About
253
Publications
47,052
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
14,291
Citations
Introduction
Additional affiliations
January 2006 - present
Publications
Publications (253)
Multifunctional nanoparticles such as magneto-plasmonic nanohybrids are rising theranostic agents. However, little is yet known of their fate within the cellular environment. In order to reach an understanding of their biotransformations, reliable metrics for tracking and quantification of such materials properties during their intracellular journe...
Quantitative studies of the long-term fate of iron oxide nanoparticles inside cells, a prerequisite for regenerative medicine applications, are hampered by the lack of suitable biological tissue models and analytical methods. Here we propose stem cell spheroids as a tissue model to track intracellular magnetic nanoparticles transformations during l...
Gold nanoparticles are prime candidates for cancer thermotherapy. However, while the ultimate target for nanoparticle-mediated photothermal therapy is the cancer cell, heating performance has not previously been evaluated in the tumoral environment. A systematic investigation of gold nanostar heat-generating efficiency in situ is presented: not onl...
Multifunctional hybrid-design nanomaterials appear to be a promising route to meet the current therapeutics needs required for efficient cancer treatment. Herein, two efficient heat nano-generators were combined into a multifunctional single nanohybrid (a multi-core iron oxide nanoparticle optimized for magnetic hyperthermia, and a gold branched sh...
Nanoparticles (NPs) are at the leading edge of nanomedicine, and determining their biosafety remains a mandatory precondition for biomedical applications. Herein, we explore the bioassimilation of copper sulfide NPs reported as powerful photo-responsive anticancer therapeutic agents. The nanoparticles investigated present a hollow shell morphology,...
A growing tumor is submitted to ever-evolving mechanical stress. Endoscopic procedures add additional constraints. However, the impact of mechanical forces on cancer progression is still debated. Herein, a set of magnetic methods is proposed to form tumor spheroids and to subject them to remote deformation, mimicking stent-imposed compression. Upon...
Liquid and elastic behavior of tissues drives their morphology and their response to the environment. They appear as the first insight on tissue mechanics. We explore the role of individual cell properties on spheroids of mouse muscle precursor cells by developing a fully automated surface tension and Young's modulus measurement system. Flattening...
Extracellular vesicles (EV) are emergent therapeutic effectors that have reached clinical trial investigation. To translate EV-based therapeutic to clinic, the challenge is to demonstrate quality, safety, and efficacy, as required for any medicinal product. EV research translation into medicinal products is an exciting and challenging perspective....
In this study, we investigated the combination of extracellular (nano) vesicles (EVs) from pig adipose tissue-derived stromal cells (ADSCs) and a thermoresponsive gel, Pluronic® F-127 (PF-127), to prevent stricture formation after endoscopic resection in a porcine model. ADSC EVs were produced at a liter scale by a high-yielding turbulence approach...
Extracellular vesicles (EVs) have emerged as new drug delivery systems as well as a regenerative cell-free effectors going beyond academic research to reach industrial research and development (R&D). Many proof-of-concept studies are now published describing the delivery of drugs, nanoparticles or biologics among which nucleic acids, proteins, viru...
Extracellular vesicles (EVs) are becoming essential actors in bio-therapeutics, as much for their regenerative or immunomodulatory properties as for their potential as cargo delivery vehicles. To enable the democratization of these EV-based therapies, many challenges remain such as large-scale production which is necessary to reduce costs of treatm...
Despite current management strategies, digestive fistulae remain extremely debilitating complications associated with significant morbidity and mortality, generating a need to develop innovative therapies in these indications. A number of clinical trials and experimental studies have thus investigated the potential of stem/stromal cells (SCs) or SC...
We describe a novel synthesis allowing to enhance the loading of magnetic nanoparticles and gold nanorods in nanogels with two different structures, simple cores and core-shells. The heating properties of...
Background
The interactions between nanoparticles and the biological environment have long been studied, with toxicological assays being the most common experimental route. In parallel, recent growing evidence has brought into light the important role that cell mechanics play in numerous cell biological processes. However, despite the prevalence of...
The scientific community has made great efforts in advancing magnetic hyperthermia for the last two decades after going through a sizeable research lapse from its establishment. All the progress made in various topics ranging from nanoparticle synthesis to biocompatibilization and in vivo testing have been seeking to push the forefront towards some...
The dissemination of tumor metastasis in the peritoneal cavity, also called peritoneal metastasis (PM) or carcinomatosis, represents a late stage of gastrointestinal and gynecological cancer with very poor prognosis, even when cytoreductive surgery is effective, due to residual microscopic disease. Photodynamic therapy (PDT) in the management of pe...
Nanoparticle-mediated thermal treatments have demonstrated high efficacy and versatility as a local anticancer strategy beyond traditional global hyperthermia. Nanoparticles act as heating generators that can trigger therapeutic responses at both the cell and tissue level. In some cases, treatment happens in the absence of a global temperature rise...
Background
Despite the highly expected clinical application of nanoparticles (NPs), the translation of NPs from lab to the clinic has been relatively slow. Co-culture 3D spheroids account for the 3D arrangement of tumor cells and stromal components, e.g., cancer-associated fibroblasts (CAFs) and extracellular matrix, recapitulating microenvironment...
Extracellular vesicles (EVs), especially from stem/stromal cells (SCs), represent a cell-free alternative in regenerative medicine holding promises to promote tissue healing while providing safety and logistic advantages in comparison to cellular counterparts. Herein, we hypothesize that SC EVs, administered locally in a thermoresponsive gel, is a...
Tissues are generally subjected to external stresses, a potential stimulus for their differentiation or remodelling. While single-cell rheology has been extensively studied, mechanical tissue behavior under external stress is still poorly known because of a lack of adapted set-ups. Herein we introduce magnetic techniques designed both to form aggre...
Three-dimensional tissue culture, and particularly spheroid models, have recently been recognized as highly relevant in drug screening, toxicity assessment and tissue engineering due to their superior complexity and heterogeneity akin to the in vivo microenvironment. However, limitations in size control, shape reproducibility and long maturation ti...
Photothermal therapy is gathering momentum. In order to assess the effects of the encapsulation of individual or clustered superparamagnetic iron oxide nanoparticles (SPIONs) on nanoparticle light-to-heat conversion, we designed and tested individual and clustered SPIONs encapsulated within a silica shell. Our study compared both photothermia and m...
Tissue engineering aims to repair or replace deficient tissue by delivering constructs that mimic the native in vivo structure. One challenge in cardiac tissue engineering approaches is to achieve intrinsic cardiac organization, particularly the alignment of cardiomyocytes. Here, we propose a strategy for 3D manipulation and alignment of cardiomyoc...
ConspectusConsiderable knowledge has been acquired in inorganic nanoparticles' synthesis and nanoparticles' potential use in biomedical applications. Among different materials, iron oxide nanoparticles remain unrivaled for several reasons. Not only do they respond to multiple physical stimuli (e.g., magnetism, light) and exert multifunctional thera...
This case report relates to the first-in-man use of a vessel occluder gel medical device as a fistula occluder in a repurposing strategy. A patient with chronic colocutaneous fistula received an off-label treatment with a thermoresponsive Poloxamer 407 gel (20%) via percutaneous administration and injected under endoscopic control. Treatment consis...
The photothermal use of iron oxide magnetic nanoparticles (NPs) is becoming more and more popular and documented. Herein, we compared the photothermal (PT) therapy potential versus magnetic hyperthermia (MHT) modality of magnetic nanospheres, largely used in the biomedical field and magnetic multicore nanoflowers known among the best nanoheaters. T...
Herein, we report a facile and rapid one-step synthetic strategy to develop magnetic doxorubicin imprinted silica nanoparticles for in living cells drug release experiments showing a remotely triggered doxorubicin release...
Extracellular vesicles (EVs), derived from the cell, display a phospholipid bilayer membrane that protects the cargo molecules from degradation and contributes to increasing their stability in the bloodstream and tumor targeting. EVs are interesting in regard to the delivery of photosensitizers (PSs) used in the photodynamic therapy (PDT), as they...
L’invention concerne un système fluidique de chargement d’un agent thérapeutique ou d’imagerie dans la lumière de vésicules extracellulaires (EV) à partir de cellules productrices, comprenant au moins un récipient, un milieu liquide contenu par le récipient, des cellules productrices, un agitateur de milieu liquide et des moyens de commande de la v...
Pluripotent stem cells are central tools to many regenerative medicine strategies due to their ability to differentiate toward the three embryonic germ layers. One challenge remains in providing control over their differentiation into specific lineages, such as cardiac commitment. Here, the possibility of directing cardiomyogenesis of embryonic ste...
With advancing developments over the use of magnetic nanoparticles in biomedical engineering, and more specifically cell-based therapies, the question of their fate and impact once internalized within (stem) cells remains crucial. After highlighting the regenerative medicine applications based on magnetic nanoparticles, this review documents their...
In article number 1900284, Yoann Lalatonne, Claire Wilhelm, and co‐workers assess the photothermal potential of gold nano‐spheres, rods, and raspberries‐like multi‐cores outside cancer cells (extracellular environment) or internalized within (intracellular), evidencing that the bio‐processing of gold nanomaterials can be highly beneficial for cance...
The photothermal and magnetothermal properties of carbon-coated iron cobalt nanoparticles with a polymer shell make them sensitive tracers for in vivo magnetic particle imaging, magnetic resonance imaging and photoacoustic imaging.
Progress of thermal tumor therapies and their translation into clinical practice are limited by insufficient nanoparticle concentration to release therapeutic heating at the tumor site after systemic administration. Herein, the use of Janus magneto-plasmonic nanoparticles, made of gold nanostars and iron oxide nanospheres, as efficient therapeutic...
Gold nanoparticles can act as photothermal agents to generate local tumor heating and subsequent depletion upon laser exposure. Herein, photothermal heating of four gold nanoparticles and the resulting induced cancer cell death are systematically assessed, within extra‐ or intracellular localizations. Two state‐of‐the‐art gold nanorods are compared...
The use of magnetic nanoparticles in nanomedicine keeps expanding and, for most applications, the nanoparticles are internalized in cells then left within, bringing the need for accurate, fast, and easy to handle methodologies to assess their behavior in the cellular environment. Herein, a benchtop-size magnetic sensor is introduced to provide real...
The nanoparticles produced by magnetotactic bacteria, called magnetosomes, are made of a magnetite core with high levels of crystallinity surrounded by a lipid bilayer. This organized structure has been developed during the course of evolution of these organisms to adapt to their specific habitat, and is assumed to resist degradation, able to withs...
Cancerous cells and the tumor microenvironment are among key elements involved in cancer development, progression, and resistance to treatment. In order to tackle the cells and the extracellular matrix, we herein propose the use of a class of silica-coated iron oxide nanochains, which have superior magnetic responsiveness and can act as efficient p...
Magnetic nanoparticles coated with protein imprinted polymers (PIP) are receiving an increasing attention thanks to their binding abilities, robustness and easy synthesis compared to their natural analogues also able to target protein, such as antibodies, or aptamers. Acting as tailor-made recognition systems, protein imprinted polymers can be used...
Targeting TRAIL (Tumor necrosis factor (TNF)-Related Apoptosis-Inducing Ligand) receptors for cancer therapy remains challenging due to tumor cell resistance and poor preparations of TRAIL or its derivatives. Herein, to optimize its therapeutic use, TRAIL was grafted onto iron oxide nanoclusters (NCs) with the aim of increasing its pro-apoptotic po...
Magnetic nanoparticles (MNP) internalized within stem cells have paved the way for remote magnetic cell manipulation and imaging in regenerative medicine. A full understanding of their interactions with stem cells and of their fate in the intracellular environment is then required, in particular with respect to their surface coatings. Here, we inve...
Carbon Dots (CDs) are innovative materials which have potential applications in many fields, including nanomedicine, energy and catalysis. Here CDs were produced by the alkali-assisted ultrasonic route and characterized by several techniques to determine their composition and properties. Fluorescence nanoscopy using Single-Molecule Localization Mic...
Gold nanoraspberries were synthesized by a seed-mediated synthesis with polyethylene glycol-functionalized bisphosphonates. The original structure shifted the optical absorption to infrared, revealing very efficient photothermal properties within the 2nd biological...
While magnetic nanoparticles offer exciting possibilities for stem cell imaging or tissue bioengineering, their long-term intracellular fate remains to be fully documented. Besides, it appears that magnetic nanoparticles can occur naturally in human cells, but their origin and potentially endogenous synthesis still need further understanding. In an...
Innovative synthesis routes revolutionized nanomaterial combination and design possibilities resulting in a new generation of fine-tuned nanoparticles featuring exquisite shape and constitution control. However, there is still room for improvement when it comes to the development of multi-functional nanoparticle agents merging a plurality of therap...
Efficient photodynamic therapy with meta-tetra(hydroxyphenyl)chlorine requires the application of specific nanoformulations. mTHPC liposomal formulation (Foslip®) demonstrated favorable pharmacokinetics properties. However, rapid liposomes destruction in circulation and rapid mTHPC release impedes Foslip® applications. Alternatively, mTHPC nanovect...
Emerging advances in extracellular vesicle (EV) research brings along new promises for tailoring clinical treatments in order to meet specific disease features of each patient in a personalized medicine concept. EVs may act as regenerative effectors conveying endogenous therapeutic factors from parent cells or constitute a bio-camouflaged delivery...
A gold therapeutic nanoplatform with the same molecule used as reductant, coating and therapeutic agent has been developed in a one-pot, one-phase process using alendronate, a drug from the bisphosphonate family known for its antitumor effects. In addition, the core made of gold nanoparticles (NPs) brings thermal functionalities under irradiation w...
Magnetic hyperthermia which exploits the heat generated by magnetic nanoparticles (MNPs) when exposed to an alternative magnetic field (AMF) is now in clinical trials for the treatment of cancers. However, this thermal therapy requires a high amount of MNPs in the tumor to be efficient. On the contrary the hot spot local effect refers to the use of...
Herein, original magnetic drug delivery nanomaterials for cancer therapy are developed and compared, with the purpose to show active control over drug release by using an alternative magnetic field (AMF). The rationale is to combine polymers and superparamagnetic nanoparticles to trigger such drug release under AMF. Two magnetic nanosystems are thu...
Due to an unmet clinical need of curative treatments for osteoarthritic patients, tissue engineering strategies that propose the development of cartilage tissue replacements from stem cells have emerged. Some of these strategies are based on the internalization of magnetic nanoparticles into stem cells to then initiate the chondrogenesis via magnet...
Extracellular vesicles (EVs) are increasingly envisioned to be the next-generation of biological proregenerative nanotherapeutic agents, as already demonstrated for heart, kidney, liver, lung injury, brain and skin regeneration. Herein, we explore another potential EV therapeutic application, for fistula healing, together with a local minimally-inv...
Extracellular vesicles (EVs) are recognized as the nature's own carriers to transport macromolecules throughout the body. Hijacking this endogenous communication system represents an attractive strategy for advanced drug delivery. However, efficient and reproducible loading of EVs with therapeutic or imaging agents still represents a bottleneck for...
Despite their highly efficient plasmonic properties, gold nanoparticles are currently preferred to silver nanoparticles for biomedical applications such as photothermal therapy due to their high chemical stability in the biological environment. To confer protection while preserving their plasmonic properties, we allied the advantages of both materi...