
C.K. Westbrook- Lawrence Livermore National Laboratory
C.K. Westbrook
- Lawrence Livermore National Laboratory
About
371
Publications
104,630
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
30,355
Citations
Current institution
Publications
Publications (371)
The combustion properties of a gasoline-like blend of pentene isomers were determined using multiple types of experimental measurements. The representative mixture (Mix A) is composed of 5.7% 1-pentene (1-C5H10), 39.4% 2-pentene (2-C5H10), 12.5% 2-methyl-1-butene (2M1B), and 42.4% 2-methyl-2-butene (2M2B) (% mol). Laminar flame speeds were measured...
Kinetic treatment of the full group of C5 olefins is presented with new measurements on 1-pentene (1-C5H10), 2-pentene (2-C5H10), and 3-Methyl-1-Butene (3M1B) combined with recently published data obtained at similar conditions from our group on 2-Methyl-2-Butene (2M2B) and 2-Methyl-1-Butene (2M1B). This extensive experimental database contains car...
This work presents an investigation of fundamental combustion properties, specifically laminar burning velocity and ignition delay time, of an Alcohol-to-Jet Synthetic Paraffinic Kerosene (AtJ-SPK). Used in blends, this fuel is a sustainable aviation fuel that consists mostly of two long-chained, highly branched alkanes. Laminar burning velocities...
New CO and H2O time histories were measured for 2-Methyl-1-Butene (2M1B) behind reflected shock waves. The experimental setup was developed to simultaneously obtain carbon monoxide and water time histories from the oxidation of 2M1B in 99.5% He/Ar (20% He and 79.5% Ar). The experiments were carried out at three different equivalence ratios (ɸ = 0.5...
Utilizing kinetic simulations with the Co-Optimization of Fuels & Engines (Co-Optima) mechanism, the research octane number (RON) of various synergistic blendstocks at several blend levels in a four-component surrogate were predicted and compared against measured values. The blendstocks investigated include dimethylfuran (DMF), 2-methylfuran (2MF),...
Oxidation of alcohol to jet (ATJ)/n‐heptane blends was studied over a wide range of test conditions, using single pulse shock tubes. Test conditions were designed to study the effect of pressure (4 and 50 bar), and fuel loading (∼100 to 1400 ppm) on the oxidation of the blends across a wide range of temperatures (800–1300 K). These effects were obs...
As federal programs require increasingly stringent engine emissions and fuel economy standards, these ambitions can only be met if next-generation combustion technology is developed focusing on high-efficiency and low-emissions engines. Recent research has indicated the need to operate engines at higher compression ratios and with low temperature c...
Highly branched iso-alkanes are an important class of hydrocarbons found in conventional petroleum-derived and alternative renewable fuels used for combustion applications. Recognizing that chemical kinetics for most of these iso-alkanes, especially at low-to-intermediate temperatures, has not been well studied, an experimental and modeling investi...
Alkanes are key components in gasoline, jet and diesel fuels and considerably influence the combustion behavior of these fuels because of their wide range of reactivity. An improved understanding of their combustion behavior and the development of chemical kinetic models that can accurately simulate their combustion behavior are important for the d...
Highly-branched iso-alkanes are an important class of hydrocarbons found in conventional petroleum-derived and alternative renewable fuels used for combustion applications. However, chemical kinetics for most of these iso-alkanes, especially at low-to-intermediate temperatures, have not been well studied. Recognizing this, autoignition of selected...
Kinetic mechanisms for aromatics are needed to successfully simulate the autoignition of transportation fuels using the surrogate fuel approach. An aromatic detailed kinetic mechanism that describes kinetics of C7-C11 methylated aromatics, including toluene, o-xylene, p-xylene, 1,2,4-trimethylbenzene, 1,3,5, trimethyl-benzene and α-methylnaphthalen...
A new method of using chemical kinetic reaction modeling to predict the Research Octane Number (RON) and Motor Octane Number (MON) of single component fuels and fuel mixtures is described and illustrated via comparisons between computed and experimental values obtained using the well-established ASTM test procedures in a Cooperative Fuels Research...
The most important driving force for development of detailed chemical kinetic reaction mechanisms in combustion is the desire by researchers to simulate practical systems. This paper reviews the parallel evolution of kinetic reaction mechanisms and applications of those models to practical, real engines. Early, quite simple, kinetic models for smal...
Iso-Octane (2,2,4-trimethylpentane) is a primary reference fuel and an important component of gasoline fuels. Moreover, it is a key component used in surrogates to study the ignition and burning characteristics of gasoline fuels. This paper presents an updated chemical kinetic model for iso-octane combustion. Specifically, the thermodynamic data an...
This paper uses a chemical kinetic modeling approach to study the influences of fuel molecular structure on Octane Sensitivity (OS) in Spark Ignition (SI) engines. Octane Sensitivity has the potential to identify fuels that can be used in next-generation high compression, turbocharged SI engines to avoid unwanted knocking conditions and extend the...
Poly(oxymethylene) dimethyl ethers (POMDMEs) with the general chemical formula of CH3O (CH2O)nCH3 (n>1) are promising oxygenated alternative fuels with substantial soot-reduction potential. Combustion kinetics of the compound with n = 3, POMDME3 [CH3O(CH2O)3CH3], was investigated in the present study with combined experimental and modeling efforts....
Dimethyl carbonate (DMC) is a promising oxygenated additive or substitute for hydrocarbon fuels, because of the absence of C-C bonds and the large oxygen content in its molecular structure. To better understand its chemical oxidation and combustion kinetics, flow reactor pyrolysis at different pressures (40, 200 and 1040 mbar) and low-pressure lami...
Two experimental studies have been carried out on the oxidation of 2-methyl-2-butene, one measuring ignition delay times behind reflected shock waves in a stainless steel shock tube, and the other measuring fuel, intermediate, and product species mole fractions in a jet-stirred reactor (JSR) . The shock tube ignition experiments were carried out at...
High molecular weight iso-paraffinic molecules are found in conventional petroleum, Fischer–Tropsch (FT), and other alternative hydrocarbon fuels, yet fundamental combustion studies on this class of compounds are lacking. In the present work, ignition delay time measurements in 2,7-dimethyloctane/air were carried out behind reflected shock waves us...
Detailed chemical structures of stoichiometric and rich premixed laminar flames of methyl pentanoate and methyl hexanoate were investigated over a flat burner at 20 Torr and for methyl pentanoate at 1 atm. Molecular beam mass spectrometry was used with tunable synchrotron vacuum ultraviolet (VUV) photoionization for low pressure flames of both meth...
This work presents the results of an experimental and computational study of methyl trans-3-hexenoate autoignition. Experimental autoignition studies were conducted using the University of Michigan rapid compression facility. Pressure time histories were used to determine ignition delay times as a function of test gas composition and experimental c...
High temperature pyrolysis of methyl propanoate (CH3-CH2-C(=O)O-CH3) and ethyl propanoate (CH3-CH2-C(=O)O-CH2-CH3) was studied behind reflected shock waves at temperatures of 1250-1750 K and pressure of 1.5 atm. Species time-histories were recorded for CO, CO2, C2H4, and H2O using laser absorption methods over a test time of 1 ms. Pyrolysis of meth...
The structure of four stoichiometric and fuel-rich premixed flames of methyl pentanoate stabilized at low (20 torr) and atmospheric pressures has been studied by molecular-beam mass spectrometry. The data obtained have been compared with results of numerical simulations, performed with implication of two detailed chemical kinetic mechanisms, one of...
This paper presents experimental data for the oxidation of two surrogates for the large alkylbenzene class of compounds contained in diesel fuels, namely n-decylbenzene. A 57:43 molar% mixture of n-propylbenzene:n-heptane in air (21% O2O2, 79% N2N2) was used in addition to a 64:36 molar% mixture of n-butylbenzene:36% n-heptane in air. These mixture...
Iso-paraffinic molecular structures larger than seven carbon atoms in chain length are commonly found in conventional petroleum, Fischer–Tropsch (FT), and other alternative hydrocarbon fuels, but little research has been done on their combustion behavior. Recent studies have focused on either mono-methylated alkanes and/or highly branched compounds...
This chapter discusses the chemical kinetics of practical hydrocarbon and biodiesel fuels used in engines. Elementary reactions that provide chain branching are identified, and their role in producing autoignition is explained. Roles of differences in fuel molecular structure, particularly primary, secondary, and tertiary C–H bonds, on rates of com...
The oxidation characteristics of several small methyl and ethyl esters with carbon number less than six were investigated in laminar flames. The kinetics of such fuels are subsets of those of larger alkyl esters that are constituents of practical biodiesel fuels. A total of seven fuels, namely methyl formate, methyl acetate, methyl propionate, meth...
This study presents new ignition delay data measured in a rapid compression machine over a wide range temperature, pressure and fuel/air ratio. This data is an extension of that measured previously (D. Darcy, C.J. Tobin, K. Yasunaga, J.M. Simmie, J. Würmel, T. Niass, O. Mathieu, S.S. Ahmed, C.K. Westbrook, H.J. Curran, Combust. Flame, 159 (2012) 22...
In our previous work (D. Darcy, C.J. Tobin, K. Yasunaga, J.M. Simmie, J. Würmel, W.K. Metcalfe, T. Niass, S.S. Ahmed, C.K. Westbrook, H.J. Curran, Combust. Flame 159 (2012) 2219–2232), ignition delay times of n-butylbenzene in air were measured using a shock tube over a temperature range of 980–1360 K, at reflected shock pressures of 1, 10, and 30...
Conventional petroleum, Fischer–Tropsch (FT), and other alternative hydrocarbon fuels typically contain a high concentration of lightly methylated iso-alkanes. However, until recently little work has been done on this important class of hydrocarbon components. In order to better understand the combustion characteristics of real fuels, this study pr...
Ignition delay times for methyl oleate (C 19 H 36 O 2 , CAS: 112-62-9) and methyl linoleate (C 19 H 34 O 2 , CAS: 112-63-0) were measured for the first time behind reflected shock waves, using an aerosol shock tube. The aerosol shock tube enabled study of these very-low-vapor-pressure fuels by introducing a spatially-uniform fuel aerosol/4% oxygen/...
Alkyl aromatics are an important chemical class in gasoline, jet and diesel fuels. In the present work, an n-propylbenzene and n-heptane mixture is studied as a possible surrogate for large alkyl benzenes contained in diesel fuels. To evaluate it as a surrogate, ignition delay times have been measured in a heated high pressure shock tube (HPST) for...
There is a strong drive towards utilizing oxygenated biofuels in blends with existing fossil fuels. Improving the kinetic modeling of the oxidation of these bio-derived oxygenates requires further investigation of their key stable intermediates such as the aldehydes. In this study, an experimental and chemical kinetic modeling investigation of prop...
Ignition temperatures of non-premixed flames of octane and decane isomers were determined in the counterflow configuration at atmospheric pressure, a free-stream fuel/N2 mixture temperature of 401 K, a local strain rate of 130 s−1, and fuel mole fractions ranging from 1% to 6%. The experiments were modeled using detailed chemical kinetic mechanisms...
A detailed chemical kinetic reaction mechanism previously developed to study combustion of soy and rapeseed oil methyl ester biodiesel fuels is used to simulate combustion of many other biodiesel fuels derived from different vegetable oils and animal fats. All of these biodiesel fuels consist of unique mixtures of the same five individual, single-c...
Biofuels are considered as potentially attractive alternative fuels that can reduce greenhouse gas and pollutant emissions. iso-Pentanol is one of several next-generation biofuels that can be used as an alternative fuel in combustion engines. In the present study, new experimental data for iso-pentanol in shock tube, rapid compression machine, jet...
Although there have been many ignition studies of n-heptane—a primary reference fuel—few studies have provided detailed insights into the low-temperature chemistry of n-heptane through direct measurements of intermediate species formed during ignition. Such measurements provide understanding of reaction pathways that form toxic air pollutants and g...
The combustion characteristics of promising alternative fuels have been studied extensively in the recent years. Nevertheless, the pyrolysis and oxidation kinetics for many oxygenated fuels are not well characterized compared to those of hydrocarbons. In the present investigation, the first chemical kinetic study of a long-chain linear symmetric et...
Understanding the kinetics of large molecular weight aldehydes is essential in the context of both conventional and alternative fuels. For example, they are key intermediates formed during the low-temperature oxidation of hydrocarbons as well as during the high-temperature oxidation of oxygenated fuels such as alcohols. In this study, an experiment...
A detailed chemical kinetic mechanism has been developed and used to study the oxidation of methyl decanoate, a surrogate for biodiesel fuels. This model has been built by following the rules established by Curran and co-workers for the oxidation of n-heptane and it includes all the reactions known to be pertinent to both low and high temperatures....
An experimental and kinetic modeling study of the autoignition of 3-methylheptane, a compound representative
of the high molecular weight lightly branched alkanes found in large quantities in conventional
and synthetic aviation kerosene and diesel fuels, is reported. Shock tube and rapid compression machine
ignition delay time measurements are repo...
A pressurized oxy-fuel burner is being developed for the down-hole generation of hot CO2 and steam for direct injection into heavy oil deposits or depleted oil reservoirs. This approach offers efficiency benefits and reduced CO2 emissions in comparison to existing technologies that rely on steam generation at the surface. Furthermore, a burner-stab...
RP-1 and ethylene time histories have been measured during RP-1 pyrolysis, allowing determination of ethylene yields and overall fuel decomposition rates for RP-1 near 20 atm and between 1050 K and 1500 K. A decomposition surrogate for RP-1 was formulated using the components n-dodecane, methylcyclohexane, and iso-cetane by targeting three decompos...
This review describes major features of current research in renewable fuels derived from plants and from fatty acids. Recent and ongoing fundamental studies of biofuel molecular structure, oxidation reactions, and biofuel chemical properties are reviewed, in addition to combustion applications of biofuels in the major types of engines in which biof...
High-speed gas sampling experiments to measure the intermediate products formed during fuel decomposition remain challenging yet important experimental objectives. This paper presents new speciation data on two important fuel reference compounds-n-heptane and n-butanol-at practical thermodynamic conditions of 700 K and 9 atm, for stoichiometric fue...
Methyl butanoate pyrolysis and decomposition pathways were studied in detail by measuring concentration time-histories of CO, CO2, CH3, and C2H4 using shock tube/laser absorption methods. Experiments were conducted behind reflected shock waves at temperatures of 1200–1800 K and pressures near 1.5 atm using mixtures of 0.1%, 0.5%, and 1% methyl buta...
Soybeans are an important source of oil that can be made into commercial quality diesel fuel and used to power automobiles and trucks. Soy biodiesel fuel is the dominant biodiesel fuel currently being used in the United States, but very little careful research has been conducted to determine the combustion properties of this transportation fuel. Th...
To help overcome the world’s dependence upon fossil fuels, suitable biofuels are promising alternatives that can be used in the transportation sector. Recent research on internal combustion engines shows that short alcoholic fuels (e.g., ethanol or n-butanol) have reduced pollutant emissions and increased knock resistance compared to fossil fuels....
Improving the combustion of conventional and alternative fuels in practical applications requires the fundamental understanding of large hydrocarbon combustion chemistry. The focus of the present study is on a high-molecular-weight branched alkane, namely, 3-methylheptane, oxidized in a jet-stirred reactor. This fuel, along with 2-methylheptane, 2,...
Ignition delay times have been measured for mixtures of n-propylbenzene in air (≈21% O2, ≈79% N2) at equivalence ratios of 0.29, 0.48, 0.96 and 1.92 and at reflected shock pressures of 1, 10 and 30 atm in a heated high-pressure shock tube over a wide temperature range (1000–1600 K). The effects of reflected shock pressure and of equivalence ratio o...
The detailed chemical structures of low-pressure premixed laminar flames fueled by three simple unsaturated
C5H8O2 esters, the methyl crotonate (MC), methyl methacrylate (MMA), and ethyl propenoate
(EPE), are investigated using tunable synchrotron vacuum ultraviolet (VUV) photoionization mass spectrometry.
Significant differences in the composition...
Alcohols, such as butanol, are a class of molecules that have been proposed as a bio-derived alternative or blending agent for conventional petroleum derived fuels. The structural isomer in traditional “bio-butanol” fuel is 1-butanol, but newer conversion technologies produce iso-butanol and 2-butanol as fuels. Biological pathways to higher molecul...
Laminar flame speeds of mixtures of air with 3-methylheptane/air, 2,5-dimethylhexane/air, and iso-octane/air, were determined for a wide range of equivalence ratios in the counterflow configuration at atmospheric pressure, and an unburned mixture temperature of 353 K. The results were compared against those obtained in recent investigations for n-o...
Modeling the combustion behavior of real fuels is a challenging task: Significant analytical efforts are required to characterize the fuel composition, and comprehensive kinetic models are necessary to reproduce the behavior of the different fuel components. Both these aspects become increasingly critical for fuels having a high molecular weight, w...
Chemical kinetic modeling of autoignition of practical fuels in internal combustion engines has made great advances in recent years. Practical transportation fuels are usually mixtures of very complicated, large fuel molecules which require extremely complex reaction mechanisms, and autoignition of these fuels is perhaps the most difficult and chal...
New chemical kinetic reaction mechanisms are developed for two of the five major components of biodiesel fuel, methyl stearate and methyl oleate. The mechanisms are produced using existing reaction classes and rules for reaction rates, with additional reaction classes to describe other reactions unique to methyl ester species. Mechanism capabilitie...
In this work, numerical and experimental techniques are used to investigate the effect of the position of the double bond on the ignition properties of pentene and hexene linear isomers. A wide-range kinetic model for the oxidation of C5–C6 linear alkenes has been developed. Literature rapid compression machine data were used to validate the model...
Real fuels are complex mixtures of thousands of hydrocarbon compounds including linear and branched paraffins, naphthenes, olefins and aromatics. It is generally agreed that their behavior can be effectively reproduced by simpler fuel surrogates containing a limited number of components.In this work, an improved version of the kinetic model by the...
For the first time, a detailed chemical kinetic reaction mechanism is developed for primary reference fuel mixtures of n-hexadecane and 2,2,4,4,6,8,8-heptamethyl nonane for diesel cetane ratings. The mechanisms are constructed using existing rules for reaction pathways and rate expressions developed previously for the primary reference fuels for ga...
Conventional petroleum jet and diesel fuels, as well as alternative Fischer–Tropsch (FT) fuels and hydrotreated renewable jet (HRJ) fuels, contain high molecular weight lightly branched alkanes (i.e., methylalkanes) and straight chain alkanes (n-alkanes). Improving the combustion of these fuels in practical applications requires a fundamental under...
Environmentally friendly biodiesel is a mixture of saturated and unsaturated methyl (or ethyl) esters of long-chain fatty acids. To experimentally examine the effect of C=C double bonds on the combustion chemistry of fatty acid esters, low-pressure premixed laminar flames of four small esters have been studied using flame-sampling molecular-beam ma...
The numerical study of engine combustion requires the coupling of advanced computational fluid dynamics and accurate chemical kinetic models. This task becomes extremely challenging for real fuels. Gasoline is a mixture of hundreds of different hydrocarbons. Detailed modeling of its chemistry requires huge numbers of species and reactions and excee...
Fischer–Tropsch (FT) fuels derived from biomass syngas are renewable fuels that can replace conventional petroleum fuels in jet engine and diesel engine applications. FT fuels typically contain a high concentration of lightly methylated iso-alkanes, whereas petroleum derived jet and diesel fuels contain large fractions of n-alkanes, cycloalkanes, a...
A detailed chemical kinetic reaction mechanism is developed for the five major components of soy biodiesel and rapeseed biodiesel fuels. These components, methyl stearate, methyl oleate, methyl linoleate,
methyl linolenate, and methyl palmitate, are large methyl ester molecules, some with carbon-carbon double bonds, and kinetic mechanisms for them...
A detailed chemical kinetic reaction mechanism is developed for the five major components of soy biodiesel and rapeseed biodiesel fuels. These components, methyl stearate, methyl oleate, methyl linoleate, methyl linolenate, and methyl palmitate, are large methyl ester molecules, some with carboncarbon double bonds, and kinetic mechanisms for them a...
Measurements of the composition of reaction intermediates in low-pressure premixed flat flames of three simple esters, the methyl butanoate (MB), methyl isobutanoate (MIB), and ethyl propanoate (EP) isomers of C(5)H(10)O(2), enable further refinement and validation of a detailed chemical reaction mechanism originally developed in modeling studies o...
Understanding combustion chemistry for long chain n-alkanes is important for improving the predictive understanding of these important hydrocarbons. This work focuses on computa-tional and experimental investigations of n-dodecane (n-C 12 H 26) reaction kinetics over a range of temperatures and pressures. New ignition data were acquired at low temp...
Conventional petroleum jet and diesel fuels, as well as alternative Fischer-Tropsch (FT) fuels and hydrotreated renewable jet (HRJ) fuels, contain high molecular weight lightly branched alkanes (i.e., methylalkanes) and straight chain alkanes (n-alkanes). Improving the combustion of these fuels in practical applications requires a fundamental under...
Butanol is a fuel that has been proposed as a bio-derived alternative to conventional petroleum derived fuels. The structural isomer in traditional 'bio-butanol' fuel is n-butanol, but newer conversion technologies produce iso-butanol as a fuel. In order to better understand the combustion chemistry of bio-butanol, this study presents a comprehensi...
Conventional petroleum jet and diesel fuels, as well as alternative Fischer-Tropsch (FT) fuels and hydrotreated renewable jet (HRJ) fuels, contain high molecular weight lightly branched alkanes (i.e., methylalkanes) and straight chain alkanes (n-alkanes). Improving the combustion of these fuels in practical applications requires a fundamental under...
Synthetic Fischer-Tropsch (F-T) fuels derived from biomass syngas are renewable fuels that can replace conventional petroleum fuels in jet engine and diesel engine applications. F-T fuels typically contain a high concentration of lightly methylated iso-alkanes, whereas petroleum derived jet and diesel fuels contain large fractions of n-alkanes, cyc...
The development of chemical kinetic models is a hierarchical process. In order to develop reliable models for C3 and C4 alcohols, the kinetics of key stable intermediates species needs to be addressed fully. One such deficiency in these models has been the kinetic treatment of large molecular weight oxygenated intermediate species such as the C3 an...
Improving the combustion of conventional and alternative fuels in practical applications requires the fundamental understanding of large hydrocarbon combustion chemistry. The focus of the present study is on high molecular weight branched alkanes, namely, 3-methylheptane and 2,5-dimethylhexane in premixed combustion systems. These structures, along...
Fischer-Tropsch (FT) fuels derived from biomass syngas are renewable fuels that can replace conventional petroleum fuels in jet engine and diesel engine applications. FT fuels typically contain a high concentration of lightly methylated iso-alkanes, whereas petroleum derived jet and diesel fuels contain large fractions of n-alkanes, cycloalkanes, a...
The combustion modeling of real fuels is a challenging task: significant analytical efforts are required to determine the fuel composition and the development of comprehensive kinetic models are necessary to reproduce the behavior of the different fuel components. Both these aspects become more and more critical for heavy hydrocarbons, when both th...
Laminar flame speeds and extinction strain rates of premixed methanol, ethanol, and n-butanol flames were determined experimentally in the counterflow configuration at atmospheric pressure and elevated unburned mixture temperatures. Additional measurements were conducted also to determine the laminar flame speeds of their n-alkane/air counterparts,...
Biodiesel a mixture of esters, is produced from rapeseed; other potential biofuels are alcohols and ethers. As K. Kohse-Höinghaus et al. describe in their Review on page 3572 ff., the structure of a fuel molecule has a significant influence on its combustion chemistry. The complex chemical reaction pathways of the fuel decomposition and oxidation c...
Biodiesel ein Gemisch von Estern, wird aus Raps produziert; weitere potenzielle Biokraftstoffe sind Alkohole und Ether. Wie K. Kohse-Hoinghaus et al. im Aufsatz auf S. 3652 ff. schildern, besteht bei Kraftstoffmolekulen ein signifikanter Einfluss der Struktur auf die Verbrennungschemie. Die komplexen chemischen Reaktionswege der Brennstoffzersetzun...
Biofuels, such as bio-ethanol, bio-butanol, and biodiesel, are of increasing interest as alternatives to petroleum-based transportation fuels because they offer the long-term promise of fuel-source regenerability and reduced climatic impact. Current discussions emphasize the processes to make such alternative fuels and fuel additives, the compatibi...
The relative importance of formation pathways for benzene, an important precursor to soot formation, was determined from the simulation of 22 premixed flames for a wide range of equivalence ratios (1.0–3.06), fuels (C1–C12), and pressures (20–760 torr). The maximum benzene concentrations in 15 out of these flames were well reproduced within 30% of...
A detailed chemical kinetic reaction mechanism has been developed for a group of four small alkyl ester fuels, consisting of methyl formate, methyl acetate, ethyl formate, and ethyl acetate. This mechanism is validated by comparisons between computed results and recently measured intermediate species mole fractions in fuel-rich, low-pressure, premi...
Measurements of fuel concentration distributions with planar laser-induced fluorescence of tracer molecules that are added to a base fuel are commonly used in combustion research and development. It usually is assumed that the tracer concentration follows the parent fuel concentration if physical properties such as those determining evaporation are...
Iso-cetane (2,2,4,4,6,8,8-heptamethylnonane, C16H34) is a highly branched alkane reference compound for determining cetane ratings. It is also a candidate branched alkane representative in surrogate mixtures for diesel and jet fuels. Here new experiments and kinetic modeling results are presented for the autoignition of iso-cetane at elevated tempe...
Detailed chemical kinetic mechanisms were developed and used to study the oxidation of two large unsaturated esters: methyl-5-decenoate and methyl-9-decenoate. These models were built from a previous methyl decanoate mechanism and were compared with rapeseed oil methyl esters oxidation experiments in a jet-stirred reactor. A comparative study of th...
Real fuels are complex mixtures of thousands of hydrocarbon compounds including linear and branched paraffins, naphthenes, olefins and aromatics. It is generally agreed that their behavior can be effectively reproduced by simpler fuel surrogates containing a limited number of components. In this work, a recently revised version of the kinetic model...
Detailed chemical kinetic reaction mechanisms have been developed to describe the pyrolysis and oxidation of nine n-alkanes larger than n-heptane, including n-octane (n-C8H18), n-nonane (n-C9H20), n-decane (n-C10H22), n-undecane (n-C11H24), n-dodecane (n-C12H26), n-tridecane (n-C13H28), n-tetradecane (n-C14H30), n-pentadecane (n-C15H32), and n-hexa...
Biodiesel fuels are of much interest today either for replacing or blending with conventional fuels for automotive applications. Predicting engine effects of using biodiesel fuel requires accurate understanding of the combustion characteristics of the fuel, which can be acquired through analysis using reliable detailed reaction mechanisms. Unlike g...
The research targets the development of detailed kinetic models to quantitatively characterize the impact of alternative fuels on the performance of Navy turbines and diesel engines. Such impacts include kinetic properties such as cetane number, flame speed, and emissions as well as physical properties such as the impact of boiling point distributi...
n-Hexadecane and 2,2,4,4,6,8,8-heptamethylnonane represent the primary reference fuels for diesel that are used to determine cetane number, a measure of the ignition property of diesel fuel. With the development of chemical kinetics models for these two primary reference fuels for diesel, a new capability is now available to model diesel fuel ignit...
n-Hexadecane and 2,2,4,4,6,8,8-heptamethylnonane represent the primary reference fuels for diesel that are used to determine cetane number, a measure of the ignition property of diesel fuel. With the development of chemical kinetics models for both primary reference fuels, a new capability is now available to model diesel fuel ignition. Additionall...
Real fuels are complex mixtures of thousands of hydrocarbon compounds including linear and branched paraffins, naphthenes, olefins and aromatics. It is generally agreed that their behavior can be effectively reproduced by simpler fuel surrogates containing a limited number of components. In this work, a recently revised version of the kinetic model...