Part I: Querying RDF Data
- The RDF data model
- Querying: The simple and the ideal
- Querying: Semantics and Complexity

Part II: Querying Data with SPARQL
- Decisions taken
- Decisions to be taken

Conclusions
RDF in a nutshell

- RDF is the W3C proposal framework for representing information in the Web.
- Abstract syntax based on directed labeled graph.
- Schema definition language (RDFS): Define new vocabulary (typing, inheritance of classes and properties).
- Extensible URI-based vocabulary.
- Support use of XML schema datatypes.
- Formal semantics.
RDF formal model

\[(s, p, o) \in (U \cup B) \times U \times (U \cup B \cup L)\] is called an **RDF triple**

A set of RDF triples is called an **RDF graph**

\[U = \text{set of } U\text{ris}\]
\[B = \text{set of } \text{Blank nodes}\]
\[L = \text{set of } \text{Literals}\]
RDFS: An example

person rdf:dom works_in rdf:range company

sportman rdf:sc

soccer_player rdf:dom plays_in rdf:range soccer_team

Ronaldinho rdf:type plays_in Barcelona rdf:type

lives_in Spain
RDF model

Some difficulties:

- Existential variables as datavalues
- Built-in vocabulary with fixed semantics (RDFS)
- Graph model where nodes may also be edge labels

RDF data processing can take advantage of database techniques:

- Query processing
- Storing
- Indexing
Entailment of RDF graphs:

- Can be defined in terms of classical notions such as model, interpretation, etc.
 - As for the case of first order logic
- Has a graph characterization via homomorphisms.
A function $h : U \cup B \cup L \rightarrow U \cup B \cup L$ is a homomorphism h from G_1 to G_2 if:

- $h(c) = c$ for every $c \in U \cup L$;
- for every $(a, b, c) \in G_1$, $(h(a), h(b), h(c)) \in G_2$

Notation: $G_1 \rightarrow G_2$

Example: $h = \{B \mapsto b\}$
Entailment

Theorem (CM77)

\[G_1 \models G_2 \text{ if and only if there is a homomorphism } G_2 \rightarrow G_1. \]

Complexity

Entailment for RDF is NP-complete
Previous characterization of entailment is not enough to deal with RDFS vocabulary: \((\text{Ronaldinho}, \text{rdf:type}, \text{person}) \)
Graphs with RDFS vocabulary

Built-in predicates have pre-defined semantics:

- `rdf:sc`: transitive
- `rdf:sp`: transitive

More complicated interactions:

\[
(p, \text{rdf:dom}, c) \quad (a, p, b) \\
(a, \text{rdf:type}, c)
\]

RDFS entailment can be characterized by a set of rules:

- An Existential rule
- Subproperty rules
- Subclass rules
- Typing rules
- Implicit typing
Inference system in [MPG07] has 14 rules:

Existential rule
\[
\frac{G_1}{G_2} \text{ if } G_2 \rightarrow G_1
\]

Subproperty rules
\[
\frac{(p, \text{rdf:sp}, q)}{(a, p, b)} \frac{(a, p, b)}{(a, q, b)}
\]

Subclass rules
\[
\frac{(a, \text{rdf:sc}, b)}{(b, \text{rdf:sc}, c)} \frac{(b, \text{rdf:sc}, c)}{(a, \text{rdf:sc}, c)}
\]

Typing rules
\[
\frac{(p, \text{rdf:dom}, c)}{(a, \text{rdf:type}, c)} \frac{(a, \text{rdf:type}, c)}{(a, p, b)}
\]

Implicit typing
\[
\frac{(q, \text{rdf:dom}, a)}{(b, \text{rdf:sp}, q)} \frac{(b, \text{rdf:sp}, q)}{(b, p, c)} \frac{(b, p, c)}{(b, \text{rdf:type}, a)}
\]
Theorem (H04, GHM04, MPG07)

\(G_1 \models G_2 \) iff there is a proof of \(G_2 \) from \(G_1 \) using the system of 14 inference rules.

Complexity

RDFS-entailment is NP-complete.

Proof idea

Membership in NP: If \(G_1 \models G_2 \), then there exists a polynomial-size proof of this fact.
Closure of an RDF Graph

Notation:

\[
\text{ground}(G) : \text{Graph obtained by replacing every blank } B \text{ in } G \text{ by a constant } c_B.
\]

\[
\text{ground}^{-1}(G) : \text{Graph obtained by replacing every constant } c_B \text{ in } G \text{ by } B.
\]

Closure of an RDF graph \(G \) (denoted by \(\text{closure}(G) \)):

\[
G \cup \{ t \in (U \cup B) \times U \times (U \cup B \cup L) \mid \text{there exists a ground tuple } t' \text{ such that } \text{ground}(G) \models t' \text{ and } t = \text{ground}^{-1}(t') \}
\]
Closure of an RDF Graph: Example
Closure of an RDF graph: complexity

Proposition (H04, GHM04, MPG07)

\[G_1 \models G_2 \iff G_2 \rightarrow \text{closure}(G_1) \]

Complexity

The closure of \(G \) can be computed in time \(O(|G|^4 \cdot \log |G|) \).

Can the closure be used in practice?

- Can we use an alternative materialization?
- Can we materialize a small part of the closure?
An RDF Graph G is a core if there is no homomorphism from G to a proper subgraph of it.

Theorem (HN92, FKP03, GHM04)

- Each RDF graph G has a unique core (denoted by $\text{core}(G)$).
- Deciding if G is a core is coNP-complete.
- Deciding if $G = \text{core}(G')$ is DP-complete.
For RDF graphs with RDFS vocabulary, the core of G may contain redundant information:
A normal form for RDF graphs

To reduce the size of the materialization, we can combine both core and closure.

\[\text{nf}(G) = \text{core}(\text{closure}(G)) \]

Theorem (GHM04)

- \(G_1 \) is equivalent to \(G_2 \) iff \(\text{nf}(G_1) \cong \text{nf}(G_2) \).
- \(G_1 \models G_2 \) iff \(G_2 \rightarrow \text{nf}(G_1) \)

Complexity

The problem of deciding if \(G_1 = \text{nf}(G_2) \) is DP-complete.
Let D be a database, Q a query, and $Q(D)$ the answer.

- Outputs should belong to the same family of objects as inputs
- If $D \equiv D'$, then $Q(D) = Q(D')$
 (Weaker) If $D \equiv D'$, then $Q(D) \simeq Q(D')$
- $Q(D)$ should have no (or minimal) redundancies
- The framework should be extensible to RDFS
 (Should the framework be extensible to OWL?)
- Incorporate to the framework the notion of entailment
Querying RDF data: Desiderata

Outputs should belong to the same family of objects as inputs

- Allows compositionality of queries
- Allows defining views
- Allows rewriting

In RDF, the natural objects of input/output are RDF graphs.
If $D \equiv D'$, then $Q(D) = Q(D')$
(Weaker) If $D \equiv D'$, then $Q(D) \simeq Q(D')$

- Outputs are syntactic or semantic objects?
- Need a notion of “equivalent” databases (\equiv)
 (In RDF, there is a standard notion of logical equivalence)
- One could just ask logical equivalence in the output
- In RDF there is an intermediate notion: graph isomorphism
Querying RDF data: Desiderata

\(Q(D)\) should have no (or minimal) redundancies

- Desirable to avoid inconsistencies
- Desirable to improve processing time and space
- Standard requirement for exchange information
The framework should be extensible to RDFS (Should the framework be extensible to OWL?)

- A basic requirement of the Semantic Web Architecture
- Extension to OWL are not trivial because of the known mismatch
- Not necessarily related to the type of semantics given (logical framework, graph matching, etc.)
Incorporate to the framework the notion of entailment

- RDF graphs are not purely syntactic objects
- Would like to incorporate KB framework
- Beware of the complexity issues! RDF navigates on the Web
- Find the good compromise
A conjunctive query Q is a pair of RDF graphs H, B where some resources have been replaced by variables \bar{X}, \bar{Y} in V.

$$Q : \ H(\bar{X}) \leftarrow B(\bar{X}, \bar{Y})$$

Issues:

- Free variables in B (projection)
- Treatment of blank nodes in B
- Treatment of blank nodes in H
A valuation is a function \(v : V \rightarrow U \cup B \cup L \)

A matching of a graph \(B \) in the database \(D \) is a valuation \(v \) such that \(v(B) \subseteq D \).

A pre-answer to \(Q \) over \(D \) is the set

\[
\text{preans}(Q, D) = \{ v(H) : v \text{ is a matching of } B \text{ in } D \}
\]

A single answer is an element of \(\text{preans}(Q, D) \)
Querying RDF data: Two semantics

Union: answer $Q(D)$ is the union of all single answers

$$\text{ans}_U(Q, D) = \bigcup \text{preans}(Q, D)$$

Merge: answer $Q(D)$ is the merge of all single answers

$$\text{ans}_M(Q, D) = \biguplus \text{preans}(Q, D)$$

Proposition

1. For both semantics, if $D \models D'$ then $\text{ans}(Q, D') \models \text{ans}(Q, D)$
2. For all D, $\text{ans}_U(Q, D) \models \text{ans}_M(Q, D)$
3. With merge semantics, we cannot represent the identity query
Querying RDF data: refined semantics

Problem

Two non-isomorphic datasets D, D' give different answers to the same query.

A slightly refined semantics:

1. Normalize D before querying
2. Then query as usual over $nf(D)$

Good News: if $D \equiv D'$ then $Q(D) \cong Q(D')$

Bad News: computing $nf(D)$ is hard
The news as formal results:

Theorem (MPG07)

Do not need to compute the normal form.

Theorem (FG06)

*If a query language has the following two properties:

1. for all Q, if $D \equiv D'$ then $Q(D) = Q(D')$,
2. can represent the identity query,*

then the complexity of evaluation is NP-hard (in data complexity).
A query Q contains a query Q', denoted $Q \subseteq Q'$ iff $\text{ans}(Q, D)$ comprises all the information of $\text{ans}(Q', D)$.

In classical DB: $\text{ans}(Q, D) \subseteq \text{ans}(Q', D)$

In our setting we have two versions:

$\begin{align*}
\text{ans}(Q', D) & \subseteq \text{ans}(Q, D) & (Q \sqsubseteq_p Q') \\
\text{preans}(Q, D) & \subseteq \text{preans}(Q', D) & (\text{modulo iso}) \quad (Q \sqsubseteq_m Q')
\end{align*}$

For ground RDF both notions coincide.
Querying RDF data: Complexity

Query complexity version: The evaluation problem is NP-complete

Data complexity version: The evaluation problem is polynomial
Querying with SPARQL

- SPARQL is the W3C candidate recommendation query language for RDF.

- SPARQL is a graph-matching query language.

- A SPARQL query consists of three parts:
 - Pattern matching: optional, union, nesting, filtering.
 - Solution modifiers: projection, distinct, order, limit, offset.
 - Output part: construction of new triples,
Recall the formalization from Unit-2

Syntax:
- Triple patterns: RDF triple + variables (no bnodes)
- Operators between triple patterns: AND, UNION, OPT.
- Filtering of solutions: FILTER.
- A full parenthesized algebra.
Recall the formalization from Unit-2

Semantics:

- Based on **mappings**, partial functions from variables to terms.
- A mapping μ is a solution of triple pattern t in G iff
 - $\mu(t) \in G$
 - $\text{dom}(\mu) = \text{var}(t)$.
- $[[t]]_G$ is the **evaluation** of t in G, the set of solutions.

Example

<table>
<thead>
<tr>
<th>G</th>
<th>t</th>
<th>$[[t]]_G$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(R_1, \text{name, john})$</td>
<td>$(?X, \text{name, ?Y})$</td>
<td>μ_1:</td>
</tr>
<tr>
<td>$(R_1, \text{email, J@ed.ex})$</td>
<td></td>
<td>R_1 \quad john</td>
</tr>
<tr>
<td>$(R_2, \text{name, paul})$</td>
<td></td>
<td>R_2 \quad paul</td>
</tr>
</tbody>
</table>

μ_2:
Compatible mappings

Definition

Two mappings are **compatible** if they agree in their shared variables.

Example

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>μ_1 :</td>
<td>R_1</td>
<td>john</td>
<td>J@edu.ex</td>
<td></td>
</tr>
<tr>
<td>μ_2 :</td>
<td>R_1</td>
<td>john</td>
<td>P@edu.ex</td>
<td>R_2</td>
</tr>
<tr>
<td>μ_3 :</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\mu_1 \cup \mu_2$:</td>
<td>R_1</td>
<td>john</td>
<td>J@edu.ex</td>
<td></td>
</tr>
<tr>
<td>$\mu_1 \cup \mu_3$:</td>
<td>R_1</td>
<td>john</td>
<td>P@edu.ex</td>
<td>R_2</td>
</tr>
</tbody>
</table>

μ_2 and μ_3 are not compatible
Sets of mappings and operations

Let M_1 and M_2 be sets of mappings:

Definition

Join: $M_1 \Join M_2$
- extending mappings in M_1 with compatible mappings in M_2

Difference: $M_1 \setminus M_2$
- mappings in M_1 that cannot be extended with mappings in M_2

Union: $M_1 \cup M_2$
- mappings in M_1 plus mappings in M_2 (set theoretical union)

Definition

Left Outer Join: $M_1 \Join_{lo} M_2 = (M_1 \Join M_2) \cup (M_1 \setminus M_2)$
Semantics of general graph patterns

Definition

Given a graph G the evaluation of a pattern is recursively defined

- $\llbracket (P_1 \text{ AND } P_2) \rrbracket_G \ = \ \llbracket P_1 \rrbracket_G \land \llbracket P_2 \rrbracket_G$
- $\llbracket (P_1 \text{ UNION } P_2) \rrbracket_G \ = \ \llbracket P_1 \rrbracket_G \cup \llbracket P_2 \rrbracket_G$
- $\llbracket (P_1 \text{ OPT } P_2) \rrbracket_G \ = \ \llbracket P_1 \rrbracket_G \lor \llbracket P_2 \rrbracket_G$
- $\llbracket (P \text{ FILTER } R) \rrbracket_G \ = \ \{ \mu \in \llbracket P \rrbracket_G | \mu \text{ satisfies } R \}$
Differences with Relational Algebra / SQL

- Not a fixed output schema
 - mappings instead of tables
 - schema is implicit in the domain of mappings
- Too many NULLs
 - mappings with disjoint domains can be joined
 - mappings with distinct domains in output solutions
- SPARQL-to-SQL translations experience this issues
 - need of IS NULL/IS NOT NULL in join/outerjoin conditions
 - need of COALESCE in constructing output schema
SPARQL complexity: the evaluation problem

Input:
A mapping μ, a graph pattern P, and an RDF graph G.

Question:
Is the mapping in the evaluation of the pattern against the graph?

$\mu \in [[P]]_G$?
Evaluation of AND-FILTER patterns is polynomial.

Theorem (PAG06)

For patterns using only AND and FILTER operators, the evaluation problem is polynomial:

\[O(|P| \times |G|). \]

Proof idea

- Check that the mapping makes every triple to match.
- Then check that the mapping satisfies the FILTERs.
Evaluation including \textbf{UNION} is NP-complete.

\textbf{Theorem (PAG06)}

\textit{For patterns using AND, FILTER and UNION operators, the evaluation problem is NP-complete.}

\textbf{Proof idea}

\begin{itemize}
\item Reduction from \textit{3SAT}.
\item A pattern encodes the propositional formula.
\item \neg\textit{bound} is used to encode negation.
\end{itemize}
Evaluation including **OPT** is PSPACE-complete.

Theorem (PAG06)

For patterns using **AND**, **FILTER** and **OPT** operators, the evaluation problem is PSPACE-complete.

Proof idea

- **Reduction from QBF**
- A pattern encodes a quantified propositional formula:
 \[\forall x_1 \exists y_1 \forall x_2 \exists y_2 \cdots \psi. \]
- **Nested OPTs** are used to encode quantifier alternation.
 (This time, we do not need \(\neg\) bound.)
Assume $\varphi = \forall x_1 \exists y_1 \psi$, where $\psi = (x_1 \lor \neg y_1) \land (\neg x_1 \lor y_1)$.

We generate G, P_φ and μ_0 such that μ_0 belongs to the answer of P_φ over G iff φ is valid:

$G : \{(a, tv, 0), (a, tv, 1), (a, false, 0), (a, true, 1)\}$

$P_\psi : ((a, tv, ?X_1) \text{ AND } (a, tv, ?Y_1)) \text{ FILTER } ((?X_1 = 1 \lor ?Y_1 = 0) \land (?X_1 = 0 \lor ?Y_1 = 1))$

$P_\varphi : (a, true, ?B_0) \text{ OPT } (P_1 \text{ OPT } (Q_1 \text{ AND } P_\psi))$

$\mu_0 : \{?B_0 \mapsto 1\}$
PSPACE-hardness: A closer look

\[P_\varphi : (a,\text{true},?B_0) \ \text{OPT} \ (P_1 \ \text{OPT} \ (Q_1 \ \text{AND} \ P_\psi)) \]

\[P_1 : (a,\text{tv},?X_1) \]

\[Q_1 : (a,\text{tv},?X_1) \ \text{AND} \ (a,\text{tv},?Y_1) \ \text{AND} \ (a,\text{false},?B_0) \]
Data–complexity is polynomial

Theorem (PAG06)

When patterns are consider to be fixed (data complexity), the evaluation problem is in LOGSPACE.

Proof idea

From data–complexity of first–order logic.
AND and UNION are commutative and associative.

AND, OPT, and FILTER distribute over UNION.

Theorem (UNION Normal Form)

Every graph pattern is equivalent to one of the form

\[P_1 \text{ UNION } P_2 \text{ UNION } \cdots \text{ UNION } P_n \]

where each \(P_i \) is UNION-free.

We concentrate in UNION-free patterns.
Well–designed patterns

Definition

A graph pattern is well–designed iff for every OPT in the pattern

\[
(\cdots \cdots \cdots \ (A \ OPT \ B) \ \cdots \cdots \cdots)
\]

if a variable occurs inside \(B \) and anywhere outside the OPT, then the variable must also occur inside \(A \).

Example

\[
(((?Y, name, paul) \ OPT \ (?X, email, ?Z)) \ \text{AND} \ (?X, name, john))
\]
In the PSPACE-hardness reduction we use this formula:

\[
P_\varphi : (a, \text{true}, ?B_0) \text{ OPT } (P_1 \text{ OPT } (Q_1 \text{ AND } P_\psi))
\]

\[
P_1 : (a, tv, ?X_1)
\]

\[
Q_1 : (a, tv, ?X_1) \text{ AND } (a, tv, ?Y_1) \text{ AND } (a, false, ?B_0)
\]

It is not well-designed: \(B_0 \)
Well–designed patterns: reordering/optimization

For well-designed patterns

\[P_1 \text{ AND } (P_2 \text{ OPT } P_3) \equiv (P_1 \text{ AND } P_2) \text{ OPT } P_3 \]

\[(P_1 \text{ OPT } P_2) \text{ OPT } P_3 \equiv (P_1 \text{ OPT } P_3) \text{ OPT } P_2 \]

Theorem (OPT Normal Form)

Every well–designed pattern is equivalent to one of the form

\[
(\cdots (t_1 \text{ AND } \cdots \text{ AND } t_k) \text{ OPT } O_1) \cdots \text{ OPT } O_n)
\]

where each \(t_i \) is a triple pattern, and each \(O_j \) is a pattern of the same form.
Final remarks

- RDFS can be considered a new data model.
 - It is the W3C's recommendation for describing Web metadata.

- RDFS can definitely benefit from database technology.
 - RDFS: Formal semantics, entailment of RDFS graphs, normal forms for RDFS graphs (closure and core).
 - SPARQL: Formal semantics, complexity of query evaluation, query optimization.
 - Updating
 - ...
References