
Claudio SetteCatholic University of the Sacred Heart, Rome Italy · Institute of Human Anatomy and Cell Biology
Claudio Sette
PhD
About
225
Publications
22,908
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
9,273
Citations
Citations since 2017
Introduction
Our laboratory investigates the mechanisms involved in the regulation of gene expression during cell differentiation and in human diseases. Our research is particularly focused on the regulation of pre-mRNA splicing and mRNA translation by RNA binding proteins, and on the modulation of their activity by signal transduction pathways triggered by internal and external cues.
Additional affiliations
May 2012 - October 2017
Publications
Publications (225)
Multiple sclerosis (MS) and its preclinical models are characterized by marked changes in neuroplasticity, including excitatory/inhibitory imbalance and synaptic dysfunction that are believed to underlie the progressive cognitive impairment (CI), which represents a significant clinical hallmark of the disease. In this study, we investigated several...
Background
Prostate cancer (PC) is the most commonly diagnosed male malignancy and an important cause of mortality. Androgen deprivation therapy is the first line treatment but, unfortunately, a large part of patients evolves to a castration-resistant stage, for which no effective cure is currently available. The DNA/RNA helicase DHX9 is emerging a...
Striated muscle is a highly organized structure composed of well-defined anatomical domains with integrated but distinct assignments. So far, the lack of a direct correlation between tissue architecture and gene expression has limited our understanding of how each unit responds to physio-pathologic contexts. Here, we show how the combined use of sp...
Alternative polyadenylation (APA) yields transcripts differing in their 3′-end, and its regulation is altered in cancer, including prostate cancer. Here we have uncovered a mechanism of APA regulation impinging on the interaction between the exonuclease XRN2 and the RNA-binding protein Sam68, whose increased expression in prostate cancer is promote...
Prostate cancer (PC) relies on androgen receptor (AR) signaling. While hormonal therapy (HT) is efficacious, most patients evolve to an incurable castration-resistant stage (CRPC). To date, most proposed mechanisms of acquired resistance to HT have focused on AR transcriptional activity. Herein, we uncover a new role for the AR in alternative cleav...
Cancer cells frequently exhibit dysregulation of the DNA damage response (DDR), genomic instability, and altered RNA metabolism. Recent genome-wide studies have strongly suggested an interaction between the pathways involved in the cellular response to DDR and in the regulation of RNA metabolism, but the molecular mechanism(s) involved in this cros...
Alternative pre-mRNA processing enables the production of distinct mRNA and protein isoforms from a single gene, thus greatly expanding the coding potential of eukaryotic genomes and fine-tuning gene expression programs. Splicing is carried out by the spliceosome, a complex molecular machinery which assembles step-wise on mRNA precursors in the nuc...
It is well known that secreted and exosomal proteins are associated with a broad range of physiological processes involving tissue homeostasis and differentiation. In the present paper, our purpose was to characterize the proteome of the culture medium in which the oocytes within the primordial/primary follicles underwent apoptosis induced by cispl...
Striated muscle is a highly organized structure composed by well-defined anatomical domains with integrated but distinct assignments. So far, the lack of a direct correlation between tissue architecture and gene expression has limited our understanding of how each unit responds to physio-pathologic contexts.
Here, we show how the combined use of sp...
Triple-negative breast cancer (TNBC) represents the most aggressive breast cancer subtype. Poor prognosis in TNBC is partly due to lack of efficacious targeted therapy and high propensity to metastasize. Dysregulation of alternative splicing has recently emerged as a trait of TNBC, suggesting that unveiling the molecular mechanisms underlying its r...
Alternative splicing is a key regulatory process underlying the amplification of genomic information and the expansion of proteomic diversity, particularly in brain. Here, we identify the Ewing sarcoma protein (EWS) as a new player of alternative splicing regulation during neuronal differentiation. Knockdown of EWS in neuronal progenitor cells lead...
The advance of experimental and computational techniques has allowed us to highlight the existence of numerous different mechanisms of RNA maturation, which have been so far unknown. Besides canonical splicing, consisting of the removal of introns from pre-mRNA molecules, non-canonical splicing events may occur to further increase the regulatory an...
Background
High grade serous ovarian cancer (HGSOC) is among the deadliest human cancers and its prognosis remains extremely poor. Tumor heterogeneity and rapid acquisition of resistance to conventional chemotherapeutic approaches strongly contribute to poor outcome of patients. The clinical landscape of HGSOC has been radically transformed since t...
Background
Triple-negative breast cancer (TNBC) is the most heterogeneous and malignant subtype of breast cancer (BC). TNBC is defined by the absence of expression of estrogen, progesterone and HER2 receptors and lacks efficacious targeted therapies. NEK2 is an oncogenic kinase that is significantly upregulated in TNBC, thereby representing a promi...
Biallelic mutations in the BRAT1 gene, encoding BRCA1-associated ATM activator 1, result in variable phenotypes, from rigidity and multifocal seizure syndrome, lethal neonatal (RMFSL) to neurodevelopmental disorder and cerebellar atrophy with or without seizures (NEDCAS), without obvious genotype-phenotype associations. We describe two families at...
Signal transduction pathways transmit the information received from external and internal cues and generate a response that allows the cell to adapt to changes in the surrounding environment. Signaling pathways trigger rapid responses by changing the activity or localization of existing molecules, as well as long-term responses that require the act...
In the past two decades, mounting evidence has modified the classical view of the cerebellum as a brain region specifically involved in the modulation of motor functions. Indeed, clinical studies and engineered mouse models have highlighted cerebellar circuits implicated in cognitive functions and behavior. Furthermore, it is now clear that insults...
Background
Complex tumor and immune microenvironment render pancreatic ductal adenocarcinoma (PDAC) resistant to immune checkpoint inhibitors (ICIs). Therefore, a strategy to convert the immune hostile into an immunopermissive tumor is required. Recent studies showed that intratumoral injection of Toll-like receptor 9 agonist IMO-2125 primes the ad...
Alternative splicing and polyadenylation represent two major steps in pre‐mRNA processing, which ensure proper gene expression and diversification of human transcriptomes. Deregulation of these processes concurs to oncogenic programs involved in onset, progression and evolution of human cancers, which often result in acquisition of resistance to ex...
Aerobic exercise (AE) is known to produce beneficial effects on brain health by improving plasticity, connectivity, and cognitive functions, but the underlying molecular mechanisms are still limited. Neurexins (Nrxns) are a family of presynaptic cell adhesion molecules that are important in synapsis formation and maturation. In vertebrates, three-n...
T helper (Th) 17 cells protect from infections and are pathogenic in autoimmunity. While human Th17 cell differentiation has been defined, the global and stepwise transcriptional changes accompanying this process remain uncharacterized. Herein, by performing transcriptome analysis of human Th17 cells, we uncovered three time-regulated modules: earl...
Expansion of the coding and regulatory capabilities of eukaryotic transcriptomes by alternative splicing represents one of the evolutionary forces underlying the increased structural complexity of metazoans. Brain and testes stand out as the organs that mostly exploit the potential of alternative splicing, thereby expressing the largest repertoire...
Transcriptome analyses allow the distinguishing of pancreatic ductal adenocarcinoma (PDAC) subtypes, exhibiting different prognoses and chemotherapy responses. However, RNA extraction from pancreatic tissue is cumbersome and has been performed mainly from surgical samples, which are representative of < 20% of cases. The majority of PDAC patients un...
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer. Most patients present with advanced disease at diagnosis, which only permits palliative chemotherapeutic treatments. RNA dysregulation is a hallmark of most human cancers, including PDAC. To test the impact of RNA processing dysregulation on PDAC pathology, we performed a bioinf...
RNA-binding proteins orchestrate the composite life of RNA molecules and impact most physiological processes, thus underlying complex phenotypes. The RNA-binding protein Sam68 regulates differentiation processes by modulating splicing, polyadenylation, and stability of select transcripts. Herein, we found that Sam68
-/-
mice display altered regulat...
Mounting evidence points to immune-mediated synaptopathy and impaired plasticity as early pathogenic events underlying cognitive decline (CD) in Multiple sclerosis (MS) and in the experimental autoimmune encephalopathy (EAE) mouse model of the disease. However, knowledge of the neurobiology of synaptic dysfunction is still incomplete. Splicing regu...
Neural Progenitor Cells (NPCs) are multipotent cells that are able to self-renew and to differentiate into neurons. The size of the initial pool of NPCs during the brain development strongly affects the number of neurons that compose cortical multi-layer during development. Gonadal hormones can influence the balance between self-renewal and differe...
Introduction:
Dysregulation of the mechanistic target of rapamycin complex 1 (mTORC1)-dependent pathways in pancreatic neuroendocrine neoplasms (PanNENs) underlies the introduction of the mTORC1 inhibitor everolimus as treatment of advanced progressive PanNENs. Although everolimus significantly increases progression-free survival, most patients ac...
Tight coordination of gene expression in the developing cerebellum is crucial for establishment of neuronal circuits governing motor and cognitive function. However, transcriptional changes alone do not explain all of the switches underlying neuronal differentiation. Here we unveiled a widespread and highly dynamic splicing program that affects syn...
Brain tumors are a heterogeneous group of neoplasms ranging from almost benign to highly aggressive phenotypes. The malignancy of these tumors mostly relies on gene expression reprogramming, which is frequently accompanied by the aberrant regulation of RNA processing mechanisms. In brain tumors, defects in alternative splicing result either from th...
Spinal muscular atrophy (SMA) is a motor neuron disease caused by loss of function mutations in the Survival Motor Neuron 1 (SMN1) gene and reduced expression of the SMN protein, leading to spinal motor neuron death, muscle weakness and atrophy. Although humans harbour the highly homologous SMN2 gene, its defective splicing regulation yields a trun...
The Spinal Muscular Atrophy (SMA) gene SMN was recently duplicated (SMN1 and SMN2) in higher primates. Furthermore, invasion of the locus by repetitive elements almost doubled its size with respect to mouse Smn, in spite of an almost identical protein-coding sequence. Herein, we found that SMN ranks among the human genes with highest density of Alu...
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS). T helper (Th) 17 lymphocytes play a role in the pathogenesis of MS. Indeed, Th17 cells are abundant in the cerebrospinal fluid and peripheral blood of MS patients and promote pathogenesis in the mouse model of MS. To gain insight into the function of Th17...
Most Ewing sarcomas are characterized by the in-frame chromosomal translocation t(11;22) generating the EWS–FLI1 oncogene. EWS–FLI1 protein interacts with the RNA helicase DHX9 and affects transcription and processing of genes involved in neoplastic transformation, including CCND1 (the cyclin D1 gene), which contributes to cell-cycle dysregulation...
The splicing factor Sam68 is upregulated in many human cancers, including prostate cancer (PCa) where it promotes cell proliferation and survival. Nevertheless, in spite of its frequent upregulation in cancer, the mechanism(s) underlying its expression are largely unknown. Herein, bioinformatics analyses identified the promoter region of the Sam68...
Male germ cells express the widest repertoire of transcript variants in mammalian tissues. Nevertheless, factors and mechanisms underlying such pronounced diversity are largely unknown. The splicing regulator Sam68 is highly expressed in meiotic cells, and its ablation results in defective spermatogenesis. Herein, we uncover an extensive splicing p...
Polarization of naive T cells into interferon (IFN)-γ-producing T helper 1 (Th1) cells is an essential event in the inflammatory response to pathogens. Herein, we identify the RNA binding protein Sam68 as a specific modulator of Th1 differentiation. Sam68-knockout (ko) naive T cells are strongly defective in IL-12-mediated Th1 polarization and expr...
Fibro-adipogenic progenitors (FAPs) are typically activated in response to muscle injury, and establish functional interactions with inflammatory and muscle stem cells (MuSCs) to promote muscle repair. We found that denervation causes progressive accumulation of FAPs, without concomitant infiltration of macrophages and MuSC-mediated regeneration. D...
Purpose:
Non-muscle invasive bladder cancer (NMIBC) is a malignant disease characterized by high heterogeneity, which corresponds to dysregulated gene expression and alternative splicing (AS) profiles. Bioinformatics analyses of splicing factors potentially linked to bladder cancer progression identified the heterogeneous nuclear ribonucleoprotein...
DNAJC17 is a heat shock protein (HSP40) family member, identified in mouse as susceptibility gene for congenital hypothyroidism. DNAJC17 knockout mouse embryos die prior to implantation. In humans, germline homozygous mutations in DNAJC17 have been found in syndromic retinal dystrophy patients, while heterozygous mutations represent candidate patho...
Heat-shock factor 1 (HSF1) is the master transcription factor that regulates the response to proteotoxic stress by controlling the transcription of many stress-responsive genes including the heat-shock proteins. Here, we show a novel molecular mechanism controlling the activation of HSF1. We demonstrate that transglutaminase type 2 (TG2), dependent...
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer and current treatments exert small effects on life expectancy. The most common adjuvant treatment for PDAC is gemcitabine. However, relapse almost invariably occurs and most patients develop metastatic, incurable disease. The aim of the present study was to assess the activity of...
Pancreatic ductal adenocarcinoma (PDAC) is characterized by extremely poor prognosis. The standard chemotherapeutic drug, gemcitabine, does not offer significant improvements for PDAC management due to the rapid acquisition of drug resistance by patients. Recent evidence indicates that epithelial-to-mesenchymal transition (EMT) of PDAC cells is str...
Alternative splicing is a powerful mechanism that largely expands the coding potential of eukaryotic genomes. Indeed, its complex and flexible regulation is exploited by cells to adapt to various environmental conditions, through production of protein variants displaying different functions. Such flexibility, however, is accompanied by high risk of...
RNA metabolism is tightly controlled across different tissues and developmental stages, and its dysregulation is one of the molecular hallmarks of cancer. Through direct binding to specific sequence element(s), RNA binding proteins (RBPs) play a pivotal role in co- and post-transcriptional RNA regulatory events. We have recently demonstrated that,...
Brain development involves proliferation, migration and specification of neural progenitor cells, culminating in neuronal circuit formation. Mounting evidence indicates that improper regulation of RNA binding proteins (RBPs), including members of the FET (FUS, EWS, TAF15) family, results in defective cortical development and/or neurodegenerative di...
Table S1. List of the 4,090 Differentially Regulated Exons, from 1,735 Distinct Genes, between Spermatocytes and Spermatids, Related to Figure 1
Table S2. List of the 1,114 Differentially Regulated Alternative Splicing Events—Known Splicing Patterns—from 714 Distinct Genes, between Spermatocytes and Spermatids, Related to Figure 1
Global transcriptome reprogramming during spermatogenesis ensures timely expression of factors in each phase of male germ cell differentiation. Spermatocytes and spermatids require particularly extensive reprogramming of gene expression to switch from mitosis to meiosis and to support gamete morphogenesis. Here, we uncovered an extensive alternativ...
Epithelial-to-mesenchymal transition (EMT) is associated with metastasis formation as well as with generation and maintenance of cancer stem cells. In this way, EMT contributes to tumor invasion, heterogeneity and chemoresistance. Morphological and functional changes involved in these processes require robust reprogramming of gene expression, which...