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ABSTRACT
Online job boards have greatly improved the efficiency of job search-
ing and have also provided valuable data for labour market research.
However, there are a high proportion of duplicate job postings in
most (if not all) job boards, because recruiters and job boards seek
to improve their coverage of the market by integrating job postings
from many different sources. These duplicate postings undermine
the usability of job boards and the quality of labour market analytics
derived from them. In this paper, we tackle the challenging problem
of duplicate detection from online job postings. Specifically, we de-
sign a framework for duplicate detection from online job postings
and, under the framework, implement and test 24 methods built
with four different tokenisers, three vectorisers and six similarity
measures. We conduct a comparative study and experimental eval-
uation of the 24 methods and compare their performance with a
baseline approach. All methods are tested with a real-world dataset
from a job boarding platform and are evaluated with six perfor-
mance metrics. The experiment reveals that the top two methods
are Overlap with skip-gram (OS) and Overlap with n-gram (OG),
followed by TFIDF-cosine with n-gram (TCG) and TFIDF-cosine with
skip-gram (TCS), and that all above four methods outperform the
baseline approach in detecting duplicates.

CCS CONCEPTS
• Applied computing → Document analysis; • Computing
methodologies → Information extraction; • Information sys-
tems → Data cleaning.
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1 INTRODUCTION
There are many online job/career platforms, such as SEEK, Ca-
reerOne, Adzuna and LinkedIn, which have collected a large vol-
ume of job postings. However, due to the fact that recruiters often
post job postings to multiple platforms and that platform providers
scrape job postings from one another (to improve their coverage
of the market), duplicate job postings are common. A recent study
by Jijkoun [9] shows that an average job ad can be re-posted two
to five times and that the fraction of duplicates can be as high
as 50-80%. Identifying duplicate job postings is important for two
reasons. First, the usability of the platform is diminished when
search results include many duplicates or users receive multiple
alerts for the same job. Second, job postings have now become a
valued source of data for monitoring labour markets since they
provide near-to-real-time data on employer demand for workers
and skills [5, 8, 14]. The efficiency of users’ search for relevant
job postings and the analysis of job trend and skills in demand is
substantially impacted when duplicate job postings are so common.

In this paper we describe the development of a framework for
duplicate detection from online job postings. Under the framework,
we have developed and experimentally evaluated 24 methods on
a real-world dataset captured from Adzuna Australia, a job board
and search engine for the Australian job market. The 24 methods
are built with

• four different tokenisers: word tokeniser, word tokeniser
with stop words removal, n-gram tokeniser and skip-gram
tokeniser, which are referred to respectively as word, word-2,
n-gram and skip-gram in the rest of this paper,

• three vectorisers: Document-Term Matrix (DTM), Term Fre-
quency - Inverse Document Frequency (TFIDF) and Latent
Semantic Analysis (LSA) [6], and

• six similarity measures: Jaccard, Overlap, Cosine, LSA-cosine,
TFIDF-Euclidean and TFIDF-cosine.

In our experiments, the abovemethodswere comparedwithApollo [2],
an existing approach for duplicate detection from job postings. The
performance of each method was evaluated with six measures:
correlation, AUC, accuracy, precision, recall and F1-score. Experi-
mental results show that Overlap with skip-gram (OS) and Overlap
with n-gram (OG) were the best two methods, followed by TFIDF-
cosine with n-gram (TCG) and TFIDF-cosine with skip-gram (TCS),
and that all of the above four methods outperformed Apollo [2].

Contributions of this work include:

• a framework for detecting duplicates from job postings,
• a blocking and re-grouping method to speed up the process,
• a comparative study of 24 methods built with four different
tokenisers, three vectorisers and six similarity measures, and
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• an experimental evaluation of the above methods and com-
parison with an existing approach on real-world job posting
data.

2 RELATEDWORK
2.1 Near-Duplicate Web Page Detection
Broder et al. [1] developed a method to determine the syntactic
similarity of documents and used it to cluster documents on the
Internet, with possible applications like a “lost-and-found” service
for documents, filtering web search results and identifying plagia-
rism. Lecocq [11] summarised multiple methods for near-duplicate
content detection, including bag of words, shingling, hashing, Min-
Hash and SimHash. Henzinger [7] performed an evaluation of two
near-duplicate detection algorithms on a set of 1.6B web pages, and
the results showed that both algorithms achieved high precision for
finding near-duplicate pairs on different sites, but worked poorly
on pairs from the same site. Manku et al. [12] investigated the prob-
lem of detecting near-duplicates for web crawling, i.e., to assess
whether a newly crawled web page is a near-duplicate of a previ-
ously crawled one. Their study showed that Charikar’s SimHash
and fingerprinting technique [4] is practically useful for identifying
near-duplicate web pages. They also developed a method to quickly
find all fingerprints that are different from a given one, which is
fast in both online and batch near-duplicate detection.

2.2 Detecting Duplicate Postings in Online
Classifieds

Kaggle [10] hosted a competition on detecting duplicate postings
posted in online classifieds in 2016, where duplicate postings were
to be identified based on their contents including Russian language
text and images. The postings were collected from online market-
places where people buy or sell items, rather than job postings. The
competition provided a training dataset, which contained pairs of
postings that were duplicate and not duplicates. In our work, we
take an unsupervised approach, which makes our approach better
in that in many instances training datasets are unavailable or very
costly to obtain.

2.3 Duplicate Job Ads Detection
Jijkoun [9] presented a methodology used at Textkernel for dupli-
cate detection from online job postings, Their study suggested that
the fraction of duplicates can be as high as 50-80% in job postings
crawled from online job boards and other sites. In that method, a
statistical classifier was trained to predict whether two postings
referred to the same job. Shingling was used to measure the textual
similarity between two documents and a locality sensitive hash-
ing scheme and ElasticSearch were used for improving efficiency.
Burk et al. [2] developed a system named Apollo for near-duplicate
job postings detection in the online recruitment domain. With a
range of techniques including blocking, shingling, boilerplate text
removal and Jaccard similarity, their experimental results showed
that the system achieved higher precision, recall and F-score than
SimHash and Shingling. In their method, the time gap between
job postings was not considered, fixed heuristic thresholds and 5-
shingle (i.e., 5-gram) were used and stop words were not removed.

We take this method as a baseline and compare our methods with
it in experiments.

3 PROBLEM STATEMENT
There are various types of duplicate job postings. For example, a job
ad could have been posted on multiple sites and therefore end up
with multiple copies when crawling. Even on a single site, a job ad
can be re-posted multiple times within a few weeks and sometimes
even within a few days. From the collected data, we found some
job ad series, composed of a single job ad being re-posted multiple
times within a short timeframe. Some of them are re-posted after
two months, which are likely to be re-advertising when a vacancy
is not filled yet. However, there are often also a series of postings
with the same ad re-posted almost daily or weekly, which are likely
to be spam or posting by bots. Based on exploration of the job
postings data and discussion with domain experts, we applied a
window of 60 days to identify duplicates from series. That is, a
re-posting of an original ad after 60 days is taken as a new job ad,
rather than a duplicate. The same window size has been used for
job ad de-duplication in existing work [3].

We define a duplicate job posting as follows. A job posting is a
duplicate if it has both the same title and the same location and has
very similar job description to one or more other postings posted
within 60 days prior to it. Assume A and B are two job postings. A
is a duplicate of B if



Timestamp(A) > Timestamp(B),
0 ≤ Date(A) − Date(B) ≤ 60,
Title(A) = Title(B),
Location(A) = Location(B), and
Sim(A,B) ≥ τ ,

(1)

where Date, Timestamp, Title and Location are respectively the
post date, timestamp, job title and location of a job posting, Sim is
a similarity measure and τ is a similarity threshold.

If two postings have very similar job descriptions but different
locations or different job titles, they are not considered duplicate of
each other, because most likely they are two vacancies at different
locations or with similar but different roles.

4 METHODOLOGY
This section presents our methodology for duplicate detection. A
framework of it is shown in Figure 1, which is composed of four
steps. First, the body text of job postings is cleaned by converting
to lower case, removing non-alphanumeric symbols, collapsing
multiple spaces and removing stop words. Next, tokens are ex-
tracted with four tokenisers and job postings are vectorised with
Document-Term Matrix (DTM), Term Frequency - Inverse Docu-
ment Frequency (TFIDF) and Latent Semantic Analysis (LSA) [6].
After that, six similarity measures are used to calculate the simi-
larity score between every pair of job postings. Finally, those pairs
with similarity scores above a given threshold are identified as du-
plicates. Under the framework, 24 methods with the four different
tokenisers and the six similarity measures are developed.
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Figure 1: A Framework for Duplicate Detection from Job Postings

4.1 Tokenisers
We use four different tokenisers: word tokeniser, word tokeniser
with stop words removal (referred to as “word-2"), n-gram tokeniser
and skip-gram tokeniser.

4.1.1 Word Tokeniser. A word tokeniser simply takes every single
word as a token by splitting text with spaces and punctuation
marks. Here we use a short sentence “This is a simple example of
text tokenisation" as an example. The tokens produced by word
tokeniser are shown in the second row in Table 1. If stop words
are removed, the tokens left are shown in the third row (“word-2"),
where stop words, such as “this", “is”, “a” and “of", are excluded.

4.1.2 N-Gram. Rather than taking every single word as a token,
n-gram extracts n consecutive words as tokens. This can be done
with or without stop words removal. Since stop words contribute
little to analysis in this work, they are removed before extracting n-
grams. The 2-grams for the same sentence are shown in the fourth
row (“n-gram (n=2)") of Table 1.

4.1.3 Skip-Gram. Skip-grams are similar to n-grams, but the for-
mer skips over gaps when extracting tokens. More specifically, a
k-skip-n-gram is a subsequence of n words where the words occur
no more than k words away from each other. Skip-gram overcomes
the data sparsity problem with n-gram. The 1-skip-2-grams with
stop word removal produced from the same text are shown as the
last row of Table 1, which includes “simple text" and “example
tokenisation", in addition to all 2-grams.

4.2 Vectorisation
With tokens extracted from job postings, a document-term matrix
and a TFIDF matrix are built to vectorise job posting data. In the
matrices, each row represents a document (i.e., a job posting) and
each column represents a term (i.e., a token). In a document-term
matrixM , an entrymi, j is the frequency of term j in document i . In
a TFIDF matrixW , an entry is defined aswi, j = tfi, j × log(n/df j ),
where tfi, j is the frequency of term j in document i , df j is the
number of documents containing term j and n is the total number
of documents. In addition to DTM and TFIDF, we also use Latent

Table 1: An Example Illustrating the Four Tokenisers

Tokeniser Tokens

word this, is, a, simple, example, of, text,
tokenisation

word-2 simple, example, text, tokenisation
n-gram (n=2) simple example, example text,

text tokenisation
skip-gram (n=2, k=1) simple example, simple text, example text,

example tokenisation, text tokenisation

Semantic Analysis [6] for vectorisation. The vectorisation produced
by the above three methods is then used to calculate the similarity
between every pair of postings.

4.3 Similarity Measures
Following the above vectorisation, six metrics, Jaccard, Overlap,
Cosine, LSA-cosine, TFIDF-Euclidean and TFIDF-cosine, are used
to calculate similarity scores between job postings.

4.3.1 Jaccard Index. Assume that A and B are respectively token
sets of two job postings A and B. The Jaccard index is calculated as

Jaccard(A,B) =
|A ∩ B|

|A ∪ B|
, (2)

where “| · |" denotes the size of a set. The Jaccard index lies in [0, 1].
A value close to one indicates that two postings are very similar to
each other, and therefore, are likely to be duplicate.

4.3.2 Overlap. The Overlap index is similar to Jaccard, but the
union of two sets in the denominator is replaced with the smaller
set. The Overlap index is defined as

Overlap(A,B) =
|A ∩ B|

min(|A|, |B|)
, (3)

where A and B are token sets of two job postings, A and B.



WI-IAT ’21, December 14–17, 2021, ESSENDON, VIC, Australia Yanchang Zhao, Haohui Chen, and Claire M. Mason

In the context of job postings, sometimes two job postings can
have the same job description and therefore are of the same po-
sition, but one of them may have some extra information about
the recruitment agency or the employer at very beginning, or an
extra statement about equal employment opportunity at the very
end. In those situations, Overlap would be more effective than Jac-
card index in identifying duplicates, which is evidenced by our
experimental results in Section 5.4.

4.3.3 Cosine. Cosine similarity is calculated as

Cosine(A,B) =
A • B

| |A| | | |B| |
, (4)

where A and B are respectively numeric vectors representing two
job postings A and B, “•" is dot product and “| | · | |" is L2-norm. For
example, A and B can be the vectors for corresponding job postings
from a term-document matrix of term frequency.

4.3.4 TFIDF-Euclidean and TFIDF-cosine. From a term-document
matrix, we derive a TFIDF matrix, based on which Euclidean and
cosine similarities are calculated.

4.3.5 LSA-cosine. Anothermethod thatwe use is LSA-cosine, where
the Latent Semantic Analysis (LSA) [6] is applied to the TFIDF ma-
trix and then the vectors from the latent space are used to calculate
a cosine similarity.

4.4 Speeding Up with Sliding Window,
Blocking and Re-Grouping

It is computing intensive to calculate similarity between every sin-
gle pair of job postings and also consumes RAM when vectorising
a large number of postings. To speed up the process of duplicate
detection, we use sliding window, blocking and re-grouping tech-
niques.

With the framework given in Figure 1, every single pair of job
postings has to be compared to detect all duplicates. This is com-
putationally intensive, with a time complexity of O(n2t), where
n is the number of job postings and t is the time for computing
the similarity between two postings. Fortunately, according to the
definition of duplicate in Section 3, we do not have to calculate the
similarity between every pair of postings. Instead, we need to check
only the posting pairs that are within 60 days from each other, and
therefore, we use a sliding window of 60 days to reduce the number
of similarity calculations.

Moreover, since two duplicate postings have to be of the same
job title and same location, we use a blocking technique to speed it
up further, by grouping postings by both title and location and then
detecting duplicates within every single group in parallel. Neverthe-
less, the space of job title and location can be very sparse, especially
for tiny-sized occupations in a small suburb or in a remote region.
This creates many tiny groups, with each consisting of a few job
postings only, which brings computing overhead when processing
those groups. To reduce the overhead caused by tiny groups, we
re-group them by merging very small groups (specifically, with
fewer than k job postings) into bigger ones (with at least k job
postings) to reduce the number of groups and further improve the
processing speed. To find out the optimal group size k , we con-
duct experiments with various settings of k , ranging from 10 to
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Figure 2: Running Time vs Group Size

2000 (on a computer with configuration details given in Section 5).
The experimental results are shown in Figure 2. Note that a group
size of zero means no re-regrouping was applied. The left-most
two bars (k = 0 and k = 10) in the figure show that, compared
to simple blocking without re-grouping (k = 0), the run time is
almost halved by re-grouping with group size of 10. The run time
is further reduced when increasing group size to 20, 40, and so on.
When the group size becomes larger than 300, the run time starts
to increase, because, with more job postings within every single
group, the RAM needed for processing each group increases and
the number of similarity calculations also increases. Based on the
above result, we use a group size of 300 to re-group tiny groups in
the rest of our experiments. Note that this optimal group size is to
a large degree dependent on the average size of job postings, the
number of parallel processes and the available RAM of a computer.
However, the above method is generic and can be applied to find
the optimal k for other applications and computer configurations.

4.5 The Process of Duplicate Detection
We process the job postings in a temporal order. Given a set of job
postings, the process of detecting duplicates from them is composed
of six steps as below.

1) Loading data. Load the given dataset of postings (such as
those posted in a certain month, week or day) and also the
postings within 60 days prior to them.

2) Removing invalid postings. Job postings with empty de-
scriptions or invalid post dates are removed.

3) Blocking. Split data into groups by job location-title, with
each group containing all job postings for a unique combi-
nation of location and title.

4) Removing singles. Remove every group consisting of one
single posting only, because job postings in those groups are
not duplicates.

5) Re-grouping. Reduce the number of groups by merging
small groups (with size < k) into bigger ones, with every new
group having k or more postings. This reduces the number
of processes in parallel computing. The optimal value of k
is set according to the experimental results given in Section
4.4 and in Figure 2.
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6) Detecting duplicateswithin every group. Follow the pro-
cess described in Figure 1 to detect duplicates within every
group in parallel. For each group, which can consist of a set of
multiple combinations of location-title (due to re-grouping):
a. clean job descriptions by converting them to lower case,

removing non-alphanumeric symbols and collapsing mul-
tiple white spaces,

b. extract tokens, such as words, n-grams and skip-grams,
from job descriptions,

c. vectorise the tokens with Document-Term Matrix, TFIDF
or LSA,

d. calculate similarities between each pair of postings, such
as Jaccard, Overlap, Cosine, TFIDF-Euclidean, TFIDF-cosine
and LSA-cosine,

e. label a posting as duplicate if there are one or more other
postings
• posted within 60 days prior to it,
• of the same title and location as it, and
• having a similarity score greater than a given threshold
τ (see Table 4 for values).

Step 6 runs in parallel, with each process handling a group at a
time. The number of cores is set based on the number of available
CPU cores, the size of RAM and thememory needed by each process.
Steps 4 and 5 reduce the number of groups and make it run faster
for parallel computing.

5 EXPERIMENTAL EVALUATION
We conducted extensive experiments to evaluate the performance
of all the developed methods on a real-world dataset of job postings
and compared them with a baseline approach, Apollo [2]. We also
compared the impact of different hyper parameters for n-gram and
skip-gram, as well as vocabulary size and run time. The experiments
were conducted on a MacBook Pro with a 2.9GHz Quad-Core Intel
i7 CPU and 16 GB RAM, running MacOS Catalina.

5.1 Data
The job postings data used in our experiments were kindly pro-
vided by Adzuna Australia1, a job board and search engine that
has been operating in Australia since 2013. The job postings in
their database are not just sourced from job posters who list job
postings directly on the Adzuna Australia platform. Job postings
that are posted on other Australian online job boards can be listed
on the Adzuna Australia platform free of charge. Adzuna Australia
also provides online listing of all the job postings listed in one of
Australia’s largest newspapers. Finally, they scrape data from other
websites (e.g., large employers’ websites) to capture a wider set
of job postings. The range of sources captured in the job postings
database means that they are likely to provide good coverage of job
postings nationally, but it also increases the potential to capture
duplicate job postings.

The dataset that we used for this work represents approximately
9.3 million job postings of 17GB in size, covering the period from
March 2015 to May 2019. From the above raw data, we created
pairs of job postings, first specifying that each pair of job postings
must have the same title and location. These criteria were used to
1http://www.adzuna.com.au

Table 2: Characteristics of Duplicate and Non-duplicate Job
Ads

Duplicate Number Percentage Length Difference*
Flag of Pairs Min Median Max

dup=0 936 62% 0 90 684
dup=1 562 38% 0 15 326
Total 1498 100% 0 52 684

* Difference in length of two job postings (in number of words)

Table 3: Tokenisers and Vocabulary Sizes

Tokeniser Settings Tokens Stopword Vocabulary
Removal Size

word - 1-grams no 13,788
word-2 - 1-grams yes 13,670
n-gram n=1,2,3 1-, 2- & yes 374,392

3-grams
skip-gram n=1,2; 1- & 2-grams yes 308,175

k=1 with 1-skip
Apollo n=5 5-grams no 366,183

Table 4: Optimal Thresholds Chosen Using Youden’s In-
dex [13, 15]

Tokeniser Jacc. Overlap Cosine LSA TFIDF TFIDF
Cosine Euc. Cosine

word 0.6625 0.8741 0.8575 0.9201 0.8498 0.7687
word-2 0.6364 0.8318 0.7654 0.8887 0.7827 0.7581
n-gram 0.5318 0.8053 0.7474 0.9388 0.7742 0.6866
skip-gram 0.5366 0.8061 0.7491 0.9301 0.7772 0.6936

identify possible duplicate job postings that were being treated by
the system as two different legitimate job postings. We randomly
selected a sample of such pairs and had them labelled as duplicates
(dup=1) or non-duplicates (dup=0) by five domain experts. This
provided us with a gold dataset of 1498 pairs of job postings. The
median length of these postings was 274 words and the maximum
length was 1034. The characteristics of these duplicate and non-
duplicate pairs are given in Table 2, where the last three columns
give length difference of a pair in the number of words. It shows
that duplicate pairs tend to have smaller discrepancy in length than
non-duplicate ones.

5.2 Experiment Settings
All the methods, together with the Apollo approach [2], were ap-
plied to the dataset, and the produced duplicate scores (i.e., similar-
ity scores) were then compared against the labels provided by the
five domain experts. The parameter settings of every tokensier and
their vocabulary sizes are given in Table 3.

After computing all similarity scores, Youden’s Index [13, 15]
was used to select the best cut-point for every method (selected
thresholds are displayed in Table 4). The threshold for Apollo was
set to 0.5, the same setting as that used by Burk et al. [2].

http://www.adzuna.com.au
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Figure 3: Box-Plots of Similarity Scores for Duplicate (in
blue) and Non-Duplicate (in orange) Pairs with Four To-
kenisers (see x-axis)

5.3 Evaluation Measures
To evaluate the effectiveness of duplicate detection, six performance
measures are used, namely, correlation (i.e., the correlation between
predicted values and actual labels), accuracy (A = TP+TN

TP+FP+TN+FN ),
precision (P = TP

TP+FP ), recall (R =
TP

TP+FN ), AUC (area under the
ROC curve) and F1-score (F1 = 2×P×R

P+R ). In the above formulae,
TP and FP are respectively the numbers of true positives and false
positives, and TN and FN the numbers of true and false negatives.

5.4 Experimental Results
Figure 3 shows the boxplots of similarity scores produced using
various methods. The orange boxes (dup=0) show the distribution
of similarity scores between pairs of job postings that are not du-
plicate, and the blue ones (dup=1) are for duplicate pairs. Within
each boxplot, the bar in the middle shows the median of similarity
scores and the box shows the interquartile range (IQR). The fig-
ure clearly shows that duplicate pairs have similarity scores close
to 1, while the similarities between non-duplicate pairs are much
lower. The orange boxes in sub-figures for Jaccard, Overlap and
TFIDF-cosine are further away from their corresponding blue boxes,
which suggests that the three methods are more effective in detect-
ing duplicates than the rest. Out of the above three methods, the top
four variations showing best differentiation between duplicates and
non-duplicates are Overlap with n-gram (OG) and Overlap with skip-
gram (OS) (see the top-right chart), and TFIDF-cosine with n-gram
(TCG) and TFIDF-cosine with skip-gram (TCS) (see the bottom-right
chart), in that their orange and blue boxes are more compact and
farther apart from each other.

These descriptive statistics are also confirmed by the experi-
mental results reported in Table 5, where the methods are ordered
descendingly first by AUC and then by F1-score. The top four meth-
ods for each metric are highlighted in bold. Based on AUC and
F1-score, OS and OG are the best methods, followed by TCG and
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Figure 4: Box-Plots of Similarity Scores for Duplicate Pairs
(in blue) and Non-Duplicate Ones (in orange) with Various
n-Gram and Skip-Gram Tokenisers (see x-axis)

TCS. All the above four methods have better performance than
Apollo [2], which uses a 5-gram tokeniser with the Jaccard similar-
ity. Although duplicate pairs tend to have smaller discrepancy in
length (see Table 2), there are many duplicate pairs whose lengths
are very different from each other, due to extra text about employer
or equal employment opportunity added to the very beginning or
end of one job posting but not to the other. From checking the
gold label dataset, we discovered that extra text was sometimes
introduced at the end of a job ad due to recruiters (or job boards) in-
serting standard wording or contact information at the end of their
job postings. This feature of job postings explains why Overlap is
more effective than Jaccard for detecting duplicate job postings.

5.5 Results for N-Gram and Skip-Gram
Since TFIDF-Euclidean and LAS-cosine were not as effective as
the other methods, they were excluded from further analysis. The
remaining four methods were then tested with various parameter
settings of n-gram and skip-gram, with results shown in Figure
4 and Table 6. The best performance is achieved by Overlap with
1-skip-4-gram tokeniser. The results also show that, from 1-gram to
5-gram, i.e., with an increase of n in n-gram, the similarity scores
becomemore effective in separating duplicates from non-duplicates.
The same observations were made from using skip-gram.

5.6 Vocabulary Size and Run Time
To further evaluate the performance of different methods, we also
studied vocabulary sizes (see Figure 5) and run time (see Figure 6)
of different methods. We can see that, with the increase of n in
n-gram (or skip-gram), both vocabulary size and run time increase
exponentially. Although the performance of both n-gram and skip-
gram increases with n (see Figure 4 and Table 6), both require a
much larger vocabulary and therefore more RAM and longer run
time. The run time of LSA-cosine is much longer than others by one
to two magnitudes and therefore it is not included in Figure 6. For
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Table 5: Experimental Results (ordered descendingly first by AUC and then by F1-score)

Method* Similarity Measure Tokeniser Correlation AUC Accuracy Precision Recall F1-score

OS Overlap Skip-gram 0.9303 0.9952 0.9760 0.9503 0.9875 0.9686
OG Overlap n-Gram 0.9312 0.9951 0.9760 0.9503 0.9875 0.9686
OW2 Overlap Word-2 0.9144 0.9949 0.9720 0.9392 0.9893 0.9636
OW Overlap Word 0.9138 0.9949 0.9733 0.9469 0.9840 0.9651
TCG TFIDF-Cosine n-Gram 0.9417 0.9931 0.9760 0.9566 0.9804 0.9684
TCS TFIDF-Cosine Skip-gram 0.9404 0.9929 0.9753 0.9549 0.9804 0.9675
TCW2 TFIDF-Cosine Word-2 0.9149 0.9910 0.9700 0.9449 0.9769 0.9606
TCW TFIDF-Cosine Word 0.9104 0.9899 0.9660 0.9353 0.9769 0.9556
Apollo [2] Jaccard 5-gram 0.9341 0.9896 0.9686 0.9432 0.9751 0.9589
JG Jaccard n-Gram 0.9330 0.9886 0.9700 0.9374 0.9858 0.9610
JS Jaccard Skip-gram 0.9326 0.9885 0.9700 0.9374 0.9858 0.9610
CG Cosine n-Gram 0.9200 0.9885 0.9673 0.9325 0.9840 0.9576
CS Cosine Skip-gram 0.9192 0.9884 0.9673 0.9325 0.9840 0.9576
JW2 Jaccard Word-2 0.9246 0.9868 0.9680 0.9401 0.9769 0.9581
JW Jaccard Word 0.9220 0.9864 0.9680 0.9401 0.9769 0.9581
CW2 Cosine Word-2 0.8919 0.9861 0.9619 0.9174 0.9875 0.9512
CW Cosine Word 0.8082 0.9810 0.9499 0.8998 0.9751 0.9360
TES TFIDF-Euclidean Skip-gram 0.8236 0.9799 0.9579 0.9179 0.9751 0.9456
TEG TFIDF-Euclidean n-Gram 0.8221 0.9798 0.9579 0.9179 0.9751 0.9456
TEW2 TFIDF-Euclidean Word-2 0.8270 0.9794 0.9593 0.9253 0.9698 0.9470
TEW TFIDF-Euclidean Word 0.8021 0.9765 0.9539 0.9157 0.9662 0.9403
LCW2 LSA-Cosine Word-2 0.6981 0.9699 0.9179 0.8351 0.9733 0.8989
LCW LSA-Cosine Word 0.6638 0.9690 0.9126 0.8404 0.9466 0.8904
LCS LSA-Cosine Skip-gram 0.6301 0.9579 0.8972 0.8148 0.9395 0.8727
LCG LSA-Cosine n-Gram 0.6225 0.9567 0.8985 0.8233 0.9288 0.8729

* Names of the methods (except for Apollo) are derived from the acronyms of similarity measures and tokenisers (see underlines in above
columns 2-3).

Table 6: Experimental Results for N-Grams and Skip-Grams (in descending order of AUC)

Similarity Measure Tokeniser Correlation AUC Accuracy Precision Recall F1-score

Overlap 1-skip-4-gram 0.9402 0.9956 0.9746 0.9471 0.9875 0.9669
Overlap 1-skip-3-gram 0.9364 0.9954 0.9760 0.9503 0.9875 0.9686
Overlap 5-gram 0.9364 0.9953 0.9760 0.9503 0.9875 0.9686
Overlap 4-gram 0.9343 0.9952 0.9760 0.9488 0.9893 0.9686
Overlap 1-skip-2-gram 0.9303 0.9952 0.9760 0.9503 0.9875 0.9686
Overlap 3-gram 0.9312 0.9951 0.9760 0.9503 0.9875 0.9686
Overlap 2-gram 0.9264 0.9950 0.9746 0.9471 0.9875 0.9669
Overlap 1-gram 0.9144 0.9949 0.9720 0.9392 0.9893 0.9636
TFIDF-cosine 1-skip-4-gram 0.9478 0.9944 0.9746 0.9533 0.9804 0.9667
TFIDF-cosine 5-gram 0.9455 0.9938 0.9753 0.9549 0.9804 0.9675
TFIDF-cosine 1-skip-3-gram 0.9455 0.9937 0.9760 0.9582 0.9786 0.9683
TFIDF-cosine 4-gram 0.9441 0.9935 0.9753 0.9549 0.9804 0.9675
TFIDF-cosine 3-gram 0.9417 0.9931 0.9760 0.9566 0.9804 0.9684
TFIDF-cosine 1-skip-2-gram 0.9404 0.9929 0.9753 0.9549 0.9804 0.9675
TFIDF-cosine 2-gram 0.9367 0.9924 0.9746 0.9517 0.9822 0.9667
TFIDF-cosine 1-gram 0.9149 0.9910 0.9700 0.9449 0.9769 0.9606
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Figure 5: Vocabulary Size
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Figure 6: Run Time

example, with a 3-gram tokeniser, LSA-cosine takes 323 seconds
and Overlap takes only 5 seconds.

6 DISCUSSION AND CONCLUSION
We have developed a framework for duplicate detection from online
job postings, by using four tokenisers, three vectorisers and six
similarity metrics and speeding it up with sliding window, blocking
and re-grouping techniques. We have conducted a comparative
study of all methods, together with an existing approach, using job
postings from a real-world jobs board. The experiment revealed
that: 1) Overlap with skip-gram (OS) and Overlap with n-gram (OG)
achieved the highest AUC and F1-score, followed by TFIDF-cosine
with n-gram (TCG) and TFIDF-cosine with skip-gram (TCS), and 2)
the best setting for job posting duplicat detection (in this work) is
Overlap with 1-skip-4-gram tokeniser. The best method has been
used for duplicate detection from monthly job posting data for
the Skills Dashboard system at Data61, CSIRO, a national research
institute in Australia.

The findings of this study are not limited to improving the usabil-
ity of job boards and the quality of analytics derived from online job

postings. They provide direction for other research efforts aimed
at detecting duplicate content in a large body of written material,
such as detecting instances of academic plagiarism and duplicate
webpages.

In this work, we take the body text of a job posting as a whole
piece when calculating similarity. However, different components
within a job posting have different meanings and therefore can be of
different importance in assessing whether two postings are similar.
Further research could focus on exploringwhether natural language
processing techniques can be used to extract various components
from a job posting and provide better input to similarity calculations.
Another approach is using word embedding based methods and
deep learning techniques for vectorisation. Applying the developed
framework and method to duplicate detection in other domains
also represents an area for future research.
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