
Colby HaggertyUniversity of Chicago | UC
Colby Haggerty
About
31
Publications
5,907
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,490
Citations
Publications
Publications (31)
We investigate the detailed properties of electron inflow in an electron-only reconnection event observed by the four Magnetospheric Multiscale (MMS) spacecraft in the Earth's turbulent magnetosheath downstream of the quasi-parallel bow shock. The lack of ion coupling was attributed to the small-scale sizes of the current sheets, and the observed b...
We report Magnetospheric Multiscale four-spacecraft observations of a thin reconnecting current sheet with weakly asymmetric inflow conditions and a guide field of approximately twice the reconnecting magnetic field. The event was observed at the interface of interlinked magnetic field lines at the flank magnetopause when the maximum spacecraft sep...
We study the nature of pressure-strain interaction at reconnection sites, detected by NASA's Magnetospheric Multiscale (MMS) Mission. We employ data from a series of published case studies, including a large-scale reconnection event at the magnetopause, three small-scale reconnection events at the magnetosheath current sheets, and one example of th...
We study the nature of pressure-strain interaction at reconnection sites detected by NASA's Magnetospheric Multiscale Mission. We employ data from a series of previously published case studies, including a large-scale reconnection event at the magnetopause, three small-scale reconnection events at the magnetosheath current sheets, and one example o...
Using 2.5 dimensional kinetic particle-in-cell simulations, we simulate reconnection conditions appropriate for the magnetosheath and solar wind, i.e., plasma beta (ratio of gas pressure to magnetic pressure) greater than 1 and low magnetic shear (strong guide field). Changing the simulation domain size, we find that the ion response varies greatly...
Change history: In this Letter, the y-axis values in Fig. 3f should go from 4 to −8 (rather than from 4 to −4), the y-axis values in Fig. 3h should appear next to the major tick marks (rather than the minor ticks), and in Fig. 1b, the arrows at the top and bottom of the electron-scale current sheet were going in the wrong direction; these errors ha...
Plain Language Summary
The Earth and the solar wind magnetic fields interconnect through a process called magnetic reconnection. The newly reconnected magnetic field lines are strongly bent and accelerate particles, similar to a rubber band in a slingshot. In this paper we have used observations from NASA's Magnetospheric MultiScale spacecraft to i...
Using kinetic particle-in-cell (PIC) simulations, we simulate reconnection conditions appropriate for the magnetosheath and solar wind, i.e., plasma beta (ratio of gas pressure to magnetic pressure) greater than 1 and low magnetic shear (strong guide field). Changing the simulation domain size, we find that the ion response varies greatly. For reco...
The outflow velocity of jets produced by collisionless magnetic reconnection is shown to be reduced by the ion exhaust temperature in fully kinetic particle in cell simulations and in situ satellite observations. We derive a scaling relationship for the outflow velocity based on the upstream Alfvén speed and the parallel ion exhaust temperature, wh...
Analysis of high-resolution Magnetospheric Multiscale Mission plasma and magnetic field data directly reveals the exchanges of energy between electromagnetic and flow energy and between microscopic flows and random kinetic energy in the inhomogeneous turbulent magnetosheath. The computed rates of exchange are based on exact results from the collisi...
Magnetic reconnection in current sheets is a magnetic-to-particle energy conversion process that is fundamental to many space and laboratory plasma systems. In the standard model of reconnection, this process occurs in a minuscule electron-scale diffusion region1,2. On larger scales, ions couple to the newly reconnected magnetic-field lines and are...
The outflow velocity of jets produced by collisionless magnetic reconnection is shown to be reduced by the ion exhaust temperature in simulations and observations. We derive a scaling relationship for the outflow velocity based on the upstream Alfv\'en speed and the parallel ion exhaust temperature, which is verified in kinetic simulations and obse...
Magnetospheric Multiscale observations are used to probe the structure and temperature profile of a guide field reconnection exhaust ~100 ion inertial lengths downstream from the X-line in the Earth's magnetosheath. Asymmetric Hall electric and magnetic field signatures were detected, together with a density cavity confined near 1 edge of the exhau...
We present a study of signatures of energy dissipation at kinetic scales in plasma turbulence based on observations by the Magnetospheric Multiscale mission (MMS) in the Earth's magnetosheath. Using several intervals, and taking advantage of the high-resolution instrumentation on board MMS, we compute and discuss several statistical measures of coh...
Dissipation of plasma turbulent energy is a phenomenon having significant implications for the heating of the solar corona and solar wind. While processes involving linear wave damping, stochastic heating, and reconnection have been postulated as contributors to heating mechanisms, the relative role that they play is not currently understood. In th...
The quadrupolar out-of-plane Hall magnetic field generated during collisionless reconnection propagates away from the x-line as a kinetic Alfvén wave (KAW). While it has been shown that this KAW carries substantial Poynting flux and propagates super-Alfvenically, how this KAW damps as it propagates away from the x-line is not well understood. In th...
We report three spacecraft observations of a reconnecting magnetosheath current sheet with a guide field of unity, with THD and THE/THA observing oppositely directed reconnection exhausts, indicating the presence of an X-line between the spacecraft. The near constant convective speed of the magnetosheath current sheet allowed the direct translation...
Magnetic reconnection is a ubiquitous phenomenon in turbulent plasmas. It is an important part of the turbulent dynamics and heating of space and astrophysical plasmas. We examine the statistics of magnetic reconnection using a quantitative local analysis of the magnetic vector potential, previously used in magnetohydrodynamics simulations, and now...
Kinetic plasma turbulence cascade spans multiple scales ranging from macroscopic fluid flow to sub-electron scales. Mechanisms that dissipate large scale energy, terminate the inertial range cascade and convert kinetic energy into heat are hotly debated. Here we revisit these puzzles using fully kinetic simulation. By performing scale-dependent spa...
Observations made using the Wind spacecraft of Hall magnetic fields in solar wind reconnection exhausts are presented. These observations are consistent with the generation of Hall fields by a narrow ion inertial scale current layer near the separatrix, which is confirmed with an appropriately scaled particle-in-cell simulation that shows excellent...
We report a THEMIS-D spacecraft crossing of a magnetopause reconnection exhaust ~9 ion skin depths (di) downstream of an X-line. The crossing was characterized by ion jetting at speeds substantially below the predicted reconnection outflow speed. In the magnetospheric inflow region THEMIS detected (a) penetration of magnetosheath ions and the resul...
New Magnetospheric Multiscale (MMS) observations of small-scale (~7 ion inertial length radius) flux transfer events (FTEs) at the dayside magnetopause are reported. The 10km MMS tetrahedron size enables their structure and properties to be calculated using a variety of multispacecraft techniques, allowing them to be identified as flux ropes, whose...
We report evidence for reconnection between colliding reconnection jets in a compressed current sheet at the center of a magnetic flux rope at Earth's magnetopause. The reconnection involved nearly symmetric inflow boundary conditions with a strong guide field of two. The thin (2.5 ion-skin depth (di) width) current sheet (at ~12 di downstream of t...
Kinetic particle-in-cell simulations are used to identify signatures of the electron diffusion region (EDR) and its surroundings during asymmetric magnetic reconnection. A "shoulder" in the sunward pointing normal electric field (EN > 0) at the reconnection magnetic field reversal is a good indicator of the EDR, and is caused by magnetosheath elect...
The physical processes that control the partition of released magnetic energy between electrons and ions during reconnection is explored through particle-in-cell simulations and analytical techniques. We demonstrate that the development of a large-scale parallel electric field and its associated potential controls the relative heating of electrons...
Ion heating due to magnetic reconnection is an important process with
applications to diverse plasmas, but previous simulations and observations have
measured heating less than half oftheoretical predictions. Using kinetic
particle-in-cell simulations, we show that this heating reduction is due to the
presence of large scale parallel electric field...
Electron bulk heating during magnetic reconnection with symmetric inflow
conditions is examined using kinetic particle-in-cell (PIC) simulations. The
degree of electron heating is well correlated with the inflowing Alfv\'en speed
$c_{Ar}$ based on the reconnecting magnetic field through the relation $\Delta
T_e = 0.033 \,m_i\,c_{Ar}^2$, where $\Del...
In order to determine the amount of mass lost from a star which just
fills its Roche Lobe, it is imperative to accurately calculate the size
of the nozzle -- the area through which the mass flows. This is normally
bounded by the equipotential surface where the density of the
exponential atmosphere drops by one scale height. When the stars are in
an...
We calculate the instantaneous mass loss rate of a nearly-semi-detached donor star in an eccentric orbit about its companion by taking into account the varying size and shape of the donor's Roche Lobe throughout the orbit. As in the circular case, we model the density of the stellar atmosphere as a decreasing exponential function of the instantaneo...