Claudio Sangregorio

Claudio Sangregorio
Italian National Research Council | CNR · Institute of Chemistry of Organometallic Compounds ICCOM

About

310
Publications
36,911
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
13,938
Citations
Citations since 2016
76 Research Items
5676 Citations
20162017201820192020202120220200400600800
20162017201820192020202120220200400600800
20162017201820192020202120220200400600800
20162017201820192020202120220200400600800
Additional affiliations
November 2009 - January 2016
Italian National Research Council
Position
  • Researcher

Publications

Publications (310)
Article
Active modulation of the plasmonic response is at the forefront of today's research in nano-optics. For a fast and reversible modulation, external magnetic fields are among the most promising approaches. However, fundamental limitations of metals hamper the applicability of magnetoplasmonics in real-life active devices. While improved magnetic modu...
Article
Full-text available
In this work, we demonstrate that the reduction of the local internal stress by a low-temperature solvent-mediated thermal treatment is an effective post-treatment tool for magnetic hardening of chemically synthesized nanoparticles. As a case study, we used nonstoichiometric cobalt ferrite particles of an average size of 32(8) nm synthesized by the...
Article
Full-text available
Here, we synthesize a Au@Fe3O4 core@shell system with a highly uniform unprecedented star-like shell morphology with combined plasmonic and magnetic properties. An advanced electron microscopy characterization allows assessing the multifaceted nature of the Au core and its role in the growth of the peculiar epitaxial star-like shell with excellent...
Article
Nanometric core@shell wüstite@ferrite (Fe1−xO@Fe3O4) has been extensively studied because of the emergence of exchange bias phenomena. Since their actual implementation in modern technologies is hampered by the low temperature at which bias is operating, the critical issue to be solved is to obtain exchange‐coupled antiferromagnetic@ferrimagnetic n...
Article
Full-text available
Cobalt ferrite nanoparticles of different stoichiometries synthesized by a sol–gel autocombustion method were used as a starting material to obtain high-moment Fe50Co50 and Fe66Co34 metal nanoparticles by topochemical hydrogen reduction. Structural and magnetic investigations confirmed the formation of FeCo nanoparticles with crystallite sizes of a...
Article
Full-text available
In this study, we report the realization of drug-loaded smart magnetic nanocarriers constituted by superparamagnetic iron oxide nanoparticles encapsulated in a dual pH- and temperature-responsive poly (N-vinylcaprolactam-co-acrylic acid) copolymer to achieve highly controlled drug release and localized magnetic hyperthermia. The magnetic core was c...
Article
Full-text available
Today, public health is one of the most important challenges in society. Cancer is the leading cause of death, so early diagnosis and localized treatments that minimize side effects are a priority. Magnetic nanoparticles have shown great potential as magnetic resonance imaging contrast agents, detection tags for in vitro biosensing, and mediators o...
Article
Human purine nucleoside phosphorylase (HsPNP) catalyzes reversible phosphorolysis of nucleosides and deoxynucleosides in the purine cascade. HsPNP has been a target on behalf of the development of new leads for the treatment of a variety of T-cell mediated disorders. Several studies on the HsPNP are focused on the identification of effective, safe,...
Article
HKUST-1 metal-organic framework (MOF) and Fe3O4@HKUST-1 magnetic framework composites (MFCs) were developed by a simple and sustainable liquid assisted mechanochemical synthesis process. The growth of the MOF crystalline structure was directed on the surface of functionalized magnetite particles, which act as “crystallization germs”. The nanomateri...
Article
Full-text available
Hybrid materials composed of superparamagnetic iron oxide nanoparticles (SPIONs) and lipid self-assemblies possess considerable applicative potential in the biomedical field, specifically, for drug/nutrient delivery. Recently, we showed that SPIONs-doped lipid cubic liquid crystals undergo a cubic-to-hexagonal phase transition under the action of t...
Preprint
Full-text available
Hybrid materials composed of Superparamagnetic Iron Oxide Nanoparticles (SPIONs) and lipid self-assemblies possess a considerable applicative potential in the biomedical field, specifically, for drug/nutrients delivery. In recent works we have shown that SPION-doped lipid cubic liquid crystals undergo a cubic-to-hexagonal phase transition under the...
Preprint
Hybrid materials composed of Superparamagnetic Iron Oxide Nanoparticles (SPIONs) and lipid self-assemblies possess a considerable applicative potential in the biomedical field, specifically, for drug/nutrients delivery. In recent works we have shown that SPION-doped lipid cubic liquid crystals undergo a cubic-to-hexagonal phase transition under the...
Preprint
Magnetoplasmonics is highly promising to devise active optical elements: modulating the plasmon resonance condition with magnetic field can boost the performance of refractometric sensors and nanophotonic optical devices. Nevertheless, real life applications are hampered by the magnetoplasmonic trilemma: 1) a good plasmonic metal has sharp optical...
Article
We present here an investigation aimed at exploring the role of the microstructure on the magnetic properties of nanostructured cobalt ferrite. Bulk, almost fully dense, nanograined ferrites have been obtained starting from nanopowders prepared by a simple, inexpensive, water-based, modified Pechini method. This synthesis yielded largely aggregated...
Article
Full-text available
In the last few years, significant effort has again been devoted to ferrite-based permanent magnet research due to the so-called rare-earth crisis. In particular, a quest to enhance ferrites maximum energy product, BH max , is underway. Here, the influence of composition and sintering conditions on the microstructure and consequently magnetic prope...
Article
Full-text available
Multifunctional nano-heterostructures (NHSs) with controlled morphology are cardinal in many applications but the understanding of the nanoscale colloidal chemistry is yet to be fulfilled. Stability of the involved crystalline phases in different solvents at mid and high temperature and reaction kinetics considerably affect the nucleation and growt...
Article
Full-text available
Plasmon resonance modulation with an external magnetic field (magnetoplasmonics) represents a promising route for the improvement of the sensitivity of plasmon-based refractometric sensing. To this purpose, an accurate material choice is needed to realize hybrid nanostructures with an improved magnetoplasmonic response. In this work, we prepared [e...
Chapter
The increased ability in manipulating matter at the nanoscale has paved the way towards the creation of a plethora of novel systems endowed with extremely appealing properties exploitable in a wide number of clinical applications, the two most prominent being, undoubtedly, Magnetic Resonance Imaging (MRI) and Magnetic Fluid Hyperthermia (MFH). In t...
Article
The exploitation of the exchange coupling between hard and soft magnetic materials has been proposed for enhancing the magnetic performances of rare-earth free permanent magnets, with the aim of extending their use to all applications where moderate energy product (35–100 kJ m ⁻³ ) is required. Strontium hexaferrite (SFO)/spinel ferrite composites...
Article
Full-text available
We present a ¹H NMR investigation of spin dynamics in two finite integer spin molecular nanomagnetic rings, namely V7Zn and V7Ni. This study could be put in correlation with the problem of Haldane gap in infinite integer spin chains. While V7Zn is an approximation of a homometallic broken chain due to the presence of s = 0 Zn²⁺ ion uncoupled from n...
Article
Full-text available
A combination of carbon ions/photons irradiation and hyperthermia as a novel therapeutic approach for the in-vitro treatment of pancreatic cancer BxPC3 cells is presented. The radiation doses used are 0-2 Gy for carbon ions and 0-7 Gy for 6 MV photons. Hyperthermia is realized via a standard heating bath, assisted by magnetic fluid hyperthermia (MF...
Article
Full-text available
We present a 1H Nuclear Magnetic Resonance (NMR) relaxometry experimental investigation of two series of magnetic nanoparticles, constituted of a maghemite core with a mean diameter dTEM = 17 ± 2.5 nm and 8 ± 0.4 nm, respectively, and coated with four different negative polyelectrolytes. A full structural, morpho-dimensional and magnetic characteri...
Article
Full-text available
Heterodimeric nanoparticles comprising materials with different functionalities are of great interest for fundamental research and biomedical/industrial applications. In this work, Fe3O4-Au nano-heterostructures were synthesized by a one-step thermal decomposition method. The hybrid nanoparticles comprise a highly crystalline 12 nm magnetite octahe...
Article
We present for the first time a method for the preparation of magnetic halloysite nanotubes (HNT) by loading of preformed superparamagnetic magnetite nanoparticles (SPION) of diameter size ∼6 nm with a hydrodynamic diameter of ∼10 nm into HNT. We found that the most effective route to reach this goal relies on the modification of the inner lumen of...
Article
The systemic delivery of composite nanoparticles remains an outstanding challenge in cancer nanomedicine, and the principal reason is a complex interplay of biological barriers. In this regard, adaptive cell transfer may represent an alternative solution to circumvent these barriers down to the tumor microenvironment. Here, tumor-tropic macrophages...
Article
Temperature treatment of magnetic Mn-Zn ferrites with the composition Mn0.6Zn0.2Fe2.2O4 up to 1100 °C results in a tremendous enhancement of the saturation magnetization by more than 60%. Employing a robust combined Rietveld refinement of powder X-ray and neutron diffraction (PXRD and NPD) data, it is revealed how a reordering of the cations takes...
Article
The development of reproducible protocols to synthesize hard/soft nano-heterostructures (NHSs) with tailored magnetic properties, is a crucial step to define their potential application in a variety of technological areas. Thermal decomposition has proved to be an effective tool to prepare such systems, but it has been scarcely used so far for the...
Article
Full-text available
Bi-magnetic core-shell spinel ferrite-based nanoparticles with different CoFe2O4 core size, chemical nature of the shell (MnFe2O4 and spinel iron oxide), and shell thickness were prepared using an efficient solvothermal approach to exploit the magnetic coupling between a hard and a soft ferrimagnetic phase for magnetic heat induction. The magnetic...
Article
The rational design of complex nanostructures is of paramount importance to gain control over their chemical and physical properties. Recently, magnetic-plasmonic heterostructured nanocrystals have been recognized as key players in nanomedicine as multifunctional therapeutic-diagnostic tools and in catalysis. Here we show how the properties of gold...
Article
Full-text available
We report the results of an unpolarized small-angle neutron-scattering (SANS) study on Mn-Zn ferrite (MZFO) magnetic nanoparticles with the aim to elucidate the interplay between their particle size and the magnetization configuration. We study different samples of single-crystalline MZFO nanoparticles with average diameters ranging between 8 to 80...
Article
Full-text available
Superparamagnetic iron oxide nanoparticles (SPIONs) are widely used in various biomedical applications, such as diagnostic agents in magnetic resonance imaging (MRI), for drug delivery vehicles and in hyperthermia treatment of tumors. Although the potential benefits of SPIONs are considerable, there is a distinct need to identify any potential cell...
Article
Iron oxide nanoparticles mineralized within the internal cavity of Ferritin protein cage are extremely appealing for the realization of multifunctional therapeutic and diagnostic agents for cancer treatment by drug delivery, magnetic fluid hyperthermia (MFH) and magnetic resonance imaging. Being the maximum mean size imposed by the internal diamete...
Article
Cobalt ferrite nanoparticles have been attracting considerable interest in the recent years because of the large number of potential applications, including magnetic storage, magnetic fluid hyperthermia and as contrast agents for magnetic resonance imaging. Physical properties of this class of materials depend critically on a number of parameters,...
Preprint
Full-text available
We report the results of an unpolarized small-angle neutron scattering (SANS) study on Mn-Zn ferrite (MZFO) magnetic nanoparticles with the aim to elucidate the interplay between their particle size and the magnetization configuration. We study different samples of single-crystalline MZFO nanoparticles with average diameters ranging between 8 to 80...
Article
We present multifunctional, biocompatible and biodegradable magnetic nanovectors based on different polyamidoamine (PAA) polymers tailored with different diagnostic and therapeutic properties. Using maghemite nanoparticles with average size 15.5 ± 2.8 nm prepared by thermal decomposition, superparamagnetic nanovectors were obtained by coating the n...
Article
Full-text available
The physicochemical properties of spinel oxide magnetic nanoparticles depend critically on both their size and shape. In particular, spinel oxide nanocrystals with cubic morphology have shown superior properties in comparison to their spherical counterparts in a variety of fields, like for example biomedicine. Therefore, having an accurate control...
Article
The synthesis of highly compacted, nanostructured soft magnets is highly desirable due to their promising properties for the development of electronic devices working at frequency higher than 2 MHz. In this work we investigated the potentiality of High Pressure Field Assisted Sintering Technique (HP-FAST). To this aim, we first synthesized soft Mn-...
Article
Dry reforming of methane is a highly endothermic reaction that produces syngas from CH 4 and CO 2 . It operates at 800–1000 °C to meet thermodynamic constraints, achieve high equilibrium conversion and minimize catalyst deactivation due to carbon deposition. In this paper we report our experimental results on the catalytic activation of dry reformi...
Article
Zinc substitution is often proposed as an efficient strategy to improve the performances of spinel ferrite nanoparticles, particularly related to their application as theranostic agents. In this work, a series of 8 nm spinel ferrite nanoparticles of formula CoxZnyFe3-(x+y)O4, is synthesized by thermal decomposition with the purpose of investigating...
Article
Reaction of cerium ammonium nitrate and tetrafluoroterephthalic acid in water afforded two new metal-organic frameworks with UiO-66 [F4_UiO-66(Ce)] and MIL-140 [F4_MIL-140A(Ce)] topologies. The two compounds can be obtained in the same experimental conditions, just by varying the amount of acetic acid used as crystallization modulator in the synthe...
Article
This paper aims to analyze the competition of single particle anisotropy and interparticle interactions in nanoparticle ensembles using a random anisotropy model. The model is first applied to ideal systems of non-interacting and strongly dipolar interacting ensembles of maghemite nanoparticles. The investigation is then extended to more complex sy...
Article
Recent studies on magnetic nanoparticles (MNPs) used for Magnetic Fluid Hyperthermia treatments have shown that Brownian rotation is suppressed when they are confined within a cell. To investigate this effect we conducted a systematic study of the Specific Absorption Rate (SAR) of colloidal suspensions of MNPs in water and gels at different agarose...
Article
An experimental ¹H NMR relaxometry investigation on iron oxide nanoparticles with different magnetic core size and coated with PolyAcrylic Acid (PAA), is presented. A full structural, morphodimensional and magnetic characterization of the nanoparticles has been performed by means of X-ray diffraction, Dynamic Light Scattering, Transmission Electron...
Preprint
Reaction of cerium ammonium nitrate and tetrafluoroterephthalic acid in water afforded two new metal-organic frameworks with UiO-66 [F4_UiO-66(Ce)] and MIL-140 [F4_MIL-140A(Ce)] topologies. The two compounds can be obtained in the same experimental conditions, just by varying the amount of acetic acid used as crystallization modulator in the synthe...
Article
Full-text available
Hyperthermia, though by itself generally non-curative for cancer, can significantly increase the efficacy of radiation therapy, as demonstrated by in vitro, in vivo, and clinical results. Its limited use in the clinic is mainly due to various practical implementation difficulties, the most important being how to adequately heat the tumor, especiall...
Article
Full-text available
Three 1D nickel coordination polymers (CPs) based on P,P’-diphenylethylenediphosphinic acid and three different bis-pyridine co-ligands, namely 4,4’-bipyridine (bipy), 1,2-bis(4-pyridyl)ethane (bpy-ane) and 1,2-bis(4-pyridyl)ethane (bpy-ene), were prepared in mild hydrothermal conditions from water solutions containing the dissolved reagents. The C...
Article
Full-text available
We report the synthesis and characterization of multi-functional monodisperse superparamagnetic Magnetic NanoParticles, MNPs, able to act as contrast agents for magnetic resonance and Magnetic Fluid Hyperthermia (MFH) mediators. The investigated samples are constituted of a magnetic core of magnetite and a biocompatible PAMAM coating. We studied tw...
Chapter
Magneto-optical (MO) techniques are sensitive and versatile tools for the study of magnetic nanomaterials. Interaction of polarized light with a magnetized medium brings information on the magnetic properties of the sample, thus making MO techniques a valid alternative to standard magnetometric techniques. On the other hand, spectroscopic degrees o...
Article
Magnetic nanoparticles are promising systems for biomedical applications and in particular for Magnetic Fluid Hyperthermia, a promising therapy that utilizes the heat released by such systems to damage tumor cells. We present an experimental study of the physical properties that influences the capability of heat release, i.e. the Specific Loss Powe...
Article
Controlling the interactions of functional nanostructures with water and biological media represents high challenges in the field of bioimaging applications. Large contrast at low doses, high colloidal stability in physiological conditions, absence of cell cytotoxicity and efficient cell internalization represent strong additional needs. To achieve...
Article
Full-text available
A novel efficient method has been developed for covalently linking Peptide Nucleic Acid (PNA) oligomers and superparamagnetic iron oxide nanoparticles (SPION), to produce water soluble hybrid nanomaterials that can act as MRI contrast agents, as hyperthermia promoters and as PNA carriers. The multistep procedure involves: (i) preparation of oleate-...
Article
Stable magneto-plasmonic nanoparticles in colloidal suspensions are fabricated by two-step nanosecond-pulsed laser ablation of nickel and silver targets in pure water and characterized by UV-visible absorption, Raman, XPS and magnetic measurements, along with high-resolution electron microscopy analysis. These systems are constituted by a low-cryst...
Article
Colloidal magnetic nanoparticles (MNPs) based on a nearly monodisperse iron oxide core and capped by oleic acid have been used as model systems for investigating the superparamagnetic spin dynamics by means of magnetometry measurements and nuclear magnetic resonance (¹H NMR) relaxometry. The key magnetic properties (saturation magnetization, coerci...