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Abstract: We present the first correlation between South American and African shear zones based on a recon-
struction model of SW Gondwana continental crust, correlating 57 Brasiliano–Pan-African crustal-scale shear
zones that sutured this palaeocontinent at c. 500 Ma. The final amalgamation and consolidation of the SW
Gondwana continental crust were attained by an anticlockwise rotation of three cratons (Kalahari, Angola
and São Francisco) in relation to the clockwise rotation of the Río de la Plata Craton in the Early Paleozoic.
These relative movements were accommodated by transcurrent shear zones active from 585 to 500 Ma within
the Pan-African–Brasiliano belts that surround these cratons. This kinematic interaction resulted in the initiation
of a long-term active margin starting with the Cambrian Pampean orogeny and ending with the Permian–
Triassic Gondwanide orogeny.

Major shear zones play a key role in the dynamic
reconstruction of supercontinent amalgamation (de
Wit et al. 2001; Oriolo et al. 2018a, b). They tend
to accommodate convergent continental blocks dur-
ing collision by lateral adjustments and indentation,
in response to remnant contractional forces (e.g.
Passchier et al. 2016; Faleiros et al. 2022). The
accommodation of stresses during collisional and
late collisional intervals occurs not only by the reac-
tivation of high strain zones but also by the formation
of new shear zones.

The consolidation of the Gondwana superconti-
nent involved diachronous convergence of multiple
smaller continents over 150 myr (Meert 2003; de
Wit et al. 2008; Schmitt et al. 2018). The result
was a complex puzzle of cratons and orogenic belts
with a ductile to ductile–brittle fabric anatomically
adjusted to the cratons. The convergence of several
cratonic blocks, building up the Gondwana continen-
tal plate, generated locally tectono-metamorphic
interference zones, involving orogenic triple junc-
tions (Trouw et al. 2013; Passchier et al. 2016). An
example is in central to east Brazil, where the evolu-
tion of the 620–500 Ma Ribeira Orogen overlaps in
space and time with the 690–600 Ma Brasília

Orogen (Peternel et al. 2005; Trouw et al. 2013),
documented by the Ribeira metamorphic isograds
that crosscut the Brasília structures, added to the
reactivation and formation of strike-slip shear
zones. Other orogenic triple junctions are poorly
understood within the SW Gondwana crust, espe-
cially the belts and cratons that occur near and at
the modern Atlantic passive continental margins.
De Wit et al. (2008) presented connections between
the South American and African Precambrian ter-
ranes and structures, defining possible piercing
points (Fig. 1a). However, the lack of data on the
submerged continental crust adds several uncertain-
ties to these connections, compromising the interpre-
tations of the tectonic evolution of the orogenic belts
that constitute Gondwana (Basei et al. 2005; Kono-
pásek et al. 2016; Will et al. 2019).

The objective of this paper is to review the role in
time and space of the crustal-scale strike-slip shear
zones of the Ediacaran–Cambrian Brasiliano–Pan-
African collisional orogens located near and at the
Atlantic continental margins. Based on a literature
compilation and on the experience of many years
of field work by the authors, especially in key
regions like SSE Brazil, Uruguay and NW Namibia,
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we investigate the nature and finite framework of the
tectonic terranes in the Dom Feliciano–Ribeira–
Kaoko–Damara–Gariep–Saldania orogenic system
that led to SW Gondwana’s final amalgamation
and consolidation as a continent. After a concise
description of the chrono-thermal-kinematic history
of 57 crustal-scale shear zones, a step-by-step recon-
struction is presented to show how the different pre-
Gondwana continents and minor blocks came
together and then adjusted along these shear zones
until final consolidation. This is the first paper to pre-
sent the correlation between South American and
African shear zones based on a reconstruction
model of the SW Gondwana continental crust, by
extracting the South Atlantic oceanic lithosphere
through plate kinematics methodology, taking into
account the intraplate continental deformation
including the current passive continental margins.
Only with the kinematic reconstruction of the Juras-
sic (pre-rift) Period is it possible to perform a precise
correlation amongst the Brasiliano–Pan-African
crustal-scale shear zones that sutured this palaeocon-
tinent at c. 500 Ma. As pointed out by our visionary
geologist Maarten deWit, ‘obtaining a “tight” recon-
struction for Gondwana will remain an elusive goal
unless better integration between marine geophysics
and on-land geology is achieved’ (deWit et al. 2008,
pp. 407–408).

Ediacaran–Cambrian Gondwana
amalgamation

The convergence of the Neoproterozoic cratons to
build up the Gondwana crust was diachronous and
is recorded in 680 to 500 Ma orogenic belts. Schmitt
et al. (2018) compiled 55 orogenic belts over the
entire Gondwana related to this amalgamation,
grouping them in two main orogenic intervals: (1)
670–575 and (2) 575–480 Ma. During Phase 1, the
proto-Gondwana core was formed with few but

long orogenic belts, some more than 2000 km in
length (e.g. Ganade de Araujo et al. 2014). The sec-
ond orogenic interval, in the Cambrian and Ordovi-
cian, includes more than 40 orogenic belts
produced by the convergence and collision of
peripheral continental blocks, such as the Kalahari
and Río de la Plata cratons, against proto-Gondwana,
locus of the South Atlantic rifting during the Creta-
ceous (Fig. 1b).

SW Gondwana continental crust is partially pre-
served today in the southern part of South America
and Africa. This continental domain was fully amal-
gamated at the end of the Cambrian, after more than
150 myr of tectonic convergence between six cra-
tonic blocks (Schmitt et al. 2018). These Neoproter-
ozoic palaeocontinents were: São Francisco–Congo,
Angola, Kalahari, Luís Alves, Paranapanema and
Río de la Plata (Fig. 1b). Here, we describe their
late Gondwana amalgamation, focusing not on the
orogenic belts but on the convergent palaeoconti-
nents, their geometry and timing of collision. The
behaviour of the syn- to late-collisional shear
zones, which sutured SW Gondwana, resolved cra-
tonic indentation to orthogonal and oblique
convergence.

The Río de la Plata Craton is well exposed in the
Uruguayan shield, but it is mostly covered by the
sedimentary and volcanic units of the younger Gond-
wana basins (Chacoparaná and Hesperides; Pángaro
et al. 2016). This craton collided with the Kalahari,
Angola and Luís Alves cratons suturing SW Gond-
wana (Fig. 1b). These collisions are registered in
the Dom Feliciano, Kaoko, Gariep and Saldania
belts that record at least 200 myr of tectonic activity
pre-dating the final consolidation of Gondwana
(Goscombe et al. 2003a; Goscombe and Gray
2007, 2008; De Toni et al. 2020a, b; Hueck et al.
2020; Battisti et al. 2022). During syn- to late-
collisional stages, subduction started along its west-
ern margin, recorded by the Pampean and Famati-
nian orogenies in the latest Proterozoic to

Fig. 1. (a) Simplified geological map of West and Central Gondwana showing the major Neoproterozoic shields with
their embedded Precambrian cratons, and their margins that were remobilized in the Pan-African/Brasiliano orogens.
Nine Neoproterozoic ‘piercing’ points between once conterminous Pan-Gondwana sub-vertical lineaments are identified
along opposite sides of the South Atlantic. In addition, the mid-Phanerozoic (c. 250 Ma) ‘piercing points’ associated
with the Cape Fold Belt and the Sierra de la Ventana are also shown. (b) Tectonic map of SW Gondwana with cratons
(in pink) and post-670 Ma orogens’ mobile belts (in orange and green) classified by orogenic age, major crustal-scale
structures and oceanic-derived units. Cratonic blocks: AC, Angola; AM, Amazonia; CC, Congo; KH, Kalahari; LA, Luís
Alves; PP, Paranapanema; PR, Parnaíba; RA, Río Apa; RP, Río de la Plata; SF, São Francisco. Orogenic belts: 1,
Pampean; 2, Caapucú High; 3, Paraguay; 4, Araguaia; 5, Borborema (South); 6, Rio Preto; 7, Brasília; 8a, Araçuaí
(West); 8b, Ribeira (Paraíba/Embu); 8c, Apiaí to East Araçuai and Occidental Terrane; 9, Ribeira (Oriental Terrane); 10,
Cabo Frio Tectonic Domain; 11, Curitiba Terrane; 12, Paranaguá Terrane; 13, Dom Feliciano; 14, Cuchilla Dionísio; 15,
Nico Pérez; 16, Mar del Plata Terrane; 17, Saldania; 18, Gariep; 19, Damara; 20, Kaoko (Coastal); 21, Kaoko (Central–
East); 22, Angola; 23, West Congo; 24, Lufilian; 25, Zambezi. CAB, Central Angola Belt; CAMB, Central Angola
Mobile Belt; CCC, Cuvette Congo Craton; CSFB, Central Saharan Fold Belt; NWCC, Mboumou-Uganda Craton;
SWCC, SW Congo Craton; TC, Tanzania Craton; TKL, Transbrasiliano–Kandi Lineament; ZFB, Zalingai Fold Belt.
Source: (a) modified from de Wit et al. (2008); de Wit and Linol 2015; (b) modified from Schmitt et al. 2018.

Transatlantic SW Gondwana crustal-scale shear zones

Downloaded from https://www.lyellcollection.org by UNIVERSIDADE FEDERAL DO RIO DE JANEIRO on Jul 16, 2023



Ordovician (Rapela et al. 2007; Martino et al. 2010;
Casquet et al. 2018). These orogenies affected the
Pampia block, which is partially covered by Ceno-
zoic Andean sediments (Ramos et al. 2010). The tec-
tonic contact between the Río de la Plata Craton and
the Pampia block coincides with the extrapolation of
the Transbrasiliano Lineament (Fig. 1b), a c.
3000 km Ediacaran–Cambrian shear zone, used as
a prominent piercing point in the equatorial Atlantic
(Fig. 1a). The southern limit of the Río de la Plata
Craton remained a passive margin until the Permian,
when the Patagonia continental block collided with
SW Gondwana during the Gondwanides orogeny
(Trouw and de Wit 1999; Tomezzoli and Cristallini
2004; Ramos 2008).

The Paranapanema block is covered by the
Parana Basin sedimentary units (Fig. 1b). This
inferred craton is based on geophysical data charac-
terized by a distinct P-wave high-velocity anomaly
corroborated by geometrical synthetic tests (Manto-
vani and Brito Neves 2009; Affonso et al. 2021).
The crustal framework of the basement is interpreted
as NE–SW and NW–SE linear structures (Pinto
and Vidotti 2019). The Apiaí Terrane, in the south-
ern Ribeira Belt, and the Socorro Guaxupé nappe,
in the southern Brasília Belt, have pre-
Neoproterozoic basement units that are interpreted
as part of the Paranapanema reworked continental
margin (Trouw et al. 2013; Campanha et al. 2016;
Tedeschi et al. 2018).

The Luís Alves microplate is considered an
exotic continental fragment composed of Archean
to Paleoproterozoic tonalite–trondhjemite–granodi-
orite suite, mafic–ultramafic bodies and paragneiss
remnants, bounded by major shear zones with no
correlation with the adjacent crustal terranes (Passar-
elli et al. 2018). This crustal block was formed by
several magmatic and metamorphic events, and
since the end of the Paleoproterozoic, it has been
cold and stable, being surrounded by terranes pro-
duced or intensively reworked during the Neoproter-
ozoic Brasiliano orogenic cycle (Basei et al. 2009;
Passarelli et al. 2018; Heller et al. 2021).

The Kalahari Craton is composed of an amalgam-
ation of smaller cratonic blocks and orogenic belts,
such as the Kaapvaal Craton, the Zimbabwe Craton
and the Choma–Kalomo block, including rocks
from the Archean to the Mesoproterozoic (Jacobs
et al. 2008). Its amalgamation began in the Archean,
with episodes in the Paleoproterozoic marked by the
occurrence of the intracontinental Bushveld magma-
tism. During the Mesoproterozoic, subduction zones
surrounded the Kalahari proto-craton, giving rise to
the Namaqua–Natal orogeny, and during the Neo-
proterozoic, the final incorporation of the Kalahari
Craton into Gondwana (Oriolo et al. 2018a). The
collision between the Kalahari and the southern
Angola cratons generated the Damara Orogen, an

ENE–WSW belt well preserved in southern Africa.
Its eastern prolongation defines the Lufilian–Zam-
besi Belt, and its western prolongation is orthogo-
nally disrupted by the Atlantic rift (Fig. 1). The
oldest orogenic ages of the Damara Orogen are
590–580 Ma (Lehmann et al. 2016), and the main
collisional interval is 540–520 myr (Jung and
Mezger 2003; Goscombe et al. 2022).

Further north, the Rehoboth inlier is a Mesopro-
terozoic domain, located in central Namibia, exposed
between the SouthernMargin Zone and the Southern
Foreland of the Pan-African Damara Orogenic Belt
(Ziegler and Stoessel 1988; van Schijndel et al.
2011). It is comprised of sedimentary to volcanic
rock units, intruded by granites that can reach batho-
lithic dimensions, with U–Pb ages from 1210 to
1080 Ma (Becker et al. 2005; van Schijndel et al.
2011).

The Angola Craton, from west to central Africa,
is bordered to the west and south by Neoproterozoic
mobile belts (Fig. 1b; e.g. Kaoko and Damara,
respectively). The craton is largely covered by the
Kalahari sands to the east. Most authors considered
the Angola Craton as an Archean to Mesoprotero-
zoic continental block that was part of the larger
Congo Craton, but the connection is mostly covered
by the Phanerozoic sediments of the Congo Basin
(Jelsma et al. 2018). De Wit and Linol (2015) pro-
posed that there is a Paleoproterozoic NW–SE
mobile belt (Central Angola Mobile Belt; Fig. 1a)
separating the Angola Craton from the major Congo
Craton. As this belt could have been reworked dur-
ing the Pan-African orogeny, some authors propose
that the Angola Craton was not anchored to the
Congo Craton, thereby allowing space for the Neo-
proterozoic subduction models envisaged to account
for the pre-collision calk-alkaline magmatic prov-
inces in the Brasiliano belts, now located along the
Atlantic coast (Heilbron et al. 2008; Tupinambá
et al. 2012).

Methods

This work is mainly a compilation from the literature
covering data on 57 crustal-scale shear zones of SW
Gondwana. We adopt here the broader concept of
shear zone, i.e. a tabular zone in which strain is nota-
bly higher than in the adjacent rocks (Fossen 2016).
The kinematic sense is not reduced to the simple
shear mode, but may also include pure shear. There-
fore, we considered all oblique tectonic regimes.

The compilation focused on crustal-scale struc-
tures, mostly with at least 100 km length (some
exceptions to this are explained in the text), that
are near or at the Atlantic conjugate continental
margins. The database is presented in Table 1 and
includes parameters such as length, width,
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pressure–temperature (P–T) conditions, rock micro-
structures, kinematics, displacement, geochronolog-
ical data and tectonic setting (intra-terrane structure,
terrane limiting structure and/or suture zone). The
shear zones were vectored on the current geological
and tectonic maps of South America and Africa, sim-
plified to scale 1:12 m, from the Gondwana database
of the Digital Centre of Gondwana Geoprocessing
(DCGG) at the Universidade Federal do Rio de
Janeiro (UFRJ) in Brazil.

The reconstruction of SW Gondwana was based
on the new geological map of Gondwana (Schmitt
et al. 2023). This new kinematic reconstruction of
the tectonic plates for the South Atlantic region
used in part the model proposed by Heine et al.
(2013) and Richetti et al. (2018), modified through
the GPlates software (Müller et al. 2018), with the
South African platelet (100) fixed in the current coor-
dinates (Fig. 2a). The Amazonia (201), Tucano (36),
Benue (14) and West Africa (714) platelets were
maintained, as well as their rotation poles determined
by Heine et al. (2013; Fig. 2a), detailed in Table 2.
We adjusted and closed the northern African region,
modifying the reconstruction model of Richetti et al.
(2018) by creating new platelets and internal bound-
aries for the African plate (Fig. 2a). The platelet 711
was created using the Atlas mountain belt as an inter-
nal boundary. The platelet 713 (Algeria) was defined
considering the Cretaceous deformation recorded on
the geology of the Sahara, Gourara, Oued Mya and
Illizi–Ghadames basins, providing a better fit with
platelet 715 (Nubian shield). In platelet 715, three
new subdivisions are presented, generating platelet
716 (Sinai), with anticlockwise rotation; platelet
710 (Danakil), with rotation poles from Collet
et al. (2000); and platelet 712 (Aisha) with clockwise
rotation.

The area examined in this paper involves the fit of
three platelets – South Africa (100), Central Brazil
(201) and South Brazil + Uruguay + North Argen-
tina (40) – in the new reconstruction model for SW
Gondwana proposed herein (Fig. 2b). The internal
plate boundaries (platelets) of South America and
Africa were modified from Richetti et al. (2018)
using the geology and the extrapolation of the frac-
ture zones of the oceanic crust. The actual COB (con-
tinent–oceanic boundary) lines from the Africa and
South America plates were traced based on Karner
and Driscoll (1999); Torsvik et al. (2009); Franke
et al. (2010); Soto et al. (2011); Gaina et al.
(2013); Heine et al. (2013); Kumar et al. (2013);
and Stica et al. (2014). In order to undo the Creta-
ceous deformation related to the rifting process,
palaeo-COBs were created for the continental mar-
gins based on the equidistance between the current
coastlines and COBs. Level quota values were
assigned for the COBs and the shorelines to build
up a digital elevation model (DEM) where

reconstructed COBs were reduced to 30, 50 and
70% from the current shoreline. Depending on the
nature of the continental margin (e.g. magma-poor
or magma-rich), a different COB reduction wasmod-
elled for each segment. For instance, platelet 40 was
adjusted with a 50% reduction in the COB and plate-
let 41 was adjusted with a 70% reduction in the COB
for the South American margin and its African coun-
terpart, respectively (Figs 2 & 3).

New rotation poles were calculated for these new
platelets (Table 2). The Paraná/La Plata (40) and
Valdes (41) platelets were adjusted with the African
platelet using M0–M9+ magnetic anomalies (Love-
cchio et al. 2020; Reeves 2020a). The Pampean
platelet (42) moves with respect to platelet 40. The
platelet 43 (Patagonia) follows the movement of
platelet 41. The overlap between plate 40 and 201
is here proposed based on the occurrence of the Tor-
res syncline, a Cretaceous structure and magmatic
domain (Paraná traps) that can be correlated as a
piercing point with the Etendeka traps in Namibia
(Fig. 3).

Shear zones of SW Gondwana

Below, we describe 57 crustal-scale Late Neoproter-
ozoic–Cambrian shear zones of SW Gondwana,
developed within the orogenic belts that surround
the cratons, grouped within their respective conti-
nents, Africa (Afr) and South America (SAm) and
located in their tectonic units (Fig. 1b). A continental
scale geological map of SW Gondwana exhibits
these structures and the terrane distribution classified
by their ages (Fig. 3). All the compiled data are
shown in Table 1. The location of each shear zone
is shown on the structural map with their acronyms
according to Table 1 and text below (Fig. 4). We
also present a diagram with a compilation of the
deformation ages plus the structural map with the
cratons’ contours, and their tectonic foliation traces
are discriminated from the main fabric of the Pan
African–Brasiliano orogens (Figs 5 & 6).

Pampia block (SAm)

Córdoba Fault (CRD). To the west of Río de La
Plata, the Pampia cratonic block was affected by
the Pampean orogeny, recorded by a north–south
tectonic foliation, related to a convergent setting
that prevailed during the Late Neoproterozoic until
the Ordovician (Rapela et al. 2007; Casquet et al.
2018). In the Sierras de Córdoba sector, the boun-
dary between the Pampia block and the Río de la
Plata Craton is the Córdoba Fault (CRD), a dextral
strike-slip fault that was active in the Cambrian dur-
ing and after the Pampean orogeny (Casquet et al.
2018). The interpretation of this structure is based

Transatlantic SW Gondwana crustal-scale shear zones
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Table 1. Compiled data from 57 SW Gondwana Ediacaran–Cambrian shear zones (South America and Africa)

Shear zone Acronym Width
(km)

Length
(km)

Tectonic domain Continent Crustal level T (°C) P (kbar) Strike

Sierra de la Ventana
Thrust Front

SLV .100 Sierra de la Ventana
Fold and Thrust
Belt

SAm middle–upper NW–SE

Córdoba Fault/shear
zone

CRD .1000 Pampean Orogen,
Argentina

SAm upper north–south

Isla de Patrulla ISP .100 Uruguay SAm north–south
Sarandí del Yí (a) SY 2 200 Nico Pérez Terrane,

Uruguay
SAm middle–upper 650–600 NNW–SSE

Sarandí del Yí (b) SY 2 200 Nico Pérez Terrane,
Uruguay

SAm middle–upper 550–450 NNW–SSE

Sierra Ballena SB 5 .300 Cuchilla Dionisio
Terrane, Uruguay

SAm middle–upper 550–400 NNE-SSW

Tupambaé TU 60 Nico Pérez Terrane,
Uruguay

SAm 400–550 east–west

Sierra de Sosa SS .100 Nico Pérez Terrane,
Uruguay

SAm 550–300 NE–SW

María Albina MA .100 Nico Pérez Terrane,
Uruguay

SAm 550 NNE–SSW

Cordillera CR .100 Cuchilla Dionisio
Terrane, Uruguay

SAm ,450 NE–SW

Laguna de Rocha LR 2 100 Cuchilla Dionisio
Terrane, Uruguay

SAm middle–upper NNE–SSW

Cerro Amaro CA ,10 .100 Cuchilla Dionisio
Terrane, Uruguay

SAm 450–550 NNE–SSW

Ayrosa Galvão–
Arroio Grande

AG 8 .100 Dom Feliciano Belt SAm 400–600 ENE–WSW

Dorsal de Canguçú DG 2 200 Dom Feliciano Belt SAm middle–upper 650–450 NE–SW

Passo do
Marinheirinho

PM c. 100 Dom Feliciano Belt SAm NNE–SSW

Ibaré IB 3 100 São Gabriel block SAm lower–middle 350–500 NW–SE

Major Gercino MG 10 80 Dom Feliciano Belt SAm middle–upper 350–500 2.0–5.0 NE–SW

Itajaí–Perimbó IP 15 80 Dom Feliciano Belt SAm middle–upper 350–500 NE–SW

Palmital PAL c. 85 Ribeira South SAm middle–upper 400–500 NW–SE

Alexandra AX c. 80 Ribeira South SAm middle–upper 400–500 NW–SE

Serrinha (Passarelli
et al. 2011)

SE .1 .150 Ribeira South SAm middle 650–740 5.7–9.0 NE–SW

Piên PI 200 Ribeira South SAm middle–upper 300–450 NE–SW

Serra do Azeite SA 2 c. 100 Ribeira South SAm middle–upper 400–500 NE–SW
Lancinha–Cubatão LAN 15 c. 250 Ribeira South SAm middle–upper 400–500 ENE–WSW

Cubatão CUB 1 c. 450 Ribeira South SAm middle–upper 460–520 4.5–9.5 ENE–WSW

Itariri ITR 0.7 .35 Ribeira South SAm middle 670–730 5.4 east–west
Morro Agudo MAG c. 125 Ribeira South SAm 250–280 NNE–SSW
Ribeira RI 3 c. 100 Ribeira South SAm middle–upper 400–600 5.0–7.0 ENE–WSW
Itapirapuã ITP .150 Ribeira South SAm 500–700 5.0–11.0 NE–SW
Agudos AD c. 100 Ribeira South SAm NE–SW
Taxaquara TX 1 150 Ribeira South SAm middle–upper 420–530 2.0–5.0 NE–SW
Guararema GR c. 200 Ribeira South SAm middle–upper NE–SW
Caucaia CC c. 200 Ribeira South SAm 400–600 NE–SW

Central Tectonic
Boundary

CTB 1 300 Ribeira Central SAm lower–middle NE–SW
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Kinematic Cataclastic/
mylonitic

Age (Ma) Method Age
(Ma)

Method Terrane
limit

References

Thrust Mylonitic 275 No Ramos (2008)

Dextral Cataclastic After 520 Yes Rapela et al. (2007)

Sinistral Mylonitic No Passarelli et al. (2011)
Dextral Mylonitic 623–596 U–Pb 600 Ar–Ar Yes Oriolo et al. (2015, 2016a, b)

Sinistral Mylonitic/
cataclastic

589–584 U–Pb 594–587 Ar–Ar Yes Oriolo et al. (2016a, b)

Sinistral Mylonitic/
cataclastic

563–551 U–Pb SHRIMP
zrn

586–579 Ar–Ar Ms,
hBL

Yes Oyhantçabal et al. (2009, 2010, 2011a,
b)

Dextral Mylonitic 549 U–Pb LA-ICP-
MS zrn

No Oriolo et al. (2016b)

Sinistral Mylonitic 610–598 U–Pb zrn No Oriolo et al. (2016b)

Sinistral Mylonitic/
cataclastic

600 Ar–Ar
muscovite

No Oriolo et al. (2016b)

Sinistral Mylonitic/
cataclastic

632 K–Ar Ms No Oriolo et al. (2016b); Oyhantçabal et al.
(2010)

Sinistral Mylonitic/
cataclastic

564 K–Ar Ms No Menezes Santos (2010); Silva Lara
et al. (2021)

Sinistral Mylonitic 628 U–Pb 615 K–Ar Ms No Oriolo et al. (2016b)

Dextral Mylonitic 615–574 U–Pb No Klein et al. (2018); Vieira et al. (2019,
2020)

Dextral Mylonitic/
cataclastic

658–540 U–Pb zrn/
Rb–Sr WR

624–531 K–Ar/Ar–Ar
(Bt/Ms)

Yes Frantz et al. (2003); Koester et al.
(1997, 2008); Oriolo et al. (2018a,
b); Vieira et al. (2020)

Sinistral Cataclastic ,595 U–Pb zrn No Oriolo et al. (2018a, b)

Dextral Mylonitic/
cataclastic

662–560 K–Ar Ms Yes Hueck et al. (2020); Oriolo et al.
(2018a, b); Philipp et al. (2018)

Dextral Mylonitic/
cataclastic

640–570 U–Pb 570 K–Ar No Bitencourt (1996); Chemale et al.
(2003, 2012); Passarelli et al. (2010,
2011)

Dextral Mylonitic/
cataclastic

600–540 U–Pb No Percival et al. (2021); Basei et al.
(2011); Guadagnin et al. (2010);
Schroeder (2006)

Sinistral Mylonitic/
cataclastic

531–520 K–Ar Yes Patias et al. (2019); Cury (2009); Siga
(1995)

Sinistral Mylonitic/
cataclastic

Yes Patias et al. (2019); Cury (2009); Siga
(1995)

Top-to-
NNW/
sinistral

Mylonitic 600–540 U–Pb 575–504 K–Ar Yes Cury (2009); Passarelli et al. (2011)

Oblique
thrust/
dextral

Mylonitic/
cataclastic

615 U–Pb 644–595 K–Ar (Bt/
Amp)

Yes Harara (1993)

Sinistral Mylonitic 579 U–Pb 600–570 K–Ar Yes Faleiros et al. (2011)
Dextral Mylonitic/

cataclastic
Yes Cabrita et al. (2022); Faleiros et al.

(2022); Castro et al. (2014);
Passarelli et al. (2011)

Dextral Mylonitic/
cataclastic

850–760/
610–570

U–Pb, K–Ar,
Ar–Ar

Yes Cabrita et al. (2022); Faleiros et al.
(2022); Castro et al. (2014);
Passarelli et al. (2011)

Sinistral Mylonitic 626–580 U–Pb zrn 500 Ar–Ar Yes Passarelli et al. (2011, 2019)
Sinistral Cataclastic No Faleiros et al. (2022)
Dextral Mylonitic 623–579 U–Pb No Faleiros et al. (2011)
Dextral Mylonitic 675–600 U–Pb No Faleiros et al. (2022)
Top-to-SE Mylonitic No Faleiros et al. (2022)
Dextral Mylonitic 560–535 U–Pb 550–536 Ar–Ar Yes Ribeiro et al. (2019, 2020)
Dextral Mylonitic Yes Silva (2017); Ribeiro et al. (2019, 2020)
Dextral Mylonitic No Meira et al. (2019); Cabrita et al.

(2022); Faleiros et al. (2022)
Dextral/

top-
down-
to-NW

Mylonitic 600–550 Yes Fontainha et al. (2021); Heilbron
et al. (2008)

(Continued)
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Table 1. Continued.

Shear zone Acronym Width
(km)

Length
(km)

Tectonic domain Continent Crustal level T (°C) P (kbar) Strike

Além Paraíba AP 5 200 Ribeira Central SAm lower–middle 600–780 NE–SW

Cabo Frio Thrust CFT 1 300 Ribeira Central SAm lower–middle 700–750 8.0 NE–SW
Buquira BQ .150 Brasília South SAm ENE–WSW

São Bento do
Sapucai–
Caxambu

SBC 3 220 Brasília South SAm middle–upper 450–650 1.5–3.0 NE–SW

Extrema EX 130 Brasília South SAm NE–SW
Maria da Fé MF 1.5 30 Brasília South SAm 400–600 NNE–SSW
Três Corações TC .1 70 Brasília South SAm 400–500 NE–SW
Campo do Meio CM .250 Brasília South SAm east–west

Poços de Calda PC 170 Brasília South SAm NE–SW
Kwanza shear zone KW 1–2 c. 80 Angola–West

Congo Belt
Afr east–west

Three Palms
Mylonite Zone

TH 1–2 c. 390 Kaoko Belt,
Namibia

Afr middle–upper 545–555 4.0–4.8 NNW–SSE

Village Mylonite
Zone

VMZ 1 63 Kaoko Belt,
Namibia

Afr middle–upper 634 4.0 north–south

Khumib Mylonite
Zone

KHU 1 c. 138 Kaoko Belt,
Namibia

Afr middle–upper 704 5.2 north–south

Hartmann Mylonite
Zone

HAR 1 c. 117 Kaoko Belt,
Namibia

Afr middle–upper north–south

Purros Mylonite
Zone

PMZ 5 .600 Kaoko Belt,
Namibia

Afr lower–middle 640 8.8 north–south

Ahub Mylonite Zone AH 1 c. 140 Kaoko Belt,
Namibia

Afr .500–
590

NE–SW

Ogden Mylonite
Zone

OG 5 c. 15 Damara Belt,
Namibia

Afr 500–465 4.0–5.0 NE–SW

Khan shear zone
(low T)

KSZ c. 40 Damara Belt,
Namibia

Afr lower–middle

Khan shear zone
(low T)

KSZ c. 40 Damara Belt,
Namibia

Afr lower–middle

Goantagab shear
zone

GSZ 1–2 c. 84 Damara Belt,
Namibia

Afr NW–SE

Okahandja shear
zone (high-T,
main branch)

OSZ 10–300 c. 560 Damara Belt,
Namibia

Afr lower–middle 584+ 9 4.75 NW–SE

Okahandja shear
zone (medium-T,
main branch)

OSZ Damara Belt,
Namibia

Afr NW–SE

Okahandja shear
zone (low-T)

OSZ Damara Belt,
Namibia

Afr east–west

Okahandja shear
zone (low-T)

OSZ Damara Belt,
Namibia

Afr east–west

Tinkas shear zone
(low-T)

TSZ 15 c. 10 Damara Belt,
Namibia

Afr middle–upper east–west

Colenso Fault CF 1 c. 150 Saldania Belt, South
Africa

Afr NW–SE

Colenso Fault CF 1 c. 150 Saldania Belt, South
Africa

Afr NW–SE

Khorixas–
Gaseneirob shear
zone

KG 1 c. 560 Damara Belt,
Namibia

Afr upper 450 ENE–WSW

Kunene shear zone KN 4 c. 166 Kaoko Belt,
Namibia

Afr middle min. 450 north–south

Amp; amphibole; ap., apatite; Bt, biotite; hBL, hornblende; mnz., monazite; Ms, muscovite; ttn., titanite; zrn, zircon.
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Kinematic Cataclastic/
mylonitic

Age (Ma) Method Age
(Ma)

Method Terrane
limit

References

Dextral Mylonitic 580–530 U–Pb No Fontainha et al. (2021); Giraldo et al.
(2019); Cavalcante et al. (2018)

Thrust Mylonitic 530–490 U–Pb mnz. Yes Schmitt et al. (2004, 2016)
Dextral Mylonitic No Duffles et al. (2016); Fontainha et al.

(2021)
Dextral Mylonitic 610–552 U–Pb No Fontainha et al. (2021); Vinagre et al.

(2016, 2020)

Dextral Mylonitic 573–563 U–Pb zrn No Fontainha et al. (2021)
Sinistral Mylonitic 586+ 8.7 U–Pb No Zuquim et al. (2011)
Dextral Mylonitic No Fontainha et al. (2021)
Sinistral Mylonitic No Ebert and Hasui (1998); Zanardo et al.

(2006); Fontainha et al. (2021)
Dextral Mylonitic No Fontainha et al. (2021)
Dextral 540–490 Relative dating

(metamorphic
peak)

Monié et al. (2012)

Sinistral Mylonitic 580–550 U–Pb zrn and
mnz.

524 + 7 Ar–Ar
muscovite

Yes Oriolo et al. (2018a, b); Konopásek
et al. (2005); Gray et al. (2006);
Goscombe et al. (2003a, b);
Goscombe and Gray (2008); Foster
et al. (2009); Franz et al. (1999);
Kröner et al. (2004)

Sinistral Mylonitic Goscombe et al. (2003b); Goscombe
and Gray (2008)

Sinistral Mylonitic Goscombe and Gray (2008); Foster
et al. (2009)

Sinistral Mylonitic Foster et al. (2009); Oriolo et al.
(2018a, b)

Sinistral Mylonitic 580–550 U–Pb 524 + 6 Ar–Ar
hornblende

Yes Oriolo et al. (2018a, b); Konopásek
et al. (2005); Goscombe et al.
(2003a, b, 2017); Foster et al. (2009)

Sinistral Mylonitic Goscombe and Gray (2008)

Sinistral Mylonitic Foster et al. (2009)

Dextral Mylonitic 500–495 U–Pb (LA-ICP-
MS)

Goscombe et al. (2022)

Sinistral Mylonitic c. 485 Goscombe et al. (2022)

Sinistral Mylonitic Post 530 U–Pb zrn in
Voetspor
granite

Goscombe et al. (2017); Passchier et al.
(2007, 2016); Schmitt et al. (2012)

Dextral Mylonitic 525–521 U–Pb (LA-ICP-
MS) ttn. and
ap.

Goscombe et al. (2022)

Dextral Mylonitic 515.9 +
1.9

U–Pb (LA-ICP-
MS) mnz.

Goscombe et al. (2022)

Mylonitic

Mylonitic

Sinistral
normal

Mylonitic 485–513 Correlated with
sinistral
reactivation
of OSZ and
KSZ

Goscombe et al. (2022)

Sinistral Mylonitic 550 U–Pb, zrn
syntectonic
granites

Kisters et al. (2002)

Dextral Mylonitic/
cataclastic

540–510 U–Pb, zrn
syntectonic
granites

Kisters et al. (2002)

Dextral/
top-to-
NNW

Mylonitic 590–510 Personal comm. with Schmitt; Miller
(1983)

Sinistral Mylonitic Post 590 Relative dating Goscombe et al. (2017)
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mainly on geophysical data, and it is considered a
tectonic suture, interpreted as post-520 Ma because
it truncates the main fabric and metamorphic peak
assemblage of the Pampean orogeny.

Dom Feliciano Belt (SAm)

Sarandí del Yí (SY). This roughly north–south trans-
current shear zone is a terrane limit separating the
Río de la Plata Craton to the west from the Nico
Pérez Terrane to the east, in the Uruguayan shield
(Figs 1 & 4). The latter is an Archean block affected
by the Neoproterozoic tectonic events, with magma-
tism and metamorphism (Fig. 3; Oyhantçabal et al.
2011a, b; Oriolo et al. 2018a, b). Its regional trend
changes from north–south in the south to NNW–

SSE in its northern part, grading from proto- to ultra-
mylonite towards the east; it is c. 2 km in width and
at least 200 km in length. The mylonitic foliation is
subvertical with mean dip to the west, with the
stretching lineation plunging shallowly to the south
(Oriolo et al. 2015). Macro- to microstructural and
geochronological data indicate two well constrained
times of deformation (Oriolo et al. 2015, 2016a).
The earliest deformation involved dextral shearing
under upper to middle amphibolite facies conditions
(600–650°C), giving rise to the reactivation of

Paleoproterozoic crustal fabrics in the easternmost
Piedra Alta Terrane (Oriolo et al. 2015). The age
of dextral shearing is constrained to c. 630–600 Ma
by U–Pb data on zircon, Ar–Ar data on amphibole
and U–Pb data on titanite from mylonites (Oriolo
et al. 2016a, b). It underwent c. 584 Ma sinistral
shearing with a pure-shear-dominant component,
giving rise to contemporaneous magmatism under
lower amphibolite to upper greenschist facies condi-
tions (450–550°C) (Oriolo et al. 2015). The age of
sinistral shearing is constrained by U–Pb data on
zircon, Ar–Ar data on amphibole, Ar–Ar data on
muscovite and U–Pb data on titanite (Oriolo et al.
2016a, b). The end of ductile deformation is con-
strained by the post-kinematic Cerro Caperuza gran-
ite, which yielded a 570.9 + 11.0 Ma age obtained
with U–Pb laser ablation inductively coupled plasma
mass spectrometry (LA-ICP-MS) zircon age (Oriolo
et al. 2016b).

Isla de Patrulla (ISP). This north–south sinistral
shear zone is a conjugate fault (Fig. 4). It separates
the Patrulla block (Arroyo del Soldado Group)
from the China metamorphic Complex in the Nico
Pérez Terrane (Gaucher et al. 2005; Rossello et al.
2007; Blanco 2010).

Fig. 2. (a) New reconstruction model for South America and Africa from the new geological map of Gondwana,
built for the Jurassic Period (Schmitt et al. 2023). The rectangle indicates the studied area in SW Gondwana. (b) SW
Gondwana study area of this paper, comprising four reconstructed platelets. Note also that dredged samples of
continental crust obtained at the Rio Grande Rise, 1000 km offshore of the southern Brazilian coastline, were added
to the model (Santos et al. 2019). This is where platelets 40 and 201 overlap. All the geological and structural maps
from this paper are shown on this model. The parameters of rotation are shown in Table 2, modified from Richetti
et al. (2018) and Heine et al. (2013).

R. da S. Schmitt et al.

Downloaded from https://www.lyellcollection.org by UNIVERSIDADE FEDERAL DO RIO DE JANEIRO on Jul 16, 2023



Sierra de Sosa (SS). This NE–SW sinistral shear
zone is part of the Nico Pérez Terrane transcurrent
shear zone system, in which it separates the Paleo-
proterozoic Valentines–Rivera Granulitic Complex
from the Archean La China Complex. The NE–SW
mylonitic foliation dips 70° to the NWwith a stretch-
ing lineation plunging 15° to the SW (Oriolo et al.
2016b). Microstructural data indicate that the main

deformation conditions are constrained at 300–
400°C, although they started at a higher temperature,
c. 550°C (Oriolo et al. 2016b). The timing of SS
activity is constrained by U–Pb LA-ICP-MS on zir-
con from the magmatic protolith, of 598.1 +
2.2 Ma, thus indicating that subsequent sinistral
shearing occurred after emplacement. However,
shearing could also have predated the obtained age,

Table 2. Data for kinematic reconstruction of Gondwana, with plate ID and rotation parameters including
rotation pole

Plate Plate
ID

Rotation parameters Rotation pole Comment

Latitude Longitude Angle

Amazonia 201 50.4400 −34.3800 53.4000 Fixed to West
Africa (714)

Heine et al. (2013)

Tucano 36 −57.1900 −55.3100 0.3700 Fixed to Amazonia
(201)

Heine et al. (2013)

Paraná/Río de
la Plata

40 42.1009 −30.6974 57.7807 Fixed to Austral
(100)

Reeves (2020a, b) and
adjusted with the
reduction of COB
50%

Valdes 41 44.0543 −31.2149 57.8819 Fixed to Austral
(100)

Reeves (2020a, b),
Lovecchio et al.
(2020) and adjusted
with the reduction
of COB 70%

Pampean 42 −26.1819 −50.4750 −1.1045 Fixed to Paraná
(040)

Moving with respect
to plate 40

Patagonia 43 42.2676 −31.2110 57.7352 Fixed to Austral
(100)

Moving with respect
to plate 41 and
adjusted by COB

Rio Grande Rise 50 9.1996 −40.1124 −17.3656 Fixed to Amazonia
(201)

Modified from Graça
et al. (2019)

West Africa 714 22.0700 −3.1700 2.8500 Fixed to Nubian
(715)

Heine et al. (2013)

Nubian 715 −7.8000 32.3500 2.5000 Fixed to Austral
(100)

Reeves (2020a, b)

Atlas Mountains 711 35.7890 −31.1085 1.4411 Fixed to Algeria
(713)

New geological map
of Gondwana (in
prep.)

Algeria 713 30.3843 −3.5315 −3.9261 Fixed to West
Africa (714)

New geological map
of Gondwana (in
prep.)

Benue 14 8.2500 6.9500 −1.7900 Fixed to Austral
(100)

Heine et al. (2013)

Austral 100 90.0000 0.0000 0.0000 Fixed Fixed to present-day
position

Somalia 709 −3.8547 33.6444 5.4669 Fixed to Austral
(100)

Modified from Collet
et al. (2000)

Danakil 710 15.5000 40.0000 −23.0000 Fixed to Nubian
(715)

Collet et al. (2000)

Aisha 712 59.5775 −9.6618 −2.0539 Fixed to Nubian
(715)

New geological map
of Gondwana (in
prep.)

Sinai 716 −31.0900 −147.1800 7.5300 Fixed to Nubian
(715)

New geological map
of Gondwana (in
prep.)

Parameters of rotation shown were modified from Richetti et al. (2018) and Heine et al. (2013). COB, continent–oceanic boundary.
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Fig. 3. Simplified geological map of SW Gondwana, reconstructed with the software GPlates, with geological units
classified by age and crustal-scale structural features. African plate is fixed. South American platelets and their
coordinates are rotated towards Africa. The 50% reduced continent–oceanic boundary lines from both continents are
shown as dashed lines. The circles represent drills and dredged samples from continental crust that are dated. Source:
modified from the new geological map of Gondwana built up at DCGG-UFRJ (Schmitt et al. 2023). 1, Carmo et al.
(2017); 2, Santos et al. (2019); 3, Rapela et al. (2007); 4, Cingolani (2011).

R. da S. Schmitt et al.
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despite not being recorded by geochronological data
(Oriolo et al. 2016b). The SS likely continues north-
wards and correspond with the Caçapava Lineament
within the Dom Feliciano Belt (Oyhantçabal et al.
2018).

María Albina (MA). To the east of the Sierra de Sosa
shear zone, the María Albina shear zone is also part
of the Nico Pérez Terrane transcurrent shear zone
system, separating the Archean La China Complex
from metasedimentary rocks of the Las Tetas Com-
plex (Fig. 4). This sinistral NNE–SSW shear zone
shows a mylonitic foliation dipping 50° to the east,
with subhorizontal stretching lineation plunging
to the NNE (Oriolo et al. 2016b). Microstructural
data indicate that the shearing started at c. 550°C
and continued to low-grade deformation conditions;
there is evidence of cataclastic overprint deformation
at the western margin of the shear zone (Oriolo et al.
2016b). Two Ar–Ar muscovite plateau ages, of
597.2+ 3.2 and 596.8 + 1.1 Ma, constrain the tec-
tonic activity (Oriolo et al. 2016b), very similar to
the Sierra de Sosa shear zone.

Tupambaé (TU). This shear zone affects the Valen-
tines–Rivera Granulitic Complex in the northern
Nico Pérez Terrane. It is oblique to most shear
zones in the Uruguayan shield, displaying an ENE-
striking mylonitic foliation and dextral kinematics
(Oriolo et al. 2016b). Microstructures indicate defor-
mation conditions of c. 400–550°C (Oriolo et al.
2016b). U–Pb LA-ICP-MS on zircon from a granite
protolith yields an age of 549.0 + 2.9 Ma, indicat-
ing crystallization age with subsequent shearing
(Oriolo et al. 2016b, 2018a, b).

Sierra Ballena (SB). This crustal-scale shear zone is
part of a high strain transcurrent system that divides
the Neoproterozoic Dom Feliciano Belt of South
America into two different domains in the Uru-
guayan shield: the Nico Pérez Terrane and schist
belt of Dom Feliciano Belt to the west, and the
Cuchilla Dionisio/Punta del Este Terrane and
Aiguá Batholith to the east (Figs 1, 3 & 4; Bossi
and Gaucher 2004; Oyhantçabal et al. 2009, 2010,
2011b; Basei et al. 2018). Its northern continuation
is correlated with the Dorsal de Canguçú (DC) and
Major Gercino (MG) shear zones of southern Brazil
(Fernandes and Koester 1999; Oyhantçabal et al.
2009, 2011b; Passarelli et al. 2011). The NNE–
SSW Sierra Ballena is c. 4 km wide, with an exten-
sion of over 250 km. Subvertical mylonitic foliation
shows a strike-slip stretching lineation that plunges
shallowly to the SSW, with sinistral kinematic indi-
cators and an oblique reverse component and pre-
dominant pure-shear deformation (Oyhantçabal
et al. 2009, 2011a). Microstructural data indicate
deformation conditions at 400–550°C and

predominant pure-shear deformation (Oyhantçabal
2005; Oyhantçabal et al. 2009, 2011b). Based on
geochronological and structural data, two main
transpressional events are interpreted: at 658–
600 Ma characterized by the nucleation and evolu-
tion of conjugate vertical shear zones, and at c.
580–560 Ma in which a sinistral reactivation of the
north–south branches is recorded (Oyhantçabal
et al. 2009, 2011b).

Cordillera (CR). This dextral NE–SW shear zone is
considered as a conjugate fault to the Sierra Ballena
shear zone, located to the east of it, and plays an
important role in emplacement of large volumes of
granitic magma in the Uruguayan sector (Oyhantça-
bal 2005; Oyhantçabal et al. 2011b). The conver-
gence of both shear zones is likely the principal
element that controls magma ascent accommodating
the emplacement of huge volumes of granitic mag-
mas (Oyhantçabal et al. 2009). The NE–SW mylo-
nitic foliation dips steeply to the SE, with a
stretching lineation plunging c. 20° to the SW. How-
ever, a relict lineation plunging moderately to the
WNW is also observed (Oyhantçabal 2005; Oriolo
et al. 2016b). Cataclasites locally overprint mylo-
nitic features, also associated with phyllonites and
ultramylonites (Oriolo et al. 2016b). Microstruc-
tures, as quartz dominantly recrystallized by bulging
and subgrain rotation recrystallization and micro-
fractured feldspars, suggest low temperature defor-
mation conditions (below c. 450°C; Oyhantçabal
2005; Oriolo et al. 2016b). Most of the shear zones
from the Uruguayan shield postdate the onset of
regional deformation (after c. 600 Ma), but the CR
deformation might have started before, based on
K–Ar muscovite ages of 632.7+ 6.1 Ma (Oriolo
et al. 2016b).

Laguna de Rocha (LR). This sinistral NNE–SSW
shear zone affects supracrustal rocks from the
Punta del Este Terrane, being the tectonic contact
between the Cerro Olivo Complex (Tonian orthog-
neisses) and the Rocha Formation (low-grade Edia-
caran metasedimentary unit). This shear zone is
composed of mylonitic to cataclastic features, and
displays a subvertical foliation and deformation con-
ditions within the greenschist facies (Menezes et al.
2010; Silva Lara et al. 2022). K–Ar muscovite from
the shear zone yielded an age of 564+ 6.1 Ma,
which is interpreted as syn-kinematic crystallization
age (Silva Lara et al. 2021). Furthermore, clay-sized
white mica fractions yield K–Ar ages between 535
and 525 Ma, which are interpreted to represent the
end of the ductile deformation within the shear
zone (Silva Lara et al. 2021).

Cerro Amaro (CA). This shear zone crosscuts the
Aiguá Batholith in the Uruguayan shield (Figs 3 &
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4). It preserves a NE–SW mylonitic foliation steeply
dipping to the west and a stretching lineation moder-
ately plunging to the north, and sinistral sense of
shear (Oriolo et al. 2016b). Microstructures indicate
deformation conditions of c. 450–550°C and a large
component of pure shear (Oriolo et al. 2016b). Based
on K–Ar muscovite ages of 615.2 + 6.6 Ma (Oriolo
et al. 2016b), it is considered to have been active ear-
lier before the onset of regional deformation (after c.
600 Ma), as the Cordillera shear zone was. The CA
shear zone continues into southern Brazil, where it
is named the Ayrosa Galvão–Arroio Grande shear
zone (Vieira et al. 2021).

Ayrosa Galvão–Arroio Grande (AG). This shear
zone system in the southeastern Dom Feliciano
Belt (Figs 1b & 4) affects the metamorphic basement
represented by orthogneisses, ultramafic–mafic–
sedimentary rocks and pre- and syntectonic gran-
itoids (Vieira et al. 2021). It preserves a subvertical
NE–SW mylonitic foliation, a subhorizontal ENE-
plunging stretching lineation and dominant dextral
kinematics. Furthermore, the Arroio Grande branch
displays an important east–west oriented foliation
(Vieira et al. 2021). This shear zone system extends
southwestwards into Uruguay, where it is named the
Cerro Amaro shear zone (Vieira et al. 2019, 2021).
U–Pb SHRIMP zircon ages between 609 and
560 Ma in syntectonic granite constrain the age of
deformation. This time interval is similar to that of
the Dorsal de Canguçú shear zone in the central
domain of the Dom Feliciano Belt, and to that of
the Cerro Amaro shear zone, its Uruguayan counter-
part (Vieira et al. 2021).

Dorsal de Canguçú (DG). This NE–SW shear zone
is the main feature of the Dom Feliciano Belt in
southern Brazil and is c. 200 km in length. It forms
the boundary between the granitic Pelotas Batholith
and the metavolcanic–metasedimentary sequences
of the Porongos Group (Philipp et al. 2016). Its
southern continuation correlates with the Sierra Bal-
lena shear zone (SB). It has a subvertical to
NW-dipping mylonitic foliation, and subhorizontal
stretching lineation plunging to both NE and SW.

Although a sinistral sense of shear is dominant, dex-
tral indicators are observed in the northeastern seg-
ment (Fernandes and Koester 1999; Oriolo et al.
2018a, b). P–T deformation conditions are found
in the upper greenschist facies, with transition from
ductile to brittle regime, constraining temperature
in the range of 450–500°C (Frantz et al. 2003).
The main shear zone activity is synchronous with
the magmatic activity in the Dom Feliciano Belt,
suggesting more than 85 myr of deformation. This
estimate is based on several U–Pb zircon data from
syntectonic magmatic units with crystallization
ages between 658 and 605 Ma (Frantz et al. 2003;
Koester et al. 2008; Vieira et al. 2020). Another
range of U–Pb zircon ages between 585 and
540 Ma is recorded, interpreted as crystallization
ages affected by the influence of post-magmatic flu-
ids during late shearing (Vieira et al. 2020). K–Ar
data on biotite from syntectonic granitic suites
yielded cooling ages between 600 and 575 Ma,
whereas K–Ar data on muscovite yielded two ages
of 624 + 41 and 586+ 11 Ma (Koester et al.
1997, 2001). Although interpreted as cooling ages,
the muscovite might represent mixing ages related
to neo-formed crystals during shearing (Koester
et al. 1997). Furthermore, Ar–Ar data on biotite
from mylonites yielded ages between 535 and
531 Ma, constraining the timing of late tectonic
activity (Philipp et al. 2003).

Passo do Marinheirinho (PM). This shear zone is
characteristic of a brittle fault zone that transects
the Dorsal de Canguçú shear zone, affecting granitic
suites (e.g. Pelotas Batholith), and is the contact
between the Florianópolis Batholith and the Tijucas
Terrane (Oriolo et al. 2018a, b). The PM is
NNE-striking and has a subvertical cataclastic folia-
tion and sinistral sense of shear. A U–Pb zircon crys-
tallization age of c. 595 Ma from the Pelotas
Batholith sets a maximum deformation age for the
shear zone (Oriolo et al. 2018a, b and references
therein).

Ibaré (IB). The NW–SE Ibaré shear zone limits the
Taquarembó Terrane to the south and the São

Fig. 4. SW Gondwana with main thrust zones and shear zone names (as per Table 1). South America: AD, Agudos;
AG, Ayrosa Galvão–Arroio Grande; AP, Além Paraíba; AX, Alexandra; BQ, Buquira; CA, Cerro Amaro; CC, Caucaia;
CFT, Cabo Frio Thrust; CM, Campo do Meio; CR, Cordillera; CRD, Córdoba Fault; CTB, Central Tectonic Boundary;
CUB, Cubatão; DG, Dorsal de Canguçú; EX, Extrema; GR, Guararema; IB, Ibaré; IP, Itajaí–Perimbó; ISP, Isla de
Patrulla; ITP, Itapirapuã; ITR, Itariri; LAN, Lancinha; LR, Laguna de Rocha; MA, María Albina; MAG, Morro Agudo;
MF, Maria da Fé; MG, Major Gercino; PAL, Palmital; PC, Poços de Caldas; PI, Piên; PM, Passo do Marinheirinho; RI,
Ribeira; SA, Serra do Azeite; SB, Sierra Ballena; SBC, São Bento do Sapucaí–Caxambu; SE, Serrinha; SLV, Sierra de
la Ventana; SS, Sierra de Sosa; SY, Sarandí del Yí; TC, Três Corações; TU, Tupambaé; TX, Taxaquara. Africa: AH,
Ahub; AUF, Autseib Fault; CF, Colenso Fault; FT, Frontal Thrust; GBT, Gemsbokvlei Thrust; GSZ, Goantagab shear
zone; KGT, Khorixas–Gaseneirob Thrust; KN, Kunene; KW, Kwanza; OG, Ogden; OSZ, Okahandja shear zone; OTT,
Otjohorongo Thrust; PMZ, Purros Mylonite Zone; PWF, Piketberg-Wellington Fault; SFT, Sesfontien Thrust; SKT,
Schakalsberge Thrust; TH, Three Palms; WF, Worcester Fault; WT, Wildperdrand Thrust.
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Gabriel Terrane to the north. This c. 100 km-long
structure is transverse to the main structural grain
of the southeastern South American Platform

(Fig. 4; Philipp et al. 2018; Hueck et al. 2020). It
is interpreted as an escape shear zone along a lateral
ramp during the top-to-SW accretion between these

Fig. 5. Summary of geochronological data obtained from the crustal-scale shear zones in SW Gondwana. Diagram
based on Table 1. The bars show the absolute ages of tectonic activity. The hashed bars refer to the relative age of the
deformation, based on, for example, crosscutting relations. Source: phases 1 and 2 correspond to the Gondwana
amalgamation orogenic phases from Schmitt et al. (2018).
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terranes (Philipp et al. 2018). It forms ultra- to mylo-
nitic and phyllonite fabrics, with a NW–SE subvert-
ical to steeply NE-dipping foliation and stretching
lineations that are subhorizontal and gently plunging
to the NW (Hueck et al. 2020). Shear sense indica-
tors are scarce. Based on the deflection from east–
west to NW–SE of the internal structural grain of
the São Gabriel Terrane close to the shear zone, its
kinematics are interpreted as dextral (Philipp et al.
2016, 2018; Hueck et al. 2020).

Major Gercino (MG). This ENE–WSW dextral
shear zone separates a northwestern schist belt
domain from a southeastern granitoid domain of
the Dom Feliciano Belt (Fig. 4; Basei et al. 1992).
The shear zone is at least 70 km in length and up
to 10 km wide. The mylonitic foliation varies in
strike from N 20° E to N 65° E and dips steeply to
the NW, with a stretching lineation that varies from
low-plunge to the NE to locally moderate plunge to
the SW (Hueck et al. 2019). Strain partitioning,
recorded by a progressive transition from early
stages of thrust to transpressive tectonics, is con-
strained by the c. 615 to 585 Ma age of syntectonic
granites (Passarelli et al. 2010; Chemale et al.
2012). This deformation phase is characterized by
pure-shear-dominated strike-slip deformation (Pas-
sarelli et al. 2010; Hueck et al. 2019). K–Ar ages
on synkinematic muscovite of 604–598 Ma corrobo-
rate the indication that the emplacement of the gra-
nitic magmatism was coeval with mylonitization
(Hueck et al. 2019). K–Ar dating of biotite and mus-
covite from country rocks yields a 584–561 Ma age
interval, interpreted to reflect post-collisional exhu-
mation (Hueck et al. 2019) during the regional cool-
ing stage (Passarelli et al. 2010). Late- to
post-tectonic c. 550 Ma plutons and K–Ar mica
ages from low-grade metamorphic mylonites rang-
ing from 570 to 540 Ma (Passarelli et al. 2010) con-
strain the age of late activity along this shear zone
(Chemale et al. 2012; Florisbal et al. 2012; Peruchi
et al. 2018; Hueck et al. 2019).

Regional thrusting with NW-vergence at c. 650–
635 Ma is observed only in the oldest rocks of the
Florianópolis Batholith (Porto Belo Complex),
with mylonites showing temperatures up to 700°C
at 4.3 kbar, related to a top-to-NNW thrusting (De
Toni et al. 2020a).

Itajaí–Perimbó (IP). This ENE–WSW shear zone,
along with the Major Gercino shear zone, constitutes
one of the main tectonic features in the northern Dom
Feliciano Belt, and is the boundary between the
Western and Central Domains (Figs 3 & 4). This
shear zone is the tectonic front of the Dom Feliciano
Belt, deforming the southern border of the Itajaí fore-
land basin, deposited on top of the Luís Alves micro-
plate, and is characterized by mylonitic rocks of the

Brusque Group (volcano-sedimentary protoliths),
Parapente Granite and the Paleoproterozoic gneisses
of the São Miguel Complex. The orientation of the
shear zone shifts from N 60° E/80° SE in the Gas-
par–Blumenau area, which has a predominantly
downdip stretching lineation with a sinistral compo-
nent, to N 40° E/70° NW in the Gravata–Penha area,
with predominant sinistral strike-slip kinematics.
Basei et al. (2008) consider the age of 843+
12 Ma of the Parapente Granite as the maximum
age for the development of the IP in ductile condi-
tions at higher temperatures. However, this shear
zone may have originated around 600 Ma (Basei
et al. 2011) when the Brusque Group was thrusted
over the Itajaí Basin. After the deposition in the Itajaí
Basin (Guadagnin et al. 2010), the mineralization of
Ribeirão da Prata occurred possibly around 532 Ma
(Rocha et al. 2005), with a geometry constrained
by the transcurrent character of the IP, which sug-
gests the IP was active both during basin deposition
and thrusting (Guadagnin et al. 2010; Percival et al.
2021).

Southern Ribeira Belt (SAm)

Palmital–Serrinha shear system. The Palmital–Ser-
rinha shear system, in the southern Ribeira Belt, sep-
arates the Paranaguá Terrane from the Curitiba
Terrane and Luís Alves Craton to the west (Fig. 4;
Cury 2009; Passarelli et al. 2011). Several authors
consider the Paranaguá Terrane to be genetically
linked to the Dom Feliciano Belt to the south, imply-
ing that the shear zone system would be
late-orogenic (e.g. Basei et al. 1992; Patias et al.
2019). On the other hand, some authors consider
the basement of this terrane (São Francisco do Sul
Complex) to be associated with the Angola Craton
in Africa (e.g. Passarelli et al. 2019).

The Serra Negra and Serrinha shear zones repre-
sent a collisional front to the north, with main north–
NW vergence and oblique components (strike-slip
and downdip lineations; Passarelli et al. 2011,
2019). Cury (2009) and Patias et al. (2019) consider
the Icapara shear zone to be contiguous with the
Serra Negra shear zone and so the limit of these ter-
ranes. The transcurrent Palmital (PAL) and Alexan-
dra (AX) shear zones represent the southern
continuation of this system, with main sinistral kine-
matics and oblique components characterized by
coexistence of strike-slip and downdip lineations.
Therefore, this system delineates a tectonic trans-
pressive wedge along the Paranaguá Terrane, with
both sinistral and dextral kinematics with lateral
ramp characteristics to preferential westward thrust.
The shear zones would represent the partition of
the main strain associated with the collision of the
Paranaguá Terrane, with the western domains related
to the Neoproterozoic amalgamation of
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southwestern Gondwana (Cury 2009; Passarelli
et al. 2011, 2019).

Palmital (PAL). The sinistral NNW–SSE Palmital
shear zone, at least 85 km in length, is the southern
part of the shear system that separates the Paranaguá
Terrane from the Luís Alves Craton (Fig. 4). It dis-
plays an ultra- to protomylonitic NNW–SSE folia-
tion, but also brecciated granites and cataclasites
(Cury 2009; Patias et al. 2019). The steep mylonitic
foliation shows a predominantly low-plunging
strike-slip lineation. PAL is interpreted as the lateral
ramp of the ESE–WNW frontal thrust of the Parana-
guá Terrane (Cury 2009; Patias et al. 2019). Micro-
structures in mylonitic granites indicate deformation
conditions of 400–500°C, with quartz dynamically
recrystallized by bulging and subgrain rotation
(Cury 2009). PAL activity is constrained between
600 and 520 Ma by the age of a syntectonic granite
from the Morro Ingles Suite. U–Pb zircon ages of
581+ 19 and 601 + 7 Ma are interpreted as crys-
tallization ages, while biotite K–Ar ages between
531 and 520 Ma are interpreted as cooling ages
(Cury 2009). Alternatively, we consider that the
Cambrian ages are related to the sinistral kinematics
of the Palmital shear zone. The shear zone truncates
almost orthogonally the NNE–SSW tectonic fabric
of the Paranaguá Terrane (Fig. 4), implying that it
postdates the main orogenic peak.

Alexandra (AX). The Alexandra shear zone forms the
northwestern contact between the Paranaguá Terrane
and the Luís Alves Craton (Fig. 4). It is a NNE–SSW
striking sinistral transpressional shear zone, charac-
terized by the coexistence of strike-slip and downdip
stretching lineations, in a transposed steeply dipping
mylonitic foliation (Cury 2009; Patias et al. 2019).
Like the Palmital shear zone, it probably represents
a lateral ramp during the collision of the Paranguá
Terrane with the Luís Alves Craton (Cury 2009).
Geochronological data are scarce, but AX is consid-
ered to correlate with the Palmital shear zone, imply-
ing that it was active c. 600–520 Ma (Cury 2009).

Serrinha (SE). The dextral 2.5 km thick Serrinha
shear zone (Passarelli 2001) represents the northern
part of the 400 km long shear system that is the

contact between the Curitiba and Paranaguá terranes
(Fig. 4). The SE consists of gneissic–granite rocks
imbricated with metasedimentary mylonitic rocks.
It is located north of the Icapara shear zone, which
allows the assignment of the low-grade metasedi-
mentary sequences and the post-collisional A-type
Graciosa granites (Cordeiro and Mandira–Itapitan-
gui stocks) to the Paranaguá Terrane. The SE records
a transition from a dextral lateral ramp NW-striking
shear zone with a gently dipping mylonite foliation
that predominates in its eastern portion to a frontal
ramp with downdip lineations in its western portion.
The Serrinha mylonites were formed at c. 575+
5 Ma (Passarelli et al. 2008, 2011) under amphibo-
lite facies peak metamorphic conditions of c. 650–
740°C and 5.7–9.0 kbar (Passarelli 2008).

Piên (PI). The Piên shear zone or Piên suture zone
forms the boundary between the Curitiba Terrane
and the Luís Alves Craton, characterized by
deformed arc-related calc-alkaline granitoids with
associated mafic and ultramafic rocks (Harara
1993, 2001; Passarelli et al. 2018). It displays a mod-
erate to steeply NW-dipping NE–SW ultra- to mylo-
nitic foliation. Metamorphic conditions are
constrained by the mineralogy typical of greenschist
to lower amphibolite facies transition. In addition,
deformation under brittle conditions is also observed
(Harara 1993). The granites were deformed and the
mafic–ultramafic rocks obducted between 605 and
595 Ma (Harara 1993, 2001; Passarelli et al. 2018).
According to these authors, the shear zone’s origin
reflects the progressive oceanic crust consumption
and subsequent terrane collision between the Luís
Alves Craton and the Piên Suite (Curitiba Terrane),
with associated dextral and thrust kinematic
indicators.

Serra do Azeite (SA). The ENE–WSW sinistral Serra
do Azeite shear zone forms the tectonic contact
between the Curitiba and Luís Alves terranes
(Faleiros et al. 2011). It is 1–2 km wide, with a sub-
vertical mylonitic foliation and a subhorizontal,
ENE-plunging stretching lineation (Faleiros et al.
2016). The mylonitic paragenesis is developed
under greenschist facies. The opposite sense of
movement of the Cubatão and Serra do Azeite

Fig. 6. Structural contour map of cratons and belts from SW Gondwana. It includes cratons’ surface boundaries
(dashed pink line), shear zones and thrust zones with kinematic sense and the tectonic fabric from the crustal terranes
(foliation trace). Shear zones in orange were active before 585 Ma (Phase 1); shear zones in green were active in the
interval 585–400 Ma (Phase 2); shear zones generated in Phase 1 and reactivated in Phase 2 are in purple; shear zones
without geochronological data are shown in black. In this transatlantic correlation of shear zones from Africa and
South America, the large arrows represent the kinematics of the cratonic blocks after 585 Ma in two steps. The red
arrow is the first movement, and the green arrow indicates the younger movement of the cratonic block, based on the
age and kinematics of the shear zones here compiled and correlated. The rotation from the red arrow to the green
arrow is also indicated. The Río de La Plata Craton is the only craton with a clockwise rotation after 585 Ma. Source:
map based on Schmitt et al. (2018) and new Gondwana geological database.
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shear zones suggests that these faults could have
acted as lateral ramps for the west-directed thrusting
in the Curitiba Terrane (Faleiros et al. 2011). An
alternative model of local transtensional deformation
in this shear zone was presented by Dehler et al.
(2007) for the Cajati area, which also has 600–
570 Ma Ar–Ar ages interpreted to constrain the tim-
ing of deformation (Machado et al. 2007). An age of
c. 580 Ma (monazite rims) is interpreted as the min-
imum age for the juxtaposition of these units in the
Curitiba Terrane (Faleiros et al. 2011).

Lancinha–Cubatão (LAN–CUB). The Lancinha–
Cubatão shear system is one of the major NE–SW
structures with ductile to ductile–brittle characteris-
tics that are parallel to the SE Brazilian coast
(Fig. 4; Passarelli et al. 2011; Cabrita et al. 2022).
This transpressional shear system separates the
Embu and the Apiaí supracrustal terranes from the
SE granitic–gneiss–migmatitic Curitiba Terrane.
The N 70° E–N 75° E steep foliation has a shallowly
plunging oblique lineation developed under upper
greenschist conditions (Passarelli et al. 2011) at
medium temperature of 460–520°C and at 4.5–
9.5 kbar (Cabrita et al. 2022). U–Pb ages of meta-
morphic epidote (c. 598 Ma) are related to the defor-
mation during the juxtaposition of the Embu and
Curitiba terranes (Passarelli et al. 2008, 2011). Addi-
tionally, ages of c. 610–570 Ma, obtained in igneous
apatite within the mylonites, are interpreted as reset
ages due to ductile deformation (Cabrita et al.
2022). The northeastern continuation of this shear
system is interpreted as a suture zone, named the
Central Tectonic Limit (Almeida et al. 1998; Heil-
bron et al. 2008). The correlation between the Cuba-
tão and Além Paraíba shear zones is ruled out by
Passarelli et al. (2011).

Itariri (ITR). The sinistral Itariri shear zone, defined
in the state of São Paulo (Silva et al. 1978), separates
the Curitiba Terrane from the Coastal Terrane (Mon-
gaguá Complex; Passarelli and Verma 2020). It dis-
plays a steeply NE-dipping WNW–ESE foliation, is
400 to 700 m in width and is composed mostly of
granite–gneiss mylonites, with local mylonitic para-
gneiss (Passarelli et al. 2008). This transpressional
ductile shear zone is characterized by westerly-
directed transport at c. 700°C and 5.4 kbar under
amphibolite grade conditions (Passarelli 2008). The
c. 580 Ma age of the deformation, which generated
the wedge formed by the Itariri and Cubatão shear
zones, is supported by concordant U–Pb zircon
ages frommylonites from the Itariri and north branch
of the Cubatão shear zones (Passarelli et al. 2008).
The sinistral Itariri shear zone has been interpreted
to displace the Coastal Terrane (Mongaguá Com-
plex) to the NE, creating the wedge configuration

between the Embu and Curitiba terranes (Passarelli
et al. 2019).

Morro Agudo (MAG). This NNE–SSW shear zone,
with subvertical mylonitic foliation, deforms the
granitoids of the Três Córregos suite in the Apiaí
Terrane (Fig. 4). MAG displays deflection of the
regional foliation deflection, mesoscale S–C fabric
structures and foliation orientation indicative of a
sinistral shear sense (Faleiros et al. 2022). Related
rocks are dominated by brittle features (breccia and
ultra- to cataclasite), indicating deformation condi-
tions below 280°C (Faleiros et al. 2022).

Ribeira (RI). The Ribeira shear zone, within the
Apiaí Terrane, crosscuts mainly Mesoproterozoic
metasedimentary rocks and Ediacaran granitic intru-
sions (Faleiros et al. 2022). RI is an ENE–WSWdex-
tral strike-slip shear zone, with subvertical mylonitic
foliation and a predominant subhorizontal stretching
lineation. Macro- to microscopic indicators show a
dextral kinematic shear sense. Nevertheless, RI
also displays an oblique- to downdip stretching line-
ation at the interference zone with ENE-striking
shear zones (e.g. Agudos shear zone, AD), where
reverse shear sense criteria are observed with
top-to-ESE kinematics (Faleiros et al. 2022). The
deformation conditions are constrained between
300 and 600°C due to variation in the evolution of
recrystallization mechanisms, from bulging to grain
boundary migration in quartz. Available geothermo-
barometric data support this evidence, indicating
deformation conditions of 300–630°C and 5–
7 kbar (Faleiros et al. 2022). Along the Ribeira
shear zone, deformation activity is recorded by
ages of 580 + 8 Ma in monazite U–Pb (Faleiros
et al. 2022) and 612+ 3 Ma in zircon U–Pb (Sala-
zar et al. 2013).

Itapirapuã (ITP). The Itapirapuã shear zone, within
the Apiaí Terrane, is the boundary between Calym-
mian (Água Clara Formation) and early Tonian
(Itaiacoca Group) metasedimentary rocks. ITP is
considered an old suture zone reactivated in the Neo-
proterozoic (Faleiros et al. 2022). It displays a
subvertical NE–SW mylonitic fabric with a subhor-
izontal to NE-plunging stretching lineation. The
kinematic indicators show mainly a dextral sense
of shear, with a local NNE-striking sinistral kinemat-
ics near its northern termination (Faleiros et al.
2022). Monazite U–Pb data in mylonitic paragneiss
yield a core age of 829 + 18 Ma and a younger
rim age of 675 + 7 Ma. Also, mylonitic granitic
rocks affected by the shear zone yield a U–Pb crys-
tallization age of 600+ 6 Ma. Therefore, the avail-
able geochronological data suggest an origin of the
shear zone in the Tonian as a suture zone, which

R. da S. Schmitt et al.

Downloaded from https://www.lyellcollection.org by UNIVERSIDADE FEDERAL DO RIO DE JANEIRO on Jul 16, 2023



was reactivated during the Brasiliano tectonic event
at c. 650–600 Ma (Faleiros et al. 2022).

Agudos (AD). The Agudos shear zone is essentially
an intra-terrane structure with a steeply NW-dipping
NE–SW striking foliation, with a downdip stretching
lineation indicative of top-to-SE kinematics. Adja-
cent to other strike-slip shear zones (e.g. Ribeira
SZ), however, AD shows a subhorizontal lineation
(Faleiros et al. 2022). According to Faleiros et al.
(2022), field relationships indicate that intra-terrane
shear zones, such as AD, in the Apiaí Terrane were
active before the intrusion of the 612+ 3 Ma age,
crosscutting the Itaoca Granite. On the other hand,
AD affected metaconglomerates containing granitic
pebbles that yield a zircon U–Pb age of 593 +
15 Ma, and volcanic rocks from the Iporanga Forma-
tion with a U–Pb zircon age of 579 + 34 Ma. Thus,
the maximum deformation age is uncertain; how-
ever, a long period of shearing is suggested.

Taxaquara–Guararema (TX–GR). The Taxaquara
shear zone displays a NE–SE striking mylonitic foli-
ation and ENE- to WSW-stretching lineation with
variable plunge and dextral kinematic indicators.
TX–GR crosscuts granitic rocks, forming ultra- to
mylonites in the southern Ribeira Belt. Microstruc-
tures and geothermobarometric data indicate that
deformation occurred at metamorphic conditions
420–530°C and c. 3.9–4.4 kbar (Ribeiro et al.
2019). Zircon and titanite from mylonites yielded
U–Pb ages of 606 + 4 and 604 + 8 Ma, respec-
tively, and are interpreted as the age of protolith crys-
tallization. Apatite U–Pb ages from mylonites of
558–542 Ma and muscovite Ar–Ar plateau ages of
540–536 Ma are interpreted as cooling ages during
shearing. Therefore, the activity of TX–GR, con-
strained between 560 and 536 Ma, suggests it post-
dates the collisional phase of deformation in the
Ribeira Belt (Ribeiro et al. 2020).

Generally, the Guararema shear zone (GR) is
considered to be the continuation of the Taxaquara
shear zone to the east of the São Paulo Basin (Silva
2017; Ribeiro et al. 2019 and references therein;
Archanjo et al. 2021). In this study, we have adopted
this proposed connection between the Taxaquara and
Guararema shear zones.

Caucaia (CC). The Caucaia shear zone displays a
subvertical NE–SW to east–west mylonitic foliation,
with a shallowly NE-plunging stretching lineation
and dextral kinematic indicators (Sartori 2012). CC
affects mainly mica-schists and granitoids in the
southern Ribeira Belt. The deformation occurred
under greenschist to amphibolite facies metamorphic
conditions, c. 400–600°C, in a pure-shear-dominant
component (Sartori 2012).

Central Ribeira Belt (SAm)

Central Tectonic Boundary (CTB). The Central Tec-
tonic Boundary (CTB) separates two tectonic ter-
ranes: occidental and oriental. The former is
interpreted as a stack of thrust sheets formed by Pale-
oproterozoic gneisses interleaved with Neoprotero-
zoic supracrustal units (Heilbron et al. 2008). CTB
is interpreted as a suture zone, which dips at moder-
ate to high angles to the NW and has an oblique
stretching lineation plunging to the north. The dex-
tral kinematic sense is recorded by several indicators,
suggesting a top-to-NW extensional component
(Almeida et al. 1998). The significance of this exten-
sion is not well understood, since this 300 km-long
high strain zone is related to the collision between
these two terranes (Heilbron et al. 2008).

Além Paraíba (AP). The ENE–WSW Além Paraíba
shear zone is an intra-terrane shear zone in the Cen-
tral Ribeira Orogen (Giraldo et al. 2019), and is more
than 200 km in length and up to 5 km wide. AP is
characterized by a subvertical high-grade mylonitic
foliation (715°C and 4.3–7.1 kbar), with a subhori-
zontal stretching lineation and dextral displacement
kinematic indicators (Giraldo et al. 2019). The adja-
cent rocks reached granulite facies conditions (850°
C and 8 kbar) at about 593 Ma, and deformation
occurred at 562 Ma (Giraldo et al. 2019), shortly
after the metamorphic peak. Zircon ages of 583
and 591 Ma in the shear zone and monazite ages of
611 to 553 Ma (Giraldo et al. 2019) led to the inter-
pretation that motion along the shear zone occurred
in the interval of 585–560 Ma, due to oblique colli-
sion in the Ribeira Orogen. A 530 Ma granite cross-
cut the shear zone but was also deformed, indicating
a Cambrian reactivation.

Cabo Frio Thrust (CFT) and associated dextral
shear zones. This NE–SW high strain zone, up to
1 km wide and at least 120 km in length, marks the
contact between two contrasting terranes in the SE
Ribeira Belt: the Neoproterozoic Oriental Terrane
(locus of 700–450 Ma magmatic units intruding
supracrustal units; Tupinambá et al. 2012) and the
Paleoproterozoic Cabo Frio Tectonic Domain (with
c. 1.9 Ga orthogneisses, tectonically interleaved
with Neoproterozoic supracrustal units; Schmitt
et al. 2016). The shearing is interpreted to be related
to D1–D2 progressive ductile phases, dated at 530–
515 Ma (Schmitt et al. 2012, 2016; Vieira et al.
2022). Ophiolite relicts and high-pressure metamor-
phic rocks were thrust over the Cabo Frio Tectonic
Domain, which is interpreted as the lower plate of
an ancient subduction zone (Martins et al. 2016,
2021; Capistrano et al. 2020; Vieira et al. 2022).
Although it is folded by a reclined crustal-scale
structure, a downdip K-feldspar–quartz stretching
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lineation indicates that it is a thrust zone with
top-to-east–SE vergence (Schmitt et al. 2016). The
geometry of the reclined fold plus the deep high
magnetic anomaly signature (Stanton et al. 2010)
indicate that this shear zone/suture has a subvertical
envelope and not a SE-dipping envelope (De Freitas
et al. 2021). In addition, D3 ductile NW–SE dextral
shear zones occur in both terranes. Although they are
seen in outcrop scale, these c. 520 Ma shear zones
are common, suggesting there could be a larger
shear zone along the Brazilian continental margin
that might correlate in the reconstruction with
major east–west structures in Africa, e.g. the
Malange deformation zone (Heilbron et al. 2008;
Schmitt et al. 2008, 2016; Monié et al. 2012). The
Cabo Frio is the only thrust zone detailed in this
paper due to the timing of this late collisional
event, the Cambrian Buzios orogeny (Schmitt et al.
2016), that, as the Damara and Pampean collision
zones, occurred during the last adjustments between
the converging palaeocontinents during Gondwana
consolidation.

Southern Brasília Belt (SAm)

Buquira (BQ). The Buquira shear zone separates the
Embu Complex from the Socorro–Guaxupé Nappe
(Fontainha et al. 2021). BQ is more than 150 km
long and is composed mainly of an anastomosing
network of mylonites and ultramylonites. The
ENE–WSW mylonitic foliation is steep and south–
southeasterly dipping (Duffles et al. 2016; Fontainha
et al. 2021). The deformation occurred under greens-
chist to lower amphibolite facies (Fontainha et al.
2021). Kinematic indicators associated with linea-
tion display a dextral shear sense, but a reverse com-
ponent can also be observed (Duffles et al. 2016).

São Bento do Sapucaí–Caxambu (SBC). The São
Bento do Sapucaí–Caxambu shear system branches
in two segments: the Caxambu shear zone (Trouw
et al. 2007), deforming the supracrustal units of the
Andrelândia Group and their basement in the south-
ern Brasília Belt, and the São Bento do Sapucaí shear
zone (Vinagre et al. 2016, 2020), deforming granitic
units from the Socorro–Guaxupé Nappe of the south-
ern Brasília and Ribeira belts (Fontainha et al. 2021).
SBC is a NE–SW shear zone system about 220 km in
length and 1–3 km in width. The mylonitic foliation
dips steeply to both SE and NW, with a low–moder-
ate angle stretching lineation plunging to NE, locally
to SW (Trouw et al. 2007; Vinagre et al. 2020).
Kinematic indicators show oblique dextral sense of
shear, with locally a top-to-SE component. Sinistral
displacement is also locally described (Vinagre et al.
2020). Microstructural features suggest that dynamic
recrystallization occurred at temperatures between
450 and 650°C, and geothermobarometric data

suggest pressures of 1–3 kbar (Trouw et al. 2007;
Vinagre et al. 2020). LA-ICP-MS data from the
São Bento do Sapucaí shear zone yield U–Pb ages
of c. 613 Ma on metamorphic rims of detrital zircon
grains from paragneisses and a U–Pb age of c.
610 Ma from a deformed gabbro–norite (Vinagre
et al. 2020). A late tectonic pegmatitic leucogranite,
which crosscuts the shear zone, yields zircon U–Pb
ages between 656 and 611 Ma, interpreted as inher-
itance ages, and a monazite crystal yields a crystalli-
zation age of 552 Ma. Therefore, the age of the shear
zone’s activity is constrained between 610 and
552 Ma (Vinagre et al. 2020).

Extrema (EX). The Extrema shear zone is parallel to
the São Bento do Sapucaí–Caxambu shear zone sys-
tem, at a distance of c. 130 km to the north of it. The
NE–SW mylonitic foliation, which dips steeply to
both SE and NW and contains a shallowly
WSW-plunging stretching lineation, is developed
at low metamorphic grade (Novo et al. 2014; Fontai-
nha et al. 2021). Kinematic indicators show a pre-
dominant dextral sense of shear, but it is also
possible to observe juxtaposed structures with oppo-
site kinematics along the southern and northern lim-
its of this shear zone (Faleiros et al. 2022). A
syntectonic granite partially affected by the Concei-
ção das Pedras shear zone, considered the northern
extension of the Extrema shear zone, constrains the
age of shearing to between 563 and 573 Ma (Peternel
et al. 2005; Fontainha et al. 2021).

Maria da Fé (MF). The Maria da Fé shear zone,
40 km in length and 2.5 km wide, occurs at the inter-
ference zone between the Southern Brasília and Cen-
tral Ribeira orogens. This NNE–SSW sinistral shear
zone is an exception in this region because most
shearing zones are dextral. The timing of sinistral
shearing was determined by dating zircon crystals
of a 587 + 8 Ma pegmatite vein that crosscuts the
zone, but it is also offset by it (Zuquim et al.
2011). Mylonitic fabric is indicative of temperatures
in the order of 450–600°C (Zuquim et al. 2011). The
zone is interpreted to be the consequence of NW–SE
compression at 590–560 Ma, related to collisional
tectonics that formed the Central Ribeira Orogen
(Zuquim et al. 2011; Trouw et al. 2013; Fontainha
et al. 2021).

Três Corações (TC). The NE–SW Três Corações
dextral shear zone is a narrow subvertical zone of
only a few tens of metres thick, but more than
100 km in length. TC is comprised of low-grade
mylonites and locally fault breccias. No data con-
straining the age of shearing are available, but in
the general geological context, the age of shearing
is thought to range from 590 to 550 Ma (Trouw
et al. 2013; Fontainha et al. 2021).
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Poços de Caldas (PC). The Poços de Caldas shear
zone is a curved structure, with a NE–SW strike in
the western segment and an east–west strike in the
eastern segment (Fig. 4). PC is c. 170 km in length,
with a subvertical mylonitic foliation and local cata-
clasites. The deformation occurred at greenschist to
lower amphibolite facies conditions (Fontainha
et al. 2021). Kinematic indicators show a dextral
shear sense. However, the rotation of the geological
contacts, as shown in map view, suggests sinistral
movement. This ambiguity is probably due to the
result of a dextral reactivation of older sinistral activ-
ity that accompanied the initial formation of PC
(Fontainha et al. 2021).

Campo do Meio (CM). The Campo do Meio shear
zone, north of the Poços de Caldas shear zone, c.
25 km wide and c. 250 km in length, is considered
the northern limit of the Socorro–Guaxupé Nappe
(Fig. 4). CM displays ductile-to-brittle deformation
characteristics, a sinistral shear sense and an east–
west striking subvertical foliation. The shear zone
crosscuts and overprints older thrust structures.
Deformation occurred under low metamorphic
grade, greenschist to lower amphibolite facies
(Ebert and Hasui 1998; Zanardo et al. 2006; Fontai-
nha et al. 2021).

Angola Craton and West Congo Belt (Afr)

The north–south Kaoko Belt is exposed along the
coast and continues offshore northwards from the
Kunene mouth at the border between Angola and
Namibia (Fig. 1b). The few publications on the
Angola shield do not describe shear zones related
to Pan-African–Brasiliano overprint along the south-
western Angolan coast. Regional geological maps
and satellite images show spectacular exposures
of metamorphic and magmatic Paleoproterozoic–
Mesoproterozoic geological units, enhancing also
east–west trace of tectonic foliation in the desert,
within the Angola Craton (Fig. 4). This structural
grain is attributed as Paleoproterozoic fabric by
recent papers (Lehmann et al. 2020; Rey-Moral
et al. 2022). The geological map shows a discontinu-
ity along an east–west lineament, immediately south
of Luanda, separating the Archean–Paleoproterozoic
shield to the south from the Neoproterozoic West
Congo Belt to the north (Fig. 3). This region is
described as the Malange uplift, a Mesozoic tectonic
structure bordering the inner Cretaceous Kwanza
Basin (Hudek and Jackson 2002). Some authors
interpret that the kilometre-scale dextral drag of
this Neoproterozoic belt is related to this lineament,
which would represent a major shear zone from the
Neoproterozoic (Heilbron et al. 2008; de Wit and
Linol 2015; Schmitt et al. 2016). Other authors con-
sider that this is a recent structure and that the

bending of the orogen would be related to orogenic
folding (Fossen et al. 2021). Here, we name this
structure as the dextral Kwanza shear zone, devel-
oped during the tectonic emplacement of the Neo-
proterozoic–Paleoproterozoic crystalline nappes
during the Cambrian (Monié et al. 2012).

Kaoko Belt (Afr)

The Kaoko Belt is one of the Pan-African belts in
Africa and constitutes a part of the Damara Orogen
in NW Namibia. Initially, it was divided into East-
ern, Central, Western and Southern Kaoko zones
(Miller 1983), in which most of the boundaries are
lineaments, thrusts, faults or mylonite zones (Miller
2008). More recently, a new proposal divides this
belt into three domains separated by major shear
zones: Western, Central and Eastern Kaoko
(Goscombe et al. 2003b; Oriolo et al. 2018a, b),
with the alternative names of ‘Escape Zone’ and
‘Foreland’ for the Central and Eastern Kaoko
zones, respectively. The main boundaries between
these domains are the Purros and Three Palms
mylonite zones, which are evident in the aeromag-
netic data. Goscombe and Gray (2008) subdivide
the Kaoko Belt into three domains, which are, from
west to east: Coastal Terrane (CT), Orogen Core
(OC) and Escape Zone (ES). The CT exhibits
rocks that differ in various aspects, metamorphism
and structural style when related to the rest of the
Kaoko Belt, showing different lithostratigraphy and
provenance source as well as high temperature of
metamorphism and igneous rocks. The Coastal Ter-
rane is interpreted as an outboard continental margin
arc that was obducted and incorporated with the rest
of the Kaoko Belt during the transpressional orogen-
esis (Goscombe and Gray 2008). The OC is
described as a central region in the Kaoko Belt,
between the Coastal Terrane and the Escape Zone,
with the Damara Sequence metamorphosed at
amphibolite to granulite facies, Pan-African intru-
sions and basement slivers (Foster et al. 2009).
This region is composed of three domains, from
north to south: Hartmann, Khumib and Hoarusib
domains, which have a lenticular shape, are different
from each other and have tectono-metamorphic
characteristics.

Three Palms Mylonite Zone (TH). This high strain
zone is about 1–2 km wide and about 390 km in
length, dividing the Western Kaoko Zone into the
Coastal Terrane and the Orogen Core. This shear
zone is connected with the Purros Mylonite Zone
through several discrete anastomosing shear zones
between the Khumib and Hoarusib rivers that resem-
ble a horsetail structure, named the Hartmann
Mylonite Zone (HMZ), the Khumib Mylonite Zone
(KMZ) and the Village Mylonite Zone (VMZ).
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Their strike varies from north to NW, and they dip
moderately to steeply to the west (60–90°). A
north–NE orientation predominates in the central–
northern area with a moderate dip to the east,
whereas a north orientation predominates in the
southern region with shallow to moderate dips to
the west (Goscombe and Gray 2007, 2008; Foster
et al. 2009; Oriolo et al. 2018a, b). The sinistral
strike-slip movement is based on many kinematic
indicators and subhorizontal to gently south–SE
plunging stretching lineations (Goscombe and Gray
2008; Oriolo et al. 2018a, b). According to Foster
et al. (2009), the main phase of mylonitization in
the TH was related to ductile recrystallization that
produced a coarse biotite–muscovite schistosity
with quartz aggregate ribbons and plagioclase sub-
grain pressure shadows. The age for the main sinis-
tral shearing is provided by U–Pb data on zircon
and monazite from granites and orthogneisses, sug-
gesting the metamorphism (transpressional orogene-
sis) peaked c. 580–550 Ma (Gray et al. 2006).
Muscovite Ar–Ar ages in mylonitic orthogneiss of
c. 481+ 3 and 492 + 3 Ma are interpreted to reflect
isotopic resetting during further early Proterozoic
deformation (Gray et al. 2006), and Ulrich et al.
(2011) indicated that one sinistral shearing event
occurred after 550 Ma (Oriolo et al. 2018a, b and ref-
erences therein).

Purros Mylonite Zone (PMZ). The PMZ represents a
well-exposed example of a crustal-scale transcurrent
shear zone and, for many researchers, is one of the
most remarkable structural features in the central
part of the Kaoko Belt (Konopásek et al. 2005 and
references therein). It is more than 600 km in length
and about 5 km wide. According to Goscombe et al.
(2003b), the PMZ is possibly the boundary between
Paleoproterozoic and Mesoproterozoic basements,
defining the boundary between the Central and
Western zones. The NNW–SSE PMZ displays a
WNW to WSW steeply dipping mylonitic foliation
in the northern region. By contrast, in the south,
the foliation dips moderately to the WSW
(Goscombe et al. 2003b; Goscombe and Gray
2008). Sinistral rotation of mantled feldspar porphyr-
oblasts and dynamic recrystallization of quartz and
feldspar suggest maximum of upper amphibolite
facies deformation conditions (Oriolo et al. 2018a,
b). Ar–Ar whole rock age of 467+ 3 Ma from a
mylonitic schist near the PMZ was interpreted to
be the result of K–Ar resetting during the late stages
of shearing (Gray et al. 2006).

Village Mylonite Zone (VMZ). Goscombe et al.
(2003b) defined this high strain zone, visible on sat-
ellite images. The VMZ is one of the four
crustal-scale shear zones in the Orogen Core, and
can be described as a secondary anastomosed branch

of the TH, located between the KMZ and the TH.
Several authors report that this zone diverges into
two branches that merge with the TH and with the
PMZ (Goscombe and Gray 2008; Foster et al.
2009). Brittle deformation of feldspars and ductile
behaviour of quartz in S3 foliation suggest deforma-
tion at low-temperature conditions (greenschist
facies). Sinistral shear sense is interpreted based
on rotated K-feldspar porphyroclasts and other
microstructures.

Ahub Mylonite Zone (AH). The AH is located in the
southern area of the Escape Zone (EZ), sub-parallel
to the PMZ. The EZ is an alternative term for the
Central Kaoko Zone, and is characterized by deep
basin and slope facies of the Damara Sequence, rang-
ing from lower greenschist facies in the east to upper
amphibolite facies in the west (Foster et al. 2009;
Oriolo et al. 2018a, b). This north–south trending
mylonite to protomylonite zone is 1 km wide, and
it is connected to the thrust-bound basement slivers
inclined to the west (Goscombe and Gray 2008).
According to the same authors, the AH, unlike the
other shear zones from the Kaoko Belt, is a strike-
slip shear zone with a high flattening component.
The kinematic indicators are shear bands and man-
tled porphyroclasts exhibiting sinistral sense of
shear. In the southern sector, foliation dips steeply
to the east, and the mineral stretching lineation
plunges shallowly to the north. Moreover, the AH
has an important lateral shear regime evidenced by
vertical downdip boudin neck axes, and there is a
high proportion of symmetrical mantled porphyro-
clasts stretched equally, suggesting a moderate flat-
tening component across this zone (Goscombe and
Gray 2008).

Damara Belt (Afr)

Khan shear zone (KSZ). The Khan shear zone is
located north of the Damara Core Complex (DCC)
and has a throw of 2.8 km. According to Goscombe
et al. (2022), KSZ was the first low-T retrograde
shear zone to overprint the core complex during
exhumation. This zone affects marble from the Kar-
ibib Formation, and it has a dextral sense of displace-
ment. The age of this shear zone was obtained
through in situ LA-ICP-MS dating of apatite and
titanite within carbonate mylonite, providing an age
of 500.3+ 3 for apatite and 495.0+ 6.4 Ma for
titanite. Furthermore, the KSZ was reactivated with
a sinistral–normal sense (Goscombe et al. 2022).

Okahandja shear zone (OSZ).Along with the Omar-
uru Lineament–Waterberg Thrust and the Autseib
Fault–Otjohorongo Thrust, the OSZ is an important
NE–SW shear zone in Central Namibia, with more
than 300 km in length and interpreted as the
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continuation of the Precambrian transcontinental
Mwembeshi shear zone (Granath et al. 2022 and ref-
erences therein). In accordance with Downing and
Coward (1981), the OSZ is considered to be the
southern margin of a magmatic arc generated by
the northerly subduction of the Damaran Ocean
crust between 750 and 520 Ma. Between 675 and
575 Ma, syn-orogenic strata and granitoid units,
generated via subduction and crustal melting, under-
went shear deformation in a low angle sinistral shear
zone (Clemens and Kisters 2021; Granath et al.
2022).

The OSZ is a complex and composite structure
located along the boundary between the South Cen-
tral Zone and the Tinkas Belt, and commonly demar-
cates the southern limit of the Proterozoic basement
and basal Damaran stratigraphy of the Nosib Group
(Miller 1979; Goscombe et al. 2022). It is at least
130 km in length, is a sub-vertical zone and was
reactivated six times during the evolution of the
Damara Orogen. The main branch of the predomi-
nant shear zone is related to the later stages of the
main phase of the orogen, displaying a sub-vertical
foliation that was overprinted by two episodes of
dextral–normal shear zones (Median and South
Branches). Moreover, the main branch displays pro-
tomylonite, mylonite and rare ultramylonite fabrics,
with medium-grained fabrics developed under
upper amphibolite facies and a stretching lineation
that plunges moderately to the SW. In addition, in
the main branch, the NE–SW subvertical mylonitic
foliations display dextral–normal sense kinematics.
The estimated P–T conditions, calculated using min-
eral cores from mylonite assemblage, give 594 +
10°C and 4.5–5.0+ 0.4 kbar. Deformation age in
the main branch was dated with in situ U–Pb
LA-ICP-MS analysis on apatite, yielding an age of
520.7+ 5.3 Ma from a mylonitized greywacke
and a 206Pb/238 U titanite lower intercept age of
524.5+ 7.4 Ma from the same sample.

The median branch also shows dextral–normal
sense, with NE–SW striking mylonitic fabrics with
a SWW shallowly plunging stretching lineation. P–
T conditions were estimated at 585 + 17°C and
4.1+ 0.4 kbar. The estimated age for this segment
of OSZ is c. 519.9 + 1.9 Ma, as indicated by in
situ LA-ICP-MS dating monazite from metapelitic
mylonite. There is another age of in situ LA-ICP-MS
dating of apatite from the same sample, 485.2 +
3.5 Ma, interpreted as reactivation because this age
postdates mylonitization by 30 myr and is identical
(within error) to U–Pb apatite and monazite cooling
ages from the hanging wall of the KSZ, which expe-
rienced sinistral–normal reactivation at this time
(Goscombe et al. 2022).

The southern branch can be divided into eastern
and western sectors, with NNE–SSW oriented
low-T mylonites and NE–SW oriented medium-T

mylonites in basement rocks. Other differences
between these sectors are: (1) the eastern sector is a
narrow (7–67 m wide) shear zone, steeply dipping
to the ESE; the stretching lineation plunges shal-
lowly to the SSW; and kinematic indicators show a
dextral–normal shear sense; and (2) the western sec-
tor displays mylonite to protomylonite fabrics, with
aggregate ribbons of quartz and feldspar that indicate
higher temperatures of deformation (.480°C;
Passchier and Trouw 2005). The age for the southern
branch was obtained by in situ LA-ICP-MS dating of
titanite in a mylonitic greywacke, providing an
uncorrected 206Pb/238U lower intercept age of 490
+ 10 Ma. Another age was calculated using in situ
LA-ICP-MS dating of apatite in metapelite from
the Tinkas Formation, providing a 207Pb corrected
weighted average 206Pb/238U age of 492.5 +
2.7 Ma (Goscombe et al. 2022).

Tinkas shear zone (TSZ). According to Goscombe
et al. (2022), the TSZ is a sub-vertical greenschist
facies sinistral–normal shear zone, restricted to a
12–15 m wide zone demarcating the abrupt boun-
dary between the Tinkas Belt and the Okahandja
Zone (Fig. 4). The maximum age for mylonitization
in TSZ was interpreted indirectly through the dating
of post-kinematic, discordant, tabular muscovite-
bearing pegmatite dykes and muscovite leucogranite
sheets that provide U–Pb monazite ages of 513–
512 Ma (Clemens et al. 2017a, b). Moreover, the
sinistral movement of TSZ is correlated with reacti-
vations of the OSZ and the KSZ that have ages
around 485–482 Ma from U–Pb apatite and mona-
zite data. The TSZ displays S–C fabrics andmylonite
to protomylonite texture, with a NE–SW sub-vertical
foliation. All kinematic indicators point to sinistral–
normal slip along mineral aggregate lineations that,
on average, plunge shallowly to the NE, and there
is no evidence of dextral shear. However, this zone
also experienced different episodes of brittle defor-
mation that overprinted the mylonitic fabric
(Goscombe et al. 2022).

Goantagab shear zone (GSZ). This is a high strain
domain east of the Vrede–Doros–Brandberg line,
where highly strained passive margin carbonates
preserve pre-Kaokoan isoclinal folds and L–S fab-
rics in what may constitute an early crustal-scale
shear zone (Goscombe et al. 2004, 2017; Passchier
et al. 2016).

The Vrede–Doros–Brandberg (VDB) line is a
tectonic boundary (Passchier et al. 2016) that we cor-
relate with the Goantagab shear zone (Goscombe
et al. 2017). The sinistral rotation of the Voetspoor
pluton can be used as a kinematic indicator of this
high strain zone. According to Passchier et al.
(2007), the pluton was emplaced syn-D1/2 and
rotated during D2 and D3 deformational phases.

Transatlantic SW Gondwana crustal-scale shear zones
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Considering that the emplacement age of the pluton
is 530 Ma (Schmitt et al. 2012), the shear zone
movement should be at least in part younger. The
reactivation would have occurred during the
Cambrian.

Gariep Belt (Afr)

The NNW–SSE Gariep Belt (GB) is parallel to the
Namibia–South Africa western coast and orthogonal
to the Damara Belt. It is constituted mainly by thrust
shear zones with minor transcurrent component.
Frimmel (2018) reports that the GB is an important
geological feature in southwestern Namibia, and
can be mapped inland from the coast to around
80 km. Halbich and Alchin (1995) considered the
Gariep Belt as a southerly extension of the Damara
Orogen and subdivided it into an eastern para-
autochthonous or external and continental ‘Port Nol-
loth Zone’ and an allochthonous or internal oceanic
‘Marmora Terrane’, with the boundary defined by
Schakalsberg thrust zone. The para-autochthonous,
external zone is located on the western side of the
Kalahari Craton, and the allochthonous, internal
zone represents an obducted oceanic slab. Frimmel
(1995, 2018) describes the GB as part of the larger
network of Pan-African–Brasiliano orogenic belts
in SW Gondwana, where these zones surround the
composite Kalahari–Kaapvaal–Zimbabwe Craton
and occur in the north Zambezi Belt, in the NWDam-
ara Belt, Saldania in the south and GB in the west.
Davies and Coward (1982) and other authors inter-
preted the GB as a sinistral transpressional orogen.

There are some geodynamic models proposed for
the formation of these coast-parallel branches, relat-
ing them to the suture between South America and
Africa during the Neoproterozoic. In this context,
one model involves the existence and consumption
of the large Adamastor Ocean, and an alternative
model involves a methodology based on zircon prov-
enance and isotopic geochemical data from strata in
which the possible suture between South America
and Africa would be inland of Uruguay and Brazil
and not located along the modern South Atlantic
coastline as proposed in the first model (Frimmel
2018 and references therein).

Saldania Belt (Afr)

Towards the south, entering South Africa, the east–
west foliated Kalahari Craton units are widespread
and continue into the offshore region. Further
south, Paleozoic strata of the Cape Fold and Thrust
Belt show spectacular folds in a thin-skinned
deformation style related to the Permian–Triassic
Gondwanide Orogen. Its crystalline basement is rep-
resented by the Neoproterozoic Saldania Belt.
According to Frimmel and Frank (1998), similar to

the Gariep Belt, the Saldania Belt shows only very
low-grade metamorphic rocks, in contrast to the
high-grade units of the Damara Belt. The most prom-
inent Late Neoproterozoic–Early Paleozoic shear
zone from the Saldania Belt is described below.

Colenso Fault (CF). According to Kisters et al.
(2002), the Colenso Fault (CF) is a major NW–SE
trending fault zone in the Pan-African Saldania
Belt of the Western Cape Province in South Africa,
and is closely associated with the c. 550 to 510 Ma
Cape Granite Suite granitoids. The same authors
describe this fault zone as characterized by intensely
mylonitized and brecciated rocks that can be mapped
for at least 150 km. The emplacement of the Darling
Batholith, at 547 + 6 Ma, records the sinistral
strike-slip movement and suggests an intrusion of
the pluton occurred during the main Pan-African col-
lisional event in the Saldania Belt. The age of dextral
strike-slip movement can be obtained from the
emplacement age of the 520 Ma Trekoskraal granite,
which intrudes syn-kinematically into the fault. The
reversion of the motion in CF at c. 540 Ma coincides
with the uplift in rocks from the Saldania Belt and is
related to the change in regional-scale plate motions
(Kisters et al. 2002 and references therein). The
mylonitic structures suggest deformation at tempera-
tures of c. 400–450°C, evidenced by partial dynamic
recrystallization of feldspar (brittle–ductile behav-
iour) and by the local substitution of biotite by
chlorite.

Discussion

Age and tectonic framework of the shear zone
systems

In order to discuss the kinematic and tectonic scenar-
ios of the final amalgamation and consolidation of
the SW Gondwana continental crust, we require pre-
cise geochronological and P–T conditions con-
straints for the major shear zones. The formation
and reactivation ages of some shear zone systems
are precisely constrained based on sophisticated
and distinct geochronological methods that track
the timing of their evolution with changing P–T con-
ditions (e.g. southern Ribeira Belt; Conte et al. 2020;
Ribeiro et al. 2020; Faleiros et al. 2022; Cabrita et al.
2022). But these well-constrained data are not
homogeneously distributed.

Based on the compiled database, all dated Pan
African–Brasiliano shear zones show predominant
activity between 640 and 540 Ma (Fig. 5). In order
to analyse the kinematics and geodynamics of SW
Gondwana, the shear zones are grouped within the
major orogenic time intervals determined in Schmitt
et al. (2018): Phase 1, older than 590–580 Ma; Phase
2, younger than 590–580 Ma. In Figure 6, the shear
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zones are coloured according to their timing. We
classify Phase 1 and Phase 2 shear zones plus a
group of shear zones that were generated during
the Phase 1 interval and were reactivated during
Phase 2, especially the ones from SE Brazil (Central
and South Ribeira Belt).

The African shear zones, bordering the Kalahari
and Angola cratons, are predominantly from Phase
2. The South American shear zones were active
mostly between 670 and 520 Ma, so they include
both orogenic phases and some of them were reacti-
vated in the Cambrian (Fig. 5).

Transatlantic correlation

To discuss the kinematic and tectonic scenarios of
the final amalgamation and consolidation of the
SW Gondwana continental crust, we need to extrap-
olate and correlate the structures exposed on land
with those offshore. By integrating the structural
and geological data with the plate reconstruction
model for the SW Gondwana crust, it is possible to
propose a more precise transatlantic correlation (de
Wit et al. 2008). These authors concluded that it
would be difficult to identify the respective ‘part-
ners’ of the subvertical Pan-African–Brasiliano
shear zones on either side of the South Atlantic, espe-
cially strike-oblique ones, with a low angle to the
present coastlines and with similar ages.

Here, we discuss the possible correlation between
individual shear zones and/or shear systems, empha-
sizing the timing of deformation, kinematics and
whether they are terrane-bounding or intra-terrane
structures. The new kinematic reconstruction
model provides a tighter fit between the South Amer-
ican and African continents (Figs 2 & 3). The two
continental masses are not only closer than the previ-
ous schematic reconstructions (e.g. Konopásek et al.
2016; Basei et al. 2018;Will et al. 2019), but they are
also reconstructed using oceanic crust as well as con-
tinental margin data allied with continental intraplate
deformation zones (Fig. 2).

From south to north, the first piercing point high-
lighted is the Permian–Triassic Sierra de la Ventana–
Cape Fold and Thrust Belt in both the Argentinian
and South African sides (Figs 3 & 6). This orogen
is a product of the collision of the Patagonia conti-
nental block with the southern Gondwana margin
at the end of the Paleozoic, characterized as the tec-
tonic front of the Gondwanide Orogen that is now
truncated at high angle across the South Atlantic
margins (de Wit et al. 2008). Correlations between
these belts on stratigraphical, structural and geochro-
nological data are robust (e.g. Keidel 1916; Du Toit
1927, 1937). De Wit et al. (2008) point out that the
extreme western section of the Cape Fold Belt bifur-
cates into north–south and NW-striking tectonic
branches, flanking the easternmost outcrops of the

Saldanian basement of the Western Cape (Fig. 3),
and they conclude that it would be hard to determine
which branch correlates directly with the Sierra de la
Ventana Fold and Thrust Belt. Pángaro and Ramos
(2012) propose the continuation offshore of the
NW branch, using the interpretation of seismic sec-
tions that show deformed Paleozoic sediments in a
fold and thrust belt (Fig. 4).

Our kinematic reconstruction for the SW Gond-
wana crust is built on a unique African plate interact-
ing with two South American platelets (Fig. 2). The
South American plate is discontinued exactly at the
Cretaceous Torres syncline feature, where the south-
ern platelet (plate 40, southern Brazil) is rotated anti-
clockwise to be proximate to the South African plate
(201), generating a sinistral east–west movement
overlapping with platelet 201 in the South American
continent (Fig. 2). This specific anticlockwise rota-
tion of platelet 40 approximates the southern Brazil-
ian shield rotation relative to the African continental
crust, even though the COB lines, reduced to 50%,
from Africa and South America do not fit, leaving
a gap of at least 100 km (Fig. 3). This indicates
that there is either missing continental crust or that
there is magma addition to this sector of the margin.
The second hypothesis is feasible considering that
the Pelotas Basin, in Brazil, is a magma-rich margin
with abundant seaward-dipping reflectors (SDRs;
Stica et al. 2014) that represent thick packages of
lavas and are diagnostic features of volcanic passive
margins (McDermott et al. 2018). This analysis
implies there is some space for extra approximation
of these platelets.

The direct consequence of this reconstruction
model is that it offsets the previously proposed corre-
lations between the Brazilian shear zones (Fig. 4).
The Dorsal de Canguçú–Sierra Ballena sinistral
shear zone was previously correlated with the
Major Gercino dextral shear zone (Figs 4&6; Passar-
elli et al. 2011; Konopásek et al. 2016; Philipp et al.
2016). Although they have a similar age of tectonic
activity, with recurrent deformation from 630 to
550 Ma, the kinematic indicators are opposite. In
our new reconstruction, they do not match. The Dor-
sal de Canguçú–Sierra Ballena shear zones would
continue oceanwards, correlating with the Purros–
Three Palms sinistral shear system in Namibia,
more specifically, with the Kunene shear zone
(Fig. 6). This correlation would be geologically
more plausible, as the shear zones have similar age
and kinematics.

Another piercing point that could arise from this
new reconstruction is the correlation between the
NW–SE Colenso sinistral shear zone developed in
the Saldania Belt (South Africa) and the NE–SW
Sierra Ballena sinistral shear zone in the southern
Dom Feliciano Belt in Uruguay (Figs 4 & 6). This
correlation is positioned where the piercing point
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number 10 from de Wit et al. (2008; Fig. 1a) is
located. These authors propose that NW-striking ter-
rane boundary faults within the Saldania Belt (West-
ern Cape, South Africa) connect with the
southernmost extremity of the Alferez–Cordillera–
Punta del Este shear zone (ACPESZ), south of the
Río de la Plata Craton (e.g. Rozendaal et al. 1999).
These faults are more than 800 km apart and could
have been affected by the Late Paleozoic orogeny
of the Sierra de la Ventana–Cape Fold Belt, but
this younger deformation affects mainly the upper
crust. Granites and gneisses from the basement
blocks expose reverse faults and fractures, attesting
to thick-skinned tectonics (Tomezzoli and Cristallini
2004; Ramos 2008; López-Gamundí et al. 2013).
The Paleozoic sedimentary strata are folded and
thrusted, constituting a belt that is interpreted as an
intracontinental orogenic zone. Therefore, there is
no suture zone within SW Gondwana younger than
the Brasiliano–Pan African events. Because these
fold belts are both constructed upon a similar Neo-
proterozoic basement close to the Atlantic margin,
their correct structural correlations have a direct
bearing on the correlation of ‘piercing points’ in
their surrounding basements (de Wit et al. 2008).

One of the controversial connections is the
orthogonal match between the east–west Damara
structures in Africa and the NE–SW Dom Feliciano
Belt structures in southern Brazil and Uruguay
(Fig. 6). The mafic–ultramafic rocks in northern Uru-
guay (Paso del Dragón; Peel et al. 2018) and in south
Brazil (Arroio Grande Complex) are deformed by
the dextral Ayrosa Galvão–Arroio Grande shear
zone (AG; Ramos et al. 2018). The Arroio Grande
branch of the system is oriented east–west. After
reconstruction, its continuation matches with Dam-
ara Belt fabrics in Namibia. The Matchless Amphib-
olite, interpreted as an ophiolitic suture in the
southern Damara Orogen (Meneghini et al. 2017),
is parallel to this structure and is exposed around
Namibia’s capital (Windhoek; Fig. 3). In our recon-
struction model, this ophiolite suture does not fit per-
fectly the Arroio Grande Ophiolite in southern
Brazil, but unknown shear zones offshore might
account for this offset (Fig. 6). The correlation
between the AG shear zone and the Damara Orogen
structures requires further investigation. Alterna-
tively, we propose also that the AG shear zone
might correlate with the Ogden and Purros shear
zones, but the kinematics is opposite, the Namibian
shear zones are sinistral (Fig. 4).

The potential correlation between the sinistral
Purros–Three Palms shear zone systems in the
Kaoko Belt and the dextral Lancinha–Cubatão
shear zone systems in the southern Ribeira Belt is
difficult to evaluate since these systems are subparal-
lel to the coast of the conjugate passive margins (Figs
3 & 4). These systems intersect at an acute angle of c.

30–40°, signalling that they could have been active
during the same event, as indicated by the overlap
between their geochronological ages (Fig. 5).

To the north, the dextral Kuanza shear zone could
be correlated with shear zones in the South American
plate, even though the former does not extend to the
onshore SE Brazil area (Figs 3 & 6). The Cabo Frio
Tectonic Domain (100 km east of Rio de Janeiro,
in red near borehole 1 in Fig. 3) continues offshore
to the northern Campos Basin (Strugale et al. 2021)
and is correlated with the southern West Congo
Belt (100 km north of Luanda, in red in Fig. 3).
Both terranes have Cambrian metamorphic ages
combined with ductile structures that interleave
with Neoproterozoic metasedimentary units and
with the Paleoproterozoic magmatic/metamorphic
basement (Monié et al. 2012; Schmitt et al. 2016).
Motion along the Kuanza shear zone, in relation to
the dextral drag of the southern tip of the West
Congo Belt, occurred in the 540–510 Ma interval
that coincides with latest metamorphic events that
amalgamated SW Gondwana (Schmitt et al. 2018).
Therefore, this dextral structure that truncates
(almost orthogonally) most of the Brazilian orogenic
belts may be directly related to the indentation and
final amalgamation of the cratonic blocks, as we
discuss below.

Kinematics of SW Gondwana amalgamation

The timing and transatlantic correlation of these Edi-
acaran–Cambrian steep shear zones along with their
kinematics allow us to discuss the tectonic scenario
for the final amalgamation and consolidation of the
SW Gondwana continental crust (Fig. 6). The lack
of substantial geochronological data from some
shear zones hinders a detailed kinematic model for
the SWGondwana amalgamation models. However,
some authors have tried to construct this framework
(e.g. Passarelli et al. 2011; Oriolo et al. 2018a, b;
Faleiros et al. 2022; Goscombe et al. 2022). The
upgrade here is the reconstruction of SW Gondwana
developed according to the kinematic models for
reconstructing the South Atlantic oceanic crust, and
the best-fit methodology using plate kinematic soft-
ware (Figs 2 & 3). Therefore, the correlation of the
structures is better constrained than previous
correlations.

Here, we present a simplified kinematic map for
the time interval after 585 Ma, Phase 2 of the Gond-
wana amalgamation process (Schmitt et al. 2018)
that spans most of the shear zones’ activity, includ-
ing the reactivation of shear zones older than
585 Ma (Fig. 5). Hence, our reconstruction considers
the shear zones active in the Late Ediacaran–Cam-
brian time plus the older ones reactivated during
this time. Analysing the map with these specific
structures, their correlation in the offshore, including
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the superficial boundaries of the cratons, and the
younger thrust zones, it is possible to construct a
kinematic scenario (Fig. 6).

The morphology of the cratons and the timing of
the collision between them control mostly the geom-
etry, kinematics and tectonic regime of these late col-
lisional shear zones within the surrounding belts.
Although only the limits of surficial cratons are
shown, the surrounding belts approximately follow
these limits (Fig. 6). The subsurface geometry of
the cratonic blocks remains to be added/discussed
in forthcoming research. For now, four craton prom-
ontories are highlighted in this kinematic map for
SWGondwana, all could be correlated with the Afri-
can margin of the South Atlantic (Fig. 6). The first
promontory is marked by the foreland fold and thrust
belt represented by the Vanrhynsdorp Group (Gresse
1995) that crops out along the coast of South Africa,
between the Saldania and Gariep belts. This Kalahari
promontory displays an east–west basement fabric,
partially structurally overlain by these two NW–SE
and north–south Late Neoproterozoic nappes,
respectively. On the South American side, the Río
de la Plata Craton exposes the same pre-
Neoproterozoic cratonic fabric in the Tandilla sys-
tem (Cingolani 2011). Along the coast of Mar del
Plata, a drill core with Ordovician low-grade metase-
dimentary units is correlated with the orthogonal
Cambrian Pampean Orogen (Punta Mogotes; Cingo-
lani and Bonhomme 1982). Therefore, in the South
Atlantic continental margins, in between South
Africa and northern Argentina, a Brasiliano–Pan-
African belt is located offshore (Fig. 6).

The second Kalahari promontory is located in
southern Namibia, between the NW–SE Gariep
and the ENE–WSW Damara belts. The latter expo-
ses dextral Cambrian shear zones (e.g. Okahandja
shear zone, OK) that are conjugate with respect to
the sinistral Laguna de Rocha (LR) and Sierra Bal-
lena (SB) shear zones in Uruguay. The absence of
transcurrent shear zones in the Gariep Belt reinforces
the interpretation that the late indentation of the Kal-
ahari Craton was accommodated by the conjugate
dextral Okahandja shear zone and the sinistral
Colenso–Sierra Ballena shear zones (Figs 4 & 6).
Therefore, as the Kalahari Craton collided with the
southern Angola Craton between 590 and 530 Ma
in a frontal collision (Lehmann et al. 2016), the Kal-
ahari Craton rotated anticlockwise, closing Edia-
caran–Cambrian basins in Uruguay, SE Brazil and
others (e.g. Bossi and Gaucher 2004; Schmitt et al.
2016). Casquet et al. (2018) interpret the Cambro-
Ordovician belt in between the Kalahari and Río de
la Plata cratons, partially preserved as the Saldania
Belt, was contiguous with the Pampean orogeny
(Fig. 1b). The sinistral NW–SE Colenso shear zone
and its continuity into South America (Sierra Ballena
shear zone; Figs 4 & 6) would be coeval with the

dextral Córdoba Fault (Fig. 4), implying late move-
ment of the Río de la Plata Craton to the south, dis-
rupting the Saldania and Pampean belts and locking
the internal Gondwana orogens (Fig. 6). Therefore,
from 585 until 500 Ma, the relative movement of
the Río de la Plata Craton is clockwise in relation
to the Kalahari Craton.

The interaction and convergence between the
cratons to the north are more difficult to envisage
considering that (a) the Paranapanema Craton and
Luís Alves microplate correlations are speculative,
mostly covered by the Phanerozoic Parana Basin
(Fig. 1) and (b) Tonian tectonic events and geologi-
cal units are recorded in the São Gabriel, Apiaí and
Ribeira terranes (Heilbron et al. 2008; Campanha
et al. 2016; De Toni et al. 2020b). Irrespective of
these uncertainties, two promontories of the Angola
Craton give important hints on this internal SW
Gondwana amalgamation (Fig. 6).

The Kamanjab inlier is located in the SW corner
of the Angola Craton that crops out in northern
Namibia (Figs 3 & 6). The activity of the Purros–
Three Palms sinistral shear zone system, coeval
with the Okahandja dextral shear zone, resulted in a
north–NEmovement of theAngolaCraton in relation
to the collision of the Kalahari Craton to the south.
This northward displacement might be responsible
for the Buzios collisional orogeny that amalgamated
the Ribeira Belt, suturing the Angola and São
Francisco cratons in SE Brazil (Schmitt et al. 2016,
2018). The second Angola Craton promontory,
between the northern termination of the Kaoko Belt
and the Kuanza shear zone in the north, continues
towards offshore Angola and could be related to a
well-known feature in the offshore Santos Basin in
Brazil, the Helmut shear zone that separates two dis-
tinct continental domains within this Atlantic mar-
ginal basin (Fig. 4; Dehler et al. 2016). To the east
of the Helmut shear zone, there is a resistant conti-
nental block that represents an external Cretaceous
high in this marginal basin. It is interpreted as
a rheologically competent continental crust block
that could be part of the Angola Craton (Schmitt
et al. 2016). The northwards movement of the
Angola Craton evolves to an anticlockwise rotation,
expressed by the dextral east–west Kwanza shear
zone. Within the Cabo Frio Tectonic Domain, c.
515 Ma NW–SE dextral shear zones are widespread
alongwith theKwanza shear zone, and they represent
conjugate movement with respect to the Three
Palms–Purros sinistral shear system in Namibia that
shows younger activity in the Cambrian (Fig. 5).

Considering that the transpressional dextral SE
Brazilian shear system, Lancinha Cubatão and
CTB–Além Paraiba (Passarelli et al. 2011; Faleiros
et al. 2022), has older ages for deformation
(Fig. 5), we interpret this movement as the accom-
modation of the São Francisco Craton during the
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main collision of the Ribeira Belt. This later dextral
system also reflects the anticlockwise rotation of the
São Francisco Craton in Brazil relative to the Angola
Craton.

Conclusion

The final amalgamation and consolidation of the SW
Gondwana continental crust were attained by anti-
clockwise rotation of three cratons (Kalahari, Angola
and São Francisco) in relation to the clockwise rota-
tion of the Río de la Plata Craton in the Gondwana
margin, accommodating the initiation of a long-term
active margin starting with the Pampean orogeny and
endingwith the Gondwanide orogeny. These relative
movements were accommodated by transcurrent
shear zones active from 585 to 500 Ma within the
Pan-African–Brasiliano belts that surround these
cratons. The precision of this kinematic model super-
sedes previous models because it is based on a new
kinematic reconstruction of the South Atlantic that
provided a better fit between the South American
and Africa plates. With a better correlation offshore
of these subvertical late collisional shear zones, the
final amalgamation of SW Gondwana as well as
the initiation of its long-lived Paleozoic active mar-
gin are here presented. As pointed out by de Wit
et al. (2008), there is no other way to realize a Pan-
African–Brasiliano tectonic evolution for the belts
separated by the South Atlantic than to understand
and unravel the Cretaceous tectonic evolution:

One way to realize this is to re-join Neoproterozoic
‘piercing points’ on the conjugate margin of continental
blocks that are well-dated and otherwise geophysically
and geologically characterized. We have argued that for
South America and Africa this might be achievable in
the case of at least ten well-defined Neoproterozoic
ties around the margins of the South Atlantic Ocean,
and we presented a detailed map of the Brasiliano/Pan-
African structures of Gondwana to facilitate the plan-
ning of such experiments. Playing back the continental
motions whilst simultaneously pinning these original
ties together, should result in a more robust and accurate
fit fromwhich to re-track interactive mantle–lithosphere
break-up mechanisms and help quantify internal Gond-
wana strains that led to the break-up and separation in
the first place. Involving a greater degree of such geo-
logical and geophysical control to reconstruct the
Gondwana break-up history will help to correct for
early Trans-Atlantic rift distortions and thus to better
reconstruct the evolution of continental margins of the
South Atlantic; and this in turn will improve our general
understanding of the evolution of continents

(de Wit et al. 2008, p. 408).
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