Clarice Lauer Schmidt

Clarice Lauer Schmidt
Iowa State University | ISU · Department of Plant Pathology and Microbiology

PhD

About

22
Publications
6,882
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
4,210
Citations
Citations since 2016
5 Research Items
2451 Citations
20162017201820192020202120220100200300400
20162017201820192020202120220100200300400
20162017201820192020202120220100200300400
20162017201820192020202120220100200300400
Introduction
Skills and Expertise
Additional affiliations
January 2004 - present
Iowa State University
Position
  • Ass. Scientist II

Publications

Publications (22)
Article
Phytophthora stem and root rot (PSRR) of soybean, caused by the oomycete Phytophthora sojae, is prevalent in Iowa and Nebraska. Reducing losses to PSRR primarily relies on growing cultivars with specific resistance (Rps) genes. Predominant genes used in commercial soybean cultivars include Rps 1a, Rps 1c, Rps 1k, and Rps 3a. Knowing which Rps gene...
Article
Understanding the diversity of a pathogen is important for developing disease management recommendations. In the Phytophthora root and stem rot (PRSR)-soybean pathosystem, Phytophthora sojae is characterized into pathotypes based on the ability of the pathogen to cause disease on soybean genotypes that each contain a different resistance Rps gene....
Article
Bacterial leaf streak (BLS), a foliar disease of maize (Zea mays L.) caused by Xanthomonas vasicola pv. vasculorum, recently emerged in the Americas as a disease of major importance. Little is known about the disease cycle, and consequently, management is difficult. No chemical control is available. Host resistance will likely play a major role in...
Article
Full-text available
The rice pathogens Xanthomonas oryzae pathovar (pv.) oryzae and pv. oryzicola produce numerous transcription activator-like (TAL) effectors that increase bacterial virulence by activating expression of host susceptibility genes. Rice resistance mechanisms against TAL effectors include polymorphisms that prevent effector binding to susceptibility ge...
Article
Full-text available
Clavibacter michiganensis subsp. nebraskensis (Cmn), the causal organism of Goss’s wilt and leaf blight of maize, can be detected in the phyllosphere of its host prior to disease development. We compared the morphology and pathogenicity of 37 putative isolates of Cmn recovered from asymptomatic and symptomatic maize leaves. Thirty-three of the isol...
Article
Full-text available
Bacterial leaf streak of rice, caused by Xanthomonas oryzae pv. oryzicola (Xoc) is an increasingly important yield constraint in this staple crop. A mesophyll colonizer, Xoc differs from X. oryzae pv. oryzae (Xoo), which invades xylem to cause bacterial blight of rice. Both produce multiple distinct TAL effectors, type III-delivered proteins that t...
Article
Full-text available
Genomes of the rice (Oryza sativa) xylem and mesophyll pathogens Xanthomonas oryzae pv. oryzae (Xoo) and pv. oryzicola (Xoc) encode numerous secreted transcription factors called transcription activator-like (TAL) effectors. In a few studied rice varieties, some of these contribute to virulence by activating corresponding host susceptibility genes....
Article
Full-text available
TALENs are important new tools for genome engineering. Fusions of transcription activator-like (TAL) effectors of plant pathogenic Xanthomonas spp. to the FokI nuclease, TALENs bind and cleave DNA in pairs. Binding specificity is determined by customizable arrays of polymorphic amino acid repeats in the TAL effectors. We present a method and reagen...
Article
Full-text available
Engineered nucleases that cleave specific DNA sequences in vivo are valuable reagents for targeted mutagenesis. Here we report a new class of sequence-specific nucleases created by fusing transcription activator-like effectors (TALEs) to the catalytic domain of the FokI endonuclease. Both native and custom TALE-nuclease fusions direct DNA double-st...
Article
Full-text available
Mobile elements rely on cellular processes to replicate, and therefore, mobile element proteins frequently interact with a variety of cellular factors. The integrase (IN) encoded by the retrotransposon Ty5 interacts with the heterochromatin protein Sir4, and this interaction determines Ty5's preference to integrate into heterochromatin. We explored...
Article
Full-text available
Many retrotransposons and retroviruses display integration site specificity. Increasingly, this specificity is found to result from recognition by the retroelement of specific chromatin states or DNA-bound protein complexes. A well-studied example of such a targeted retroelement is the Saccharomyces Ty5 retrotransposon, which integrates into hetero...
Article
Full-text available
The M(3) muscarinic receptor is a prototypical member of the class A family of G protein-coupled receptors (GPCRs). To gain insight into the structural mechanisms governing agonist-mediated M(3) receptor activation, we recently developed a genetically modified yeast strain (Saccharomyces cerevisiae) which allows the efficient screening of large lib...
Article
Full-text available
The M3 muscarinic receptor is a prototypical member of the class I family of G protein-coupled receptors (GPCRs). To facilitate studies on the structural mechanisms governing M3 receptor activation, we generated an M3 receptor-expressing yeast strain (Saccharomyces cerevisiae) that requires agonist-dependent M3 receptor activation for cell growth....
Article
Full-text available
A novel mutant isolate of Saccharomyces cerevisiae, sensitive to photoactivated mono- and bi-functional psoralens, to UV at 254 nm (UVC), and to nitrosoguanidine, was found to complement the photoactivated psoralen-sensitivity phenotype conferred by the pso1- pso7 mutations and was therefore named pso8-1. A constructed pso8-1 rad4-4 double mutant w...
Article
The goal of this study was to functionally express the three Gq-coupled muscarinic receptor subtypes, M1, M3 and M5, in yeast (Saccharomyces cerevisiae). Transformation of yeast with expression constructs coding for the full-length receptors resulted in very low numbers of detectable muscarinic binding sites (Bmax < 5 fmol/mg). Strikingly, deletion...
Article
Full-text available
To facilitate structure-function relationship studies of the V2 vasopressin receptor, a prototypical Gs-coupled receptor, we generated V2 receptor-expressing yeast strains (Saccharomyces cerevisiae) that required arginine vasopressin-dependent receptor/G protein coupling for cell growth. V2 receptors heterologously expressed in yeast were unable to...
Article
Sequencing of the yeast gene that complemented the sensitivity to the photoactivated monofunctional 3-carbethoxypsoralen of the pso6-1 mutant strain revealed that the ERG3 locus, encoding sterol C-5 desaturase involved in biosynthesis of ergosterol, is allelic to PSO6. Disruption of the ERG3 gene yielded an erg3Delta mutant viable in ergosterol-con...
Article
Sequencing of the yeast gene that complemented the sensitivity to the photoactivated monofunctional 3-carbethoxypsoralen of the pso6-1 mutant strain revealed that the ERG3 locus, encoding sterol C-5 desaturase involved in biosynthesis of ergosterol, is allelic to PSO6. Disruption of the ERG3 gene yielded an erg3 Delta mutant viable in ergosterol-co...
Article
Berberine, a medically important isoquinoline alkaloid, was tested for the presence of genotoxic, mutagenic and recombinogenic activities in microorganisms. This alkaloid did not show genotoxic activity with or without metabolic activation in the SOS chromotest. It was also unable to induce significant cytotoxic, mutagenic or recombinogenic effects...
Article
Full-text available
Berberine, a medically important isoquinoline alkaloid, was tested for the presence of genotoxic, mutagenic and recombiinogenic activities in microorganisms. This alkaloid did not show genotoxic activity with or without metabolic activation in the SOS chromotest. It was also unable to induce significant cytotoxic, mutagenic or recombinogenic effect...

Network

Cited By