to unique physiological, mechanical, and ecological pressures not experienced by herbaceous plants. When considering trait relationships across the entire plant kingdom, plant trait frameworks typically must omit traits unique to large woody species, there...
Article
We thank Baveye and colleagues (2021) for calling attention to the important role of soil structure in driving patterns of belowground carbon cycling – in fact, the rich literature on soil spatial heterogeneity directly inspired aspects of our PROMISE model framework (Waring et al. 2020). However, as we argue below, the key innovation of the PROMIS...
Article
This article is a Commentary on Davison et al. (2021), 231: 763–776.
Article
Full-text available
Global change has resulted in chronic shifts in fire regimes. Variability in the sensitivity of tree communities to multi-decadal changes in fire regimes is critical to anticipating shifts in ecosystem structure and function, yet remains poorly understood. Here, we address the overall effects of fire on tree communities and the factors controlling...
Article
Full-text available
Disturbances fundamentally alter ecosystem functions, yet predicting their impacts remains a key scientific challenge. While the study of disturbances is ubiquitous across many ecological disciplines, there is no agreed-upon, cross-disciplinary foundation for discussing or quantifying the complexity of disturbances, and no consistent terminology or...
Article
Full-text available
We concur with Azizi‐Rad et al. (2021) that it is vital to critically evaluate and compare different soil carbon models, and we welcome the opportunity to further describe the unique contribution of the PROMISE model (Waring et al. 2020) to this literature. The PROMISE framework does share many features with established biogeochemical models, as ou...
Article
Full-text available
Soils represent the largest terrestrial reservoir of organic carbon, and the balance between soil organic carbon (SOC) formation and loss will drive powerful carbon‐climate feedbacks over the coming century. To date, efforts to predict SOC dynamics have rested on pool‐based models, which assume classes of SOC with internally homogenous physicochemi...
Preprint
Full-text available
Global change has shifted fire regimes, but the long-term consequences for ecosystems are uncertain because of variability in environmental conditions, fire types, and plant composition. We tested how fire-frequency manipulations of 16-64 years affect tree communities and traits using 374 plots from 29 sites on four continents. More frequently burn...
Article
Full-text available
Introductions and invasions by fungi, especially pathogens and mycorrhizal fungi, are widespread and potentially highly consequential for native ecosystems, but may also offer opportunities for linking microbial traits to their ecosystem functions. In particular, treating ectomycorrhizal (EM) invasions, i.e., co-invasions by EM fungi and their EM h...
Article
Full-text available
Soil stores more carbon (C) than all vegetation and the atmosphere combined. Soil C stocks are broadly shaped by temperature, moisture, soil physical characteristics, vegetation, and microbial-mediated metabolic processes. The efficiency with which microorganisms use soil C regulates the balance between C storage in soil and the atmosphere. In this...
Preprint
Disturbances fundamentally alter ecosystem functions; yet predicting the impacts of disturbances remains a key scientific challenge. The study of disturbances is ubiquitous across almost all ecological disciplines, yet varying terminology and methodologies have led to the lack of an agreed upon, cross-disciplinary foundation for discussing and quan...
Article
Mycorrhizal fungi are critical members of the plant microbiome, forming a symbiosis with the roots of most plants on Earth. Most plant species partner with either arbuscular or ectomycorrhizal fungi, and these symbioses are thought to represent plant adaptations to fast and slow soil nutrient cycling rates. This generates a second hypothesis, that...
Article
Full-text available
1.Our understanding of terrestrial nitrogen (N) cycling is changing as new processes are uncovered, including the sources, turnover, and losses of N from ecosystems. 2.We integrate recent insights into an updated N‐cycling framework and discuss how a new understanding integrates eco‐evolutionary dynamics with nutrient cycling. These insights includ...
Article
Large-scale environmental sequencing efforts have transformed our understanding of the spatial controls over soil microbial community composition and turnover. Yet, our knowledge of temporal controls is comparatively limited. This is a major uncertainty in microbial ecology, as there is increasing evidence that microbial community composition is im...
Article
Full-text available
The extent to which ectomycorrhizal (ECM) fungi enable plants to access organic nitrogen (N) bound in soil organic matter (SOM) and transfer this growth‐limiting nutrient to their plant host, has important implications for our understanding of plant–fungal interactions, and the cycling and storage of carbon (C) and N in terrestrial ecosystems. Empi...
Article
Full-text available
Soils contain more carbon than plants or the atmosphere, and sensitivities of soil organic carbon (SOC) stocks to changing climate and plant productivity are a major uncertainty in global carbon cycle projections. Despite a consensus that microbial degradation and mineral stabilization processes control SOC cycling, no systematic synthesis of long-...
Article
Full-text available
Atmospheric nitrogen (N) deposition has enhanced soil carbon (C) stocks in temperate forests. Most research has posited that these soil C gains are driven primarily by shifts in fungal community composition with elevated N leading to declines in lignin degrading Basidiomycetes. Recent research, however, suggests that plants and soil microbes are dy...
Article
The availability of nitrogen (N) is a critical control on the cycling and storage of soil carbon (C). Yet there are conflicting conceptual models to explain how N availability influences decomposition of organic matter by soil microbial communities. Several lines of evidence suggest that N availability limits decomposition: the earliest stages of l...
Article
Ecosystems dominated by plants in symbiosis with ectomycorrhizal fungi store more carbon in soils. There is increasing evidence that this may be due to competition between primary producers and microbial decomposers for soil nitrogen, mediated by ectomycorrhizal fungi. This competitive interaction inhibits decomposition and increases soil carbon st...
Article
Full-text available
Soil moisture constrains the activity of decomposer soil microorganisms, and in turn the rate at which soil carbon returns to the atmosphere. While increases in soil moisture are generally associated with increased microbial activity, historical climate may constrain current microbial responses to moisture. However, it is not known if variation in...
Article
Full-text available
Soil nitrogen (N) availability constrains future predictions of ecosystem primary productivity and carbon storage. The progressive N limitation (PNL) hypothesis predicts that forest net primary productivity (NPP) will decline with age, and that the response of NPP to elevated CO2 will attenuate through time due to negative feedbacks of NPP on the s...
Article
Oxidizable dissolved organic carbon (DOC) is regularly measured in environmental samples using a colorimetric method with Mn(III)-pyrophosphate as the oxidizing agent. It is simpler to use and has a much higher throughput than the commonly used dichromate oxidation and combustion methods. Here, we demonstrate that the method often leads to an under...
Article
Allocation trade-offs shape ecological and biogeochemical phenomena at local to global scale. Plant allocation strategies drive major changes in ecosystem carbon cycling. Microbial allocation to enzymes that decompose carbon vs. organic nutrients may similarly affect ecosystem carbon cycling. Current solutions to this allocation problem prioritise...
Article
Full-text available
Climate-induced changes in soil microbial physiology impact ecosystem carbon (C) storage and alter the rate of CO2 flux from soils to the atmosphere (Allison et al., 2010). The direction and magnitude of these microbial feedbacks depend on changes in saprotrophic bacterial and fungal C allocation in response to altered temperature, precipitation, a...
Conference Paper
Background/Question/Methods Recent theoretical and empirical work suggests the presence of ectomycorrhizal (ECM) fungi allows plants to compete directly with decomposers for soil nitrogen (N) via exo-enzyme synthesis. Experimental ECM exclusion often results in a release from competition of saprotrophic decomposers, allowing for increased C-degra...
Article
Full-text available
Since fungi and bacteria are the dominant decomposers in soil, their distinct physiologies are likely to differentially influence rates of ecosystem carbon (C) and nitrogen (N) cycling. We used meta-analysis and an enzyme-driven biogeochemical model to explore the drivers and biogeochemical consequences of changes in the fungal-to-bacterial ratio (...
Article
Soil extracellular enzymes regulate the rate at which complex organic forms of nitrogen (N) become bio-available. Much research has focused on the limitations to heterotrophic enzyme production via lab incubations, but little has been done to understand the limitations to enzyme production in situ. We created root and symbiotic mycelia exclusion tr...
Article
Full-text available
Soil extracellular enzymes regulate the rate at which complex organic forms of nitrogen (N) become bio-available. Much research has focused on the limitations to heterotrophic enzyme production via lab incubations, but little has been done to understand the limitations to enzyme production in situ. We created root and symbiotic mycelia exclusion tr...
Article
It is hypothesized that decreasing mean annual temperature and rates of nitrogen (N) cycling causes plants to switch from inorganic to organic forms of N as the primary mode of N nutrition. To test this hypothesis, we conducted field experiments and collected natural-abundance delta15N signatures of foliage, soils, and ectomycorrhizal sporocarps al...

Network

Cited By