Claudio Semini

Claudio Semini
  • PhD
  • Principal Investigator at Istituto Italiano di Tecnologia

Check my lab’s website: https://dls.iit.it/

About

195
Publications
108,684
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
6,019
Citations
Introduction
Claudio Semini is the Head of the Dynamic Legged Systems (DLS) lab at IIT, Genoa, Italy. He received an MSc degree in EE and IT from ETH Zurich, Switzerland, in 2005. From 2004 to 2006, he first visited the Hirose Lab at Tokyo Tech, and later the Toshiba R&D Center, Japan. In 2010 he obtained his PhD degree from IIT/UniGE, stayed on as PostDoc and leads the DLS lab since 2012. His research focuses on quadruped robot design, legged locomotion, hydraulic actuation, etc. web: dls.iit.it
Current institution
Istituto Italiano di Tecnologia
Current position
  • Principal Investigator

Publications

Publications (195)
Conference Paper
Full-text available
We propose a reactive controller framework for robust quadrupedal locomotion, designed to cope with terrain irregularities, trajectory tracking errors and poor state estimation. The framework comprises two main modules: One related to the generation of elliptic trajectories for the feet and the other for control of the stability of the whole robot....
Article
Full-text available
In legged locomotion, the projection of the robot’s Center of Mass (CoM) being inside the convex hull of the contact points is a commonly accepted sufficient condition to achieve static balancing. However, some of these configurations cannot be realized because the joint-torques required to sustain them would be above their limits (actuation limits...
Preprint
Full-text available
Developing feasible body trajectories for legged systems on arbitrary terrains is a challenging task. In this article, we present a paradigm that allows to design feasible Center of Mass (CoM) and body trajectories in an efficient manner. In our previous work (Orsolino et al., 2020), we introduced the notion of the two-dimensional feasible region...
Chapter
https://link.springer.com/content/pdf/10.1007%2F978-3-642-41610-1_59-1.pdf
Preprint
Point cloud registration is a critical problem in computer vision and robotics, especially in the field of navigation. Current methods often fail when faced with high outlier rates or take a long time to converge to a suitable solution. In this work, we introduce a novel algorithm for point cloud registration called SANDRO (Splitting strategy for p...
Article
Full-text available
Nonlinear model predictive locomotion controllers based on the reduced centroidal dynamics are nowadays ubiquitous in legged robots. These schemes, even if they assume an inherent simplification of the robot's dynamics, were shown to endow robots with a step-adjustment capability in reaction to small pushes, and in the case of uncertain parameters...
Article
Full-text available
We present a comprehensive framework for studying and leveraging morphological symmetries in robotic systems. These are intrinsic properties of the robot’s morphology, frequently observed in animal biology and robotics, which stem from the replication of kinematic structures and the symmetrical distribution of mass. We illustrate how these symmetri...
Article
Full-text available
Legged robots are able to navigate complex terrains by continuously interacting with the environment through careful selection of contact sequences and timings. However, the combinatorial nature behind contact planning hinders the applicability of such optimization problems on hardware. In this work, we present a novel approach that optimizes gait...
Conference Paper
Full-text available
In this paper, we introduce the concept of using passive arm structures with intrinsic impedance for robot-robot and human-robot collaborative carrying with quadruped robots. The concept is meant for a leader-follower task and takes a minimalist approach that focuses on exploiting the robots’ payload capabilities and reducing energy consumption, wi...
Conference Paper
Full-text available
This paper presents a novel approach to enhance Model Predictive Control (MPC) for legged robots through Distributed Optimization. Our method focuses on decomposing the robot dynamics into smaller, parallelizable subsystems, and utilizing the Alternating Direction Method of Multipliers (ADMM) to ensure consensus among them. Each subsystem is manage...
Conference Paper
Full-text available
Quadrupedal robots excel in mobility, navigating complex terrains with agility. However, their complex control systems present challenges that are still far from being fully addressed. In this paper, we introduce the use of Sample-Based Stochastic control strategies for quadrupedal robots, as an alternative to traditional optimal control laws. We s...
Conference Paper
Full-text available
Model-free reinforcement learning is a promising approach for autonomously solving challenging robotics control problems, but faces exploration difficulty without information about the robot’s morphology. The under-exploration of multiple modalities with symmetric states leads to behaviors that are often unnatural and sub-optimal. This issue become...
Preprint
Full-text available
Accurate state estimation is crucial for legged robot locomotion, as it provides the necessary information to allow control and navigation. However, it is also challenging, especially in scenarios with uneven and slippery terrain. This paper presents a new Invariant Extended Kalman filter for legged robot state estimation using only proprioceptive...
Preprint
Full-text available
Nonlinear model predictive locomotion controllers based on the reduced centroidal dynamics are nowadays ubiquitous in legged robots. These schemes, even if they assume an inherent simplification of the robot's dynamics, were shown to endow robots with a step-adjustment capability in reaction to small pushes, and, moreover, in the case of uncertain...
Preprint
Full-text available
Grapevine winter pruning is a labor-intensive and repetitive process that significantly influences the quality and quantity of the grape harvest and produced wine of the following season. It requires a careful and expert detection of the point to be cut. Because of its complexity, repetitive nature and time constraint, the task requires skilled lab...
Preprint
Full-text available
Legged robots are able to navigate complex terrains by continuously interacting with the environment through careful selection of contact sequences and timings. However, the combinatorial nature behind contact planning hinders the applicability of such optimization problems on hardware. In this work, we present a novel approach that optimizes gait...
Conference Paper
Full-text available
We introduce the use of harmonic analysis to decompose the state space of symmetric robotic systems into orthogonal isotypic subspaces. These are lower-dimensional spaces that capture distinct, symmetric, and synergistic motions. For linear dynamics, we characterize how this decomposition leads to a subdivision of the dynamics into independent line...
Article
Litter nowadays presents a significant threat to the equilibrium of many ecosystems. An example is the sea, where litter coming from coasts and cities via gutters, streets, and waterways, releases toxic chemicals and microplastics during its decomposition. Litter removal is often carried out manually by humans, which inherently lowers the amount of...
Chapter
Quadruped robots have increasingly become one of the main choices when a mobile platform must be deployed to execute tasks in unstructured environments. Nowadays, their major applications are concentrated on monitoring and inspection inside industrial buildings, oil &gas platforms, and construction sites. In such environments, going up and down sta...
Chapter
Full-text available
The architecture of a robotics software framework tremendously influences the effort and time it takes for end users to test new concepts in a simulation environment and to control real hardware. Many years of activity in the field allowed us to sort out crucial requirements for a framework tailored for robotics: modularity and extensibility, sourc...
Conference Paper
Full-text available
We present a footstep planning policy for quadrupedal locomotion that is able to directly take into consideration a-priori safety information in its decisions. At its core, a learning process analyzes terrain patches, classifying each landing location by its kinematic feasibility, shin collision, and terrain roughness. This information is then enco...
Article
Full-text available
Quadruped robots are machines intended for challenging and harsh environments. Despite the progress in locomotion strategy, safely recovering from unexpected falls or planned drops is still an open problem. It is further made more difficult when high horizontal velocities are involved. In this work, we propose an optimization-based reactive Landing...
Conference Paper
Full-text available
Legged robots are increasingly entering new domains and applications, including search and rescue, inspection, and logistics. However, for such a systems to be valuable in real-world scenarios, they must be able to autonomously and robustly navigate irregular terrains. In many cases, robots that are sold on the market do not provide such abilities,...
Conference Paper
Full-text available
We present a footstep planning policy for quadrupedal locomotion that is able to directly take into consideration a-priori safety information in its decisions. At its core, a learning process analyzes terrain patches, classifying each landing location by its kinematic feasibility, shin collision, and terrain roughness. This information is then enco...
Preprint
Full-text available
We present a footstep planning policy for quadrupedal locomotion that is able to directly take into consideration a-priori safety information in its decisions. At its core, a learning process analyzes terrain patches, classifying each landing location by its kinematic feasibility, shin collision, and terrain roughness. This information is then enco...
Preprint
Legged robots are increasingly entering new domains and applications, including search and rescue, inspection, and logistics. However, for such systems to be valuable in real-world scenarios, they must be able to autonomously and robustly navigate irregular terrains. In many cases, robots that are sold on the market do not provide such abilities, b...
Preprint
Full-text available
We propose a control pipeline for SAG (Searching, Approaching, and Grasping) of objects, based on a decoupled arm kinematic chain and impedance control, which integrates image-based visual servoing (IBVS). The kinematic decoupling allows for fast end-effector motions and recovery that leads to robust visual servoing. The whole approach and pipeline...
Poster
Full-text available
Software framework for robotic systems is dominated by several community-adopted generic global solutions that work well for common problems and applications. However, they are not suitable for all state-of-the-art topics. In this sense, we present a practical implementation of a new software architecture that fills some gaps in mobile robotic soft...
Preprint
Full-text available
Quadruped robots are machines intended for challenging and harsh environments. Despite the progress in locomotion strategy, safely recovering from unexpected falls or planned drops is still an open problem. It is further made more difficult when high horizontal velocities are involved. In this work, we propose an optimization-based reactive Landing...
Preprint
Full-text available
The architecture of a robotics software framework tremendously influences the effort and time it takes for end users to test new concepts in a simulation environment and to control real hardware. Many years of activity in the field allowed us to sort out crucial requirements for a framework tailored for robotics: modularity and extensibility, sourc...
Preprint
Full-text available
The VINUM project seeks to address the shortage of skilled labor in modern vineyards by introducing a cutting-edge mobile robotic solution. Leveraging the capabilities of the quadruped robot, HyQReal, this system, equipped with arm and vision sensors, offers autonomous navigation and winter pruning of grapevines reducing the need for human interven...
Article
Full-text available
Unlabelled: Even though mechanization has dramatically decreased labor requirements, vineyard management costs are still affected by selective operations such as winter pruning. Robotic solutions are becoming more common in agriculture, however, few studies have focused on grapevines. This work aims at fine-tuning and testing two different deep ne...
Article
Full-text available
For legged robots, aerial motions are the only option to overpass obstacles that cannot be circumvented with standard locomotion gaits. In these cases, the robot must perform a leap to either jump onto the obstacle or fly over it. However, these movements represent a challenge, because, during the flight phase, the Center of Mass (CoM) cannot be co...
Article
Full-text available
Model predictive control (MPC) approaches are widely used in robotics, because they guarantee feasibility and allow the computation of updated trajectories while the robot is moving. They generally require heuristic references for the tracking terms and proper tuning of the parameters of the cost function in order to obtain good performance. For in...
Preprint
Full-text available
This work is on vision-based planning strategies for legged robots that separate locomotion planning into foothold selection and pose adaptation. Current pose adaptation strategies optimize the robot's body pose relative to given footholds. If these footholds are not reached, the robot may end up in a state with no reachable safe footholds. Therefo...
Preprint
Online trajectory optimization techniques generally depend on heuristic-based contact planners in order to have low computation times and achieve high replanning frequencies. In this work, we propose ContactNet, a fast acyclic contact planner based on a multi-output regression neural network. ContactNet ranks discretized stepping regions, allowing...
Preprint
Full-text available
For legged robots, aerial motions are the only option to overpass obstacles that cannot be circumvent with standard locomotion gaits. In these cases, the robot must perform a leap to either jump onto the obstacle or fly over it. However, these movements represent a challenge because during the flight phase the \gls{com} cannot be controlled, and th...
Preprint
Full-text available
Quadrupedal manipulators require to be compliant when dealing with external forces during autonomous manipulation, tele-operation or physical human-robot interaction. This paper presents a whole-body controller that allows for the implementation of a Cartesian impedance control to coordinate tracking performance and desired compliance for the robot...
Preprint
Full-text available
Model Predictive Control (MPC) approaches are widely used in robotics, since they guarantee feasibility and allow the computation of updated trajectories while the robot is moving. They generally require heuristic references for the tracking terms and proper tuning of the parameters of the cost function in order to obtain good performance. For inst...
Conference Paper
Full-text available
The exploration of lunar craters is of high interest, but their rugged and inclined terrain also exceeds the mobility capabilities of current rovers, opening up a field of application for legged exploration systems. This paper presents a navigation and locomotion control system that enables legged robots to be able to perceive the terrain, to plan...
Article
Full-text available
Legged robots are meant to autonomously navigate unstructured environments for applications like search and rescue, inspection, or maintenance. In autonomous navigation, a close relationship between locomotion and perception is crucial; the robot has to perceive the environment and detect any change in order to autonomously make decisions based on...
Article
This article focuses on vision-based planning strategies for legged robots that separate locomotion planning into foothold selection and pose adaptation. Current pose adaptation strategies optimize the robot's body pose relative to given footholds. If these footholds are not reached, the robot may end up in a state with no reachable safe foothold...
Preprint
Full-text available
Re-planning in legged locomotion is crucial to track the desired user velocity while adapting to the terrain and rejecting external disturbances. In this work, we propose and test in experiments a real-time Nonlinear Model Predictive Control (NMPC) tailored to a legged robot for achieving dynamic locomotion on a variety of terrains. We introduce a...
Preprint
Full-text available
Grapevine winter pruning is a complex task, that requires skilled workers to execute it correctly. The complexity makes it time consuming. It is an operation that requires about 80-120 hours per hectare annually, making an automated robotic system that helps in speeding up the process a crucial tool in large-size vineyards. We will describe (a) a n...
Preprint
Full-text available
Grapevine winter pruning is a complex task, that requires skilled workers to execute it correctly. The complexity of this task is also the reason why it is time consuming. Considering that this operation takes about 80-120 hours/ha to be completed, and therefore is even more crucial in large-size vineyards, an automated system can help to speed up...
Preprint
Full-text available
Mobile manipulators that combine mobility and manipulability, are increasingly being used for various unstructured application scenarios in the field, e.g. vineyards. Therefore, the coordinated motion of the mobile base and manipulator is an essential feature of the overall performance. In this paper, we explore a whole-body motion controller of a...
Article
Full-text available
Classic control theory applied to compliant and soft robots generally involves an increment of computation that has no equivalent in biology. To tackle this, morphological computation describes a theoretical framework that takes advantage of the computational capabilities of physical bodies. However, concrete applications in robotic locomotion cont...
Article
Locomotion over soft terrain remains a challenging problem for legged robots. Most of the work done on state estimation for legged robots is designed for rigid contacts, and does not take into account the physical parameters of the terrain. That said, this letter answers the following questions: how and why does soft terrain affect state estimation...
Preprint
Full-text available
Locomotion over soft terrain remains a challenging problem for legged robots. Most of the work done on state estimation for legged robots is designed for rigid contacts, and does not take into account the physical parameters of the terrain. That said, this letter answers the following questions: how and why does soft terrain affect state estimation...
Article
Full-text available
In the context of legged robotics, many criteria based on the control of the Center of Mass (CoM) have been developed to ensure stable and safe robot locomotion. Defining a whole-body framework with the control of the CoM requires a planning strategy, often based on a specific type of gait and reliable state-estimation. In a whole-body control appr...
Conference Paper
Full-text available
Estimation of a quadruped's state is fundamentally important to its operation. In this paper we develop a low-level state estimator for quadrupedal robots that includes attitude, odometry, ground reaction forces, and contact detection. The state estimator is divided into three parts. First, a nonlinear observer estimates attitude by fusing inertial...
Conference Paper
Full-text available
This paper presents novel datasets of the hydraulically actuated robot HyQ's proprioceptive sensors. All of the datasets include absolute and relative joint encoders, joint force and torque sensors, and MEMS-based and fibre optic-based inertial measurement units (IMUs). Additionally, a motion capture system recorded the ground truth data with milli...
Preprint
Full-text available
The ability of legged systems to traverse highly-constrained environments depends by and large on the performance of their motion and balance controllers. This paper presents a controller that excels in a scenario that most state-of-the-art balance controllers have not yet addressed: line walking, or walking on nearly null support regions. Our appr...
Article
Full-text available
Planning whole-body motions while taking into account the terrain conditions is a challenging problem for legged robots since the terrain model might produce many local minima. Our coupled planning method uses stochastic and derivatives-free search to plan both foothold locations and horizontal motions due to the local minima produced by the terrai...
Conference Paper
Full-text available
Advances in legged robotics are strongly rooted in animal observations. A clear illustration of this claim is the generalization of Central Pattern Generators (CPG), first identified in the cat spinal cord, to generate cyclic motion in robotic locomotion. Despite a global endorsement of this model, physiological and functional experiments in mammal...
Preprint
Advances in legged robotics are strongly rooted in animal observations. A clear illustration of this claim is the generalization of Central Pattern Generators (CPG), first identified in the cat spinal cord, to generate cyclic motion in robotic locomotion. Despite a global endorsement of this model, physiological and functional experiments in mammal...
Article
Full-text available
We present experimental results using a passive whole-body control approach for quadruped robots that achieves dynamic locomotion while compliantly balancing the robot’s trunk. We formulate the motion tracking as a Quadratic Program(QP) that takes into account the full robot rigid body dynamics,the actuation limits, the joint limits and the contact...
Article
Whole-Body Control (WBC) has emerged as an important framework in locomotion control for legged robots. However, most WBC frameworks fail to generalize beyond rigid terrains. Legged locomotion over soft terrain is difficult due to the presence of unmodeled contact dynamics that WBCs do not account for. This introduces uncertainty in locomotion and...
Conference Paper
Full-text available
Synthesizing kinematically feasible trajectories for legged robots becomes more and more challenging with the increase in the complexity of the obstacles to be traversed. In this abstract we propose an algorithm for the efficient assessment of the kinematic feasibility of center of mass trajectories for legged robots. This allows us to evaluate and...
Preprint
Full-text available
We propose two feasibility constraints to be included in a Single Rigid Body Dynamics-based trajectory optimizer in order to obtain robust motions for quadruped robots in challenging terrain. The former finds an approximate relationship between joint-torque limits and admissible contact forces without requiring the knowledge of the joints' configur...
Preprint
We present a novel control strategy for dynamic legged locomotion in complex scenarios, that considers information about the morphology of the terrain in contexts when only on-board mapping and computation are available. The strategy is built on top of two main elements: first a contact sequence task that provides safe foothold locations based on a...
Preprint
Full-text available
Whole-body Control (WBC) has emerged as an important framework in locomotion control for legged robots. However, most of WBC frameworks fail to generalize beyond rigid terrains. Legged locomotion over soft terrain is difficult due to the presence of unmodeled contact dynamics that WBCs do not account for. This introduces uncertainty in locomotion a...
Preprint
Most animal and human locomotion behaviors for solving complex tasks involve dynamic motions and rich contact interaction. In fact, complex maneuvers need to consider dynamic movement and contact events at the same time. We present a hierarchical trajectory optimization approach for planning dynamic movements with unscheduled contact sequences. We...
Preprint
Full-text available
Traditional motion planning approaches for multi-legged locomotion divide the problem into several stages, such as contact search and trajectory generation. However, reasoning about contacts and motions simultaneously is crucial for the generation of complex whole-body behaviors. Currently, coupling theses problems has required either the assumptio...
Preprint
We present a framework for dynamic quadrupedal locomotion over challenging terrain, where the choice of appropriate footholds is crucial for the success of the behaviour. We build a model of the environment on-line and on-board using an efficient occupancy grid representation. We use Any-time-Repairing A* (ARA*) to search over a tree of possible ac...
Preprint
We present a legged motion planning approach for quadrupedal locomotion over challenging terrain. We decompose the problem into body action planning and footstep planning. We use a lattice representation together with a set of defined body movement primitives for computing a body action plan. The lattice representation allows us to plan versatile m...
Preprint
Full-text available
In legged locomotion the projection of the robot’s Center of Mass (CoM) being inside the convex hull of the contact points is a commonly accepted sufficient condition to achieve static balancing. However, some of these configurations cannot be realized because joint-torques required to sustain them would be above their limits (actuation limits). In...
Preprint
Full-text available
We present experimental results using a passive whole-body control approach for quadruped robots that achieves dynamic locomotion while compliantly balancing the robot’s trunk. We formulate the motion tracking as a Quadratic Program (QP) that takes into account the full robot rigid body dynamics, the actuation limits, the joint limits and the conta...
Data
video to the paper: Fast and Continuous Foothold Adaptation for Dynamic Locomotion through CNNs
Article
Full-text available
Legged robots can outperform wheeled machines for most navigation tasks across unknown and rough terrains. For such tasks, visual feedback is a fundamental asset to provide robots with terrain-awareness. However, robust dynamic locomotion on difficult terrains with real-time performance guarantees remains a challenge. We present here a real-time, d...
Preprint
Full-text available
Legged robots are becoming popular not only in research, but also in industry, where they can demonstrate their superiority over wheeled machines in a variety of applications. Either when acting as mobile manipulators or just as the all-terrain ground vehicles, these machines need to precisely track desired base and end-effector trajectories, perfo...
Chapter
Full-text available
The quality of visual feedback can vary signif- icantly on a legged robot meant to traverse unknown and unstructured terrains. The map of the environment, acquired with online state-of-the-art algorithms, often degrades after a few steps, due to sensing inaccuracies, slippage and unexpected disturbances. If a locomotion algorithm is not designed to...
Preprint
Legged robots can outperform wheeled machines for most navigation tasks across unknown and rough terrains. For such tasks, visual feedback is a fundamental asset to provide robots with terrain-awareness. However, robust dynamic locomotion on difficult terrains with real-time performance guarantees remains a challenge. Indeed, the computational effo...
Article
Traditional motion planning approaches for multi-legged locomotion divide the problem into several stages, such as contact search and trajectory generation. However, reasoning about contacts and motions simultaneously is crucial for the generation of complex whole-body behaviors. Currently, coupling theses problems has required either the assumptio...
Article
Full-text available
Hydraulic actuation is the most widely used alternative to electric motors for legged robots and manipulators. It is often selected for its high power density, robustness and high-bandwidth control performance that allows the implementation of force/impedance control. Force control is crucial for robots that are in contact with the environment, sin...
Preprint
Full-text available
The quality of the visual feedback can vary significantly on a legged robot that is meant to traverse unknown and unstructured terrains. The map of the environment, acquired with online state-of-the-art algorithms, often degrades after a few steps, due to sensing inaccuracies, slippage and unexpected disturbances. When designing locomotion algorith...
Data
file also available at: https://www.youtube.com/watch?v=vUx5b5kfRfE&feature=youtu.be
Chapter
Full-text available
What should a legged robot do when it slips? When traction is lost, the locomotion can be irreversibly hampered. Being able to detect slippage at the very beginning and promptly recover the traction is crucial for body stability and can make the difference in a situation where falling is not an option. Indeed, the majority of locomotion controllers...
Preprint
Full-text available
Legged robots promise an advantage over traditional wheeled systems, however, most legged robots are still confined to structured and flat environments. One of the main reasons for this is the difficulty in planning complex whole-body motions while taking into account the terrain conditions. This problem is very high-dimensional as it considers the...

Network

Cited By