
Cindy LeeStony Brook University | Stony Brook · School of Marine and Atmospheric Sciences
Cindy Lee
Ph.D. Oceanography
About
187
Publications
41,614
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
14,569
Citations
Citations since 2017
Introduction
Skills and Expertise
Additional affiliations
September 1981 - September 2016
Stony Brook University
Position
- Professor (Full)
Education
September 1970 - June 1975
Scripps Institution of Oceanography UCSD
Field of study
- Chemical Oceanography
September 1966 - June 1970
Publications
Publications (187)
To better understand the sources and behavior of estuarine labile organic matter, we measured stable carbon isotope patterns of individual amino acids in suspended particles and surface sediments from the Pearl River Estuary in China; samples were taken along a salinity transect in December, 2016. Here we demonstrate that carbon isotope values (δ¹³...
The advent of new sampling tools, analytical methods, and data handling capabilities that have been applied to marine chemistry since the 1970s along with coordinated, international and interdisciplinary research programs has led to explosive growth of marine organic biogeochemistry. Here we briefly summarize the history of stepwise growth as illus...
Concentrations of chloropigments and particulate organic carbon (POC) in large-volume in-situ pump samples from the Mediterranean Sea were used to estimate rate constants of processes that control the fate of particles, and specifically chloropigments, in the water column. Here we introduce a Bayesian statistical inversion method that combines the...
This is a personal account of some of the people and factors that were important in my career in chemical oceanography. I also discuss two areas of oceanographic research and training that I think need more attention. The first is how the difficulty in getting appropriate samples hampers our ability to fully understand biogeochemical processes in t...
We investigated how future ocean conditions, and specifically the interaction between temperature and CO2, might affect marine aggregate formation and physical properties. Initially, mesocosms filled with coastal seawater were subjected to three different treatments of CO2 concentration and temperature: (1) 750 ppm CO2, 16°C, (2) 750 ppm CO2, 20°C,...
Chloropigment and particulate organic carbon (POC) concentration data collected using in-situ large-volume pumps during the MedFlux project in the Mediterranean Sea in May 2005 provided an opportunity to estimate rate constants that control the fate of particles and specifically chloropigments in the water column. Additionally, comparisons to thori...
The lability of small peptides was investigated along the salinity gradient of the James River estuary and lower Chesapeake Bay using two fluorescent analogs, Lucifer Yellow Anhydride-alanine-valine-phenylalanine-alanine (LYA-AVFA) and LYA-tetraalanine (LYA-AlA4). Hydrolysis rates of these compounds were compared with each other, and with uptake ra...
To investigate particle dynamics, we used a 3-prong modeling approach. First we constructed a conceptual finite difference (FD) model to describe chloropigment and organic matter (OM) cycling. Second, from the FD model, we obtained a set of synthetic data; we then used Bayesian techniques to recover parameters used in the FD model to show that Baye...
The accumulation of refractory prokaryotic cell membranes has been suggested as a possible source of both dissolved and particulate organic matter in the deep ocean. A surface layer protein (S-layer) is widely found as part of the cell envelope in both Eubacteria and Archaea and is made up of a monomolecular layer of glycoproteins. This heavily gly...
The discovery of ubiquitous, abundant and transparent gel-like particles, such as the polysaccharide-containing Transparent Exopolymer Particles (TEP) and protein-containing Coomassie Stainable Particles (CSP) has changed our conception of particle-organism interaction and created new questions about the origin, composition, and role of these parti...
Effects of CO2 concentration on elemental composition of the coccolithophore Emiliania huxleyi were studied in phosphorus-limited, continuous cultures that were acclimated to experimental conditions for 30 d prior to the first sampling. We determined phytoplankton and bacterial cell numbers, nutrients, particulate components like organic carbon (PO...
Coomassie stainable particles (CSP) are protein-containing transparent particles that can be stained with Coomassie brilliant blue (CBB) and are found abundantly in aquatic systems; however, their distribution and role remain poorly known, in part due to the lack of an efficient method to study them. We developed a new, simple, and low cost semi-qu...
Effects of CO2 concentration on elemental composition of the coccolithophore Emiliania huxleyi were studied in phosphorus-limited, continuous cultures that were acclimated to experimental conditions for 30 days prior to the first sampling. We determined phytoplankton and bacterial cell numbers, nutrients, particulate components like organic carbon...
Marine particles transport organic matter through the water column to the sediment where the organic matter can be buried. This pathway is one of the few natural removal mechanisms of CO2 from the atmosphere over geological time. Picophytoplankton, major primary producers in the ocean, have until recently been thought unimportant regarding particle...
It is generally assumed that episodic nutrient pulses by cyclonic eddies into surface waters support a significant fraction of the primary production in subtropical low-nutrient environments in the northern hemisphere. However, contradictory results related to the influence of eddies on particulate organic carbon (POC) export have been reported. As...
MedFlux sampling was carried out at the French JGOFS DYFAMED (DYnamique des Flux Atmospheriques en MEDiterranee) site in the Ligurian Sea (northwestern Mediterranean), 52km off Nice (431200N, 71400E) in 2300m water depth. In 2003, a mooring with sediment trap arrays was deployed 6 March (day of year, DOY 65) and recovered 6 May (DOY 126); this trap...
Principal components analysis (PCA) is a multivariate data analysis tool that can be used to recombine the variables of a large multivariate dataset in such a way that the first few variables of the reconstructed dataset account for the majority of the variance in the data. Application of PCA in marine geochemistry has become quite common in recent...
Continental margin systems are important contributors to global nutrient and carbon budgets. Effort is needed to quantify this contribution and how it will be modified under changing patterns of climate and land use. Coupled models will be used to provide projections of future states of continental margin systems. Thus, it is appropriate to conside...
Sinking particles through the pelagic ocean have been traditionally considered the most important vehicle by which the biological pump sequesters carbon in the ocean interior. Nevertheless, regional scale variability in particle flux is a major outstanding issue in oceanography. Here, we have studied the regional and temporal variability of total p...
Here we present results from sediment traps that separate particles as a function of their settling velocity, which were moored in the Canary Current region over a 1.5-year period. This study represents the longest time series using “in situ” particle settling velocity traps to date and are unique in providing year-round estimates. We find that, at...
Previous projects in the Gulf of Lion have analyzed the path of
terrigenous compounds in the Rhone deltaic system, the continental shelf
and the canyon heads. In this study we present results from the HERMES
project, focused on the GoL slope to further assess the particulate
exchange with the interior ocean. Experimental design consisted in nine
se...
Peptides and proteins are key compounds involved in carbon and nitrogen cycling in biological systems, but little is known about how chemical structure affects hydrolysis rates of these labile compounds in aquatic environments. To investigate effects of chemical structure, custom designed peptides were incubated in waters collected along a salinity...
The extent to which sinking particles disaggregate and exchange with surrounding material affects the efficiency of particulate organic carbon export to the deep sea. In 2003 and 2005, we compared the pigment and amino acid compositions of sediment trap and in situ pump samples collected in the northwest Mediterranean Sea to assess exchange between...
Melanoidins, condensation products of sugars and amino acids, are thought to represent a key link in the transformation of polysaccharides and proteins to humic material in the marine environment. We investigated adsorption behaviour of melanoidins prepared in equimolar solutions of glucose and amino acids of choice (glutamic acid, valine and lysin...
Successful management of carbon dioxide (CO2) requires robust and sustained carbon cycle observations. Yet key elements of a national observation network are lacking or at risk. A U.S. National Research Council review of the U.S. Climate Change Science Program earlier this year highlighted the critical need for a U.S. climate observing system to me...
Further development of the large, surface-tethered sediment trap (NetTrap) employed as part of the MedFlux program is described whereby the large collection capacity of the NetTrap is combined with an Indented Rotating Sphere/Sample Carousel (IRSC) sediment trap (IRSC–NT). This trap is capable of collecting particle flux either in a time series or...
Prompted by recent data analyses suggesting that the flux of particulate organic carbon sinking into deep waters is determined by fluxes of mineral ballasts, we undertook a study of the relationships among organic matter (OM), calcium carbonate, opal, lithogenic material, and excess aluminum fluxes as part of the MedFlux project. We measured fluxes...
Diatoms play a significant role in the global carbon cycle through their role in biogenic silica production and the transport of organic matter to the seafloor. Recent work has shown that silicified diatom frustules contain a significant amount of organic matter, and that the proportion of diatom-bound organic matter increases with depth in the wat...
The transfer of material through the twilight zone of the ocean is controlled by sinking particles that contain organic matter (OM) and mineral ballast. During the MedFlux field program in the northwestern Mediterranean Sea in 2003, sinking particulate matter was collected in time series (TS) and settling velocity (SV) traps and analyzed for amino...
Particulate organic carbon (POC) concentrations measured in bottles are often higher than those measured by in situ pumps when samples are taken concurrently. In previous work, we suggested that differential collection of zooplankton might explain this systematic discrepancy in POC between these small volume (bottle) and large volume (in situ pump)...
The quantitative relationship between organic carbon and mineral contents of particles sinking below 1800 m in the ocean indicates that organisms with mineral shells such as coccolithophores are of special importance for transporting carbon into the deep sea. Several hypotheses about the mechanism behind this relationship between minerals and organ...
To investigate the role of ballasting by biogenic minerals in the export of organic matter in the ocean, a laboratory experiment was conducted comparing aggregate formation and settling velocity of non-calcifying and calcifying strains of the coccolithophore Emiliania huxleyi. Experiments were conducted by making aggregates using a roller table and...
Recently it has been observed that a strong quantitative relationship exists between asymptotic fluxes of particulate organic carbon (POC) to the deep ocean and asymptotic fluxes of “ballast” minerals (opal; calcium carbonate; dust). It has further been suggested that this relationship might provide a mechanistic basis for improved representations...
Rates of peptide hydrolysis (using the fluorescent substrate, lucifer yellow anhydride-labeled tetra-alanine) and dipeptide uptake (using dually labeled, 15N and 13C, dialanine) were measured in phytoplankton cultures and in natural populations during algal blooms dominated by one or two taxa. During most sampling events, both peptide hydrolysis an...
We used a new experimental device called PASS (PArticle Sinking Simulator) during MedFlux to simulate changes in in situ hydrostatic pressure that particles experience sinking from mesopelagic to bathypelagic depths. Particles, largely fecal pellets, were collected at 200 m using a settling velocity NetTrap (SV NetTrap) in Ligurian Sea in April 200...
Sinking particles are the major transporter of organic carbon from surface to the deep ocean, and their chemical composition changes dramatically with depth. However, the exact mechanism controlling the chemical transformation as particles sink is not well understood, and little detail is known about the structural changes. This is mainly due to th...
The MedFlux project was devised to determine and model relationships between organic matter and mineral ballasts of sinking particulate matter in the ocean. Specifically we investigated the ballast ratio hypothesis, tested various commonly used sampling and modeling techniques, and developed new technologies that would allow better characterization...
While a relationship between ballast and carbon in sedimenting particles has been well-documented, the mechanistic basis of this interaction is still under debate. One hypothesis is that mineral ballast protects sinking organic matter from degradation. To test this idea, we undertook a laboratory experiment using the diatom Skeletonema marinoi to s...
Sinking particles through the pelagic ocean have been traditionally considered the most important vehicle by which the biological pump sequesters carbon in the ocean interior. Nevertheless, regional scale variability in particle flux is a major outstanding issue in oceanography. 5 Here, we have studied the regional and temporal variability of total...
Ellen Prager's new book, Chasing Science at Sea, is a personal account of why fieldwork is so important in many areas of ocean science, and how exciting that fieldwork can be. Prager has interwoven her own story of studying carbonates at the interface between biology and geology with stories from friends and colleagues. Storm stories and up-close-a...
Sorption of organic compounds by coastal marine sediments is strongly affected by dry-wet cycling. In this study, we determined how drying (and rewetting) sediment affected the decomposition rate of organic matter under both oxic and anoxic conditions, and how sorption changed with decomposition. Organic matter decomposition showed distinct pattern...
To investigate the role of coastal canyons in the transfer of organic matter from the shelf to the slope and basin, we deployed sediment trap/current meter pairs at the head of five canyons in the Gulf of Lions (GoL) between November 2003 and May 2004. Analysis of organic carbon, biogenic silica, Corg isotopic composition, Corg/total nitrogen, chlo...
Bulk nitrogen (N) isotope signatures have long been used to investigate organic N source and food web structure in aquatic ecosystems. This paper explores the use of compound-specific δ15N patterns of amino acids (δ15N-AA) as a new tool to examine source and processing history in non-living marine organic matter. We measured δ15N-AA distributions i...
Settling particles were collected from the Ligurian Sea in the northwestern Mediterranean Sea in May 2003 and separated by elutriation into different settling velocity classes (.230, 115–230, 58–115, and ,58 m d21). Particles of the different classes were incubated for 5 d to study their biodegradability. Particulate opal content and organic compou...
Past studies have suggested that desiccation enhances hydrophobicity of salt marsh sediment, and that drying and rewetting sediment can be used to investigate sorption mechanisms of amino acids and other organic compounds [Liu, Z., Lee, C., 2006. Drying effects on sorption capacity of coastal sediment: The importance of architecture and polarity of...
The disequilibrium between 210Po and its grandparent 210Pb has been proposed as a tracer of the vertical flux of sinking particulate organic matter in the ocean. The mechanism of association between 210Po and organic matter is, however, still unclear. To investigate this association we measured trace metals, minerals, organic carbon, nitrogen, and...
Mercuric chloride (HgCl2) and broad-spectrum protease inhibitors are often used to inhibit bacterial or enzymatic activity in environmental samples. In this study, we investigated their effects on degradation of particulate organic matter derived from a culture of the diatom, Thalassiosira pseudonana, and from sediment traps, with emphasis on compo...
Melanoidins, condensation products of sugars and amino acids, represent a key link in the transformation of polysaccharides to humic material in the marine environment. We investigated the complexing capacity of melanoidins that were prepared in deionized water and seawater and separated into different molecular mass fractions. The copper complexin...
Investigations on how desiccation changes sorption of organic compounds by salt marsh sediments provide insight into the physical and chemical properties of these wide-spread coastal sediments. We measured sorption of compounds with different polarities (lysine, tyrosine, naphthalene and aniline) onto natural sediments and sediments that were dried...
We investigated amino acids and pigments in particles settling through the water column of the Southern Ocean and showed that spatial and temporal differences in phytoplankton source and consumer population influence sinking particle composition. Sediment traps were deployed along 170°W from November 1996 to March 1998 as part of the United States...
Three new approaches for collecting and processing sinking particles for biogeochemical studies are presented. They include (1) a modification of our existing indented rotating sphere carousel (IRSC) sediment trap design from its conventional time-series function to one that collects particles based on discrete particle settling-velocity ranges; (2...
Marine aerosols play a dominant role in the transfer of oceanic material to the atmosphere. Most marine aerosol originates when air bubbles burst at the sea surface ejecting material from the sea surface microlayer and bubble surface layers into the air. Concentrations of chemical compounds in these surface layers often differ from their concentrat...