
The Journal of Computing
Sciences in Colleges

Volume 25, Number 5 May 2010

The Journal of Computing
Sciences in Colleges
Papers of the Eighth Annual
CCSC Mid-South Conference

March 26-27, 2010
Harding University
Searcy, Arkansas

Papers of the Sixteenth Annual
CCSC Central Plains Conference

April 9-10, 2010
Park University

Parkville, Missouri

John Meinke, Editor
UMUC — Europe

George Benjamin, Associate Editor Susan T. Dean, Associate Editor
Muhlenberg College UMUC — Europe

Dan Brandon, Contributing Editor Dean Sanders, Contributing Editor
Christian Brothers University Northwest Missouri State University

Volume 25, Number 5 May 2010

ii

The Journal of Computing Sciences in Colleges (ISSN 1937-4771 print, 1937-4763
digital) is published at least six times per year and constitutes the refereed papers of
regional conferences sponsored by the Consortium for Computing Sciences in Colleges.
Printed in the USA. POSTMASTER: Send address changes to Jim Aman, CCSC
Membership Chair, Saint Xavier University, Chicago, IL 60655.

Copyright © 2010 by the Consortium for Computing Sciences in Colleges. Permission
to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the CCSC copyright notice and the
title of the publication and its date appear, and notice is given that copying is by
permission of the Consortium for Computing Sciences in Colleges. To copy otherwise,
or to republish, requires a fee and/or specific permission.

iii

TABLE OF CONTENTS

THE CONSORTIUM FOR COMPUTING SCIENCES IN COLLEGES BOARD OF
DIRECTORS
. ix

CCSC NATIONAL PARTNERS . x

FOREWORD . x
John Meinke, UMUC – Europe

PAPERS OF THE EIGHTH ANNUAL CCSC MID-SOUTH CONFERENCE 1

WELCOME TO THE 2010 CCSC MID-SOUTH CONFERENCE 2
Gabriel J. Ferrer, Hendrix College

2010 MID-SOUTH CONFERENCE COMMITTEE . 2

REGIONAL BOARD — CCSC MID-SOUTH REGION . 3

REVIEWERS — 2010 CCSC MID-SOUTH CONFERENCE 4

CONCURRENT PROGRAMMING IN ERLANG — PRE-CONFERENCE
WORKSHOP . 6
David R. Naugler, Southeast Missouri State University

AN INTRODUCTION TO OPENGL GRAPHICS PROGRAMMING — PRE-
CONFERENCE WORKSHOP . 8
Otha L. Britton, University of Tennessee at Martin

FOCUSED MULTI-DOCUMENT SUMMARIZATION: HUMAN
SUMMARIZATION ACTIVITY VS. AUTOMATED SYSTEMS
TECHNIQUES . 10
Quinsulon L. Israel,Drexel University, Hyoil Han, LeMoyne-Owen College, Il-

Yeol Song, Drexel University

USING INFORMATION FLOW TO ANALYZE GRAMMARS 21
Larry Morell, David Middleton, Arkansas Tech University

iv

STATE DRIVEN SEMANTIC MODELING OF OPERATORS IN ETL
WORKFLOW . 27
Wesley Deneke, Wingning Li, Craig Thompson, University of Arkansas

A BOOT CAMP APPROACH TO LEARNING PROGRAMMING IN A CS0
COURSE . 34
John Stamey, Steve Sheel, Coastal Carolina University

A PROGRAMMING REMEDIATION PLAN . 41
Andrea Edwards, Kun Zhang, Xavier University of Louisiana

A GRAPHICAL FRAMEWORK FOR ASSISTING PROOFS 48
Cong-Cong Xing, Nicholls State University

UNDERSTANDING NSF FUNDING OPPORTUNITIES — TUTORIAL
PRESENTATION . 58
Scott Grissom, National Science Foundation

GAPS IN THE COMPUTER SCIENCE CURRICULUM: AN EXPLORATORY
STUDY OF INDUSTRY PROFESSIONALS . 60
Chris B. Simmons, University of Memphis, Lakisha L. Simmons, University of

Mississippi

WHY COMPUTATIONAL THINKING SHOULD BE INTEGRATED INTO THE
CURRICULUM . 66
Jake A. Qualls, Linda B. Sherrell, University of Memphis

HIVE: CROWDSOURCING EDUCATION DATA . 72
Neal Gibson, John Talburt, University of Arkansas at Little Rock

CS0: WHY, WHAT, AND HOW? — PANEL DISCUSSION 79
Matt Brown, Arkansas Tech University, Carl Burch, Hendrix College, Chenyi

Hu, Michael Nooner, University of Central Arkansas

LABGRADER AND NIFTY ASSIGNMENTS — TUTORIAL PRESENTATION 82
Bob Bradley, Paul Tesar, University of Tennessee at Martin

NETWORK SECURITY IN TWO-YEAR COLLEGES . 83
Russell Jones, Arkansas State University – Main Campus, Tamya Jean Stallings,

Arkansas State University – Newport

TEACHING FEDERATED IDENTITY IN COMPUTER AND INFORMATION
SCIENCE . 89
George Whitson, The University of Texas at Tyler

v

THE PNTFS FILE SYSTEM IN THE MOSES2 OPERATING SYSTEM
ENVIRONMENT SIMULATOR . 97
Robert England, Transylvania University

JAVAWIDE – INNOVATION IN AN ONLINE IDE — TUTORIAL
PRESENTATION . 102
Jam Jenkins, Evelyn Brannock, Sonal Dekhane, Georgia Gwinnett College

USING DATA MINING TO INTRODUCE DATABASES — NIFTY
ASSIGNMENT . 105
Matt Brown, Arkansas Tech University

DATA MODELING FOR REAL — NIFTY ASSIGNMENT 106
Donna Wright, University of Arkansas-Fort Smith

HANDWRITTEN CHARACTER RECOGNITION — NIFTY ASSIGNMENT . 108
Gabriel J. Ferrer, Hendrix College

MAINTAINING CONTROL OF A ROBOT’S LIMBS USING THE BAKERY
ALGORITHM . 110
Patrick McDowell, Theresa Beaubouef, Southeastern Louisiana University

A PARETO-OPTIMALITY BASED ROUTING AND WAVELENGTH
ASSIGNMENT ALGORITHM FOR WDM NETWORKS 118
David L. Sonnier, Lyon College

CRITERIA-BASED PARALLELISM FOR MULTIOBJECTIVE PROBLEM
SOLVING . 124
David L. Sonnier, Matt Bradley, Lyon College

TEACHING A GAME PROGRAMMING CLASS FOR THE FIRST TIME —
TUTORIAL PRESENTATION . 131
Frank McCown, Harding University

ENCODING ROBOTIC SENSOR STATES FOR Q-LEARNING USING THE
SELF-ORGANIZING MAP . 133
Gabriel J. Ferrer, Hendrix College

BAYESIAN DATA FUSION FOR SMART ENVIRONMENTS with
HETEROGENOUS SENSORS . 140
Soukaina Messaoudi, Kamilia Messaoudi, Serhan Dagtas, University of

Arkansas at Little Rock

ANOMALY DETECTION OF MASQUERDERS BASED UPON TYPING
BIOMETRICS AND PROBABILISTIC NEURAL NETWORK 147
Yingbing Yu, Austin Peay State University

vi

DJANGO, A WEB FRAMEWORK USING PYTHON — TUTORIAL
PRESENTATION . 154
Carl Burch, Hendrix College

PAPERS OF THE SIXTEENTH ANNUAL CCSC CENTRAL PLAINS
CONFERENCE . 157

WELCOME — 2010 CCSC: CENTRAL PLAINS CONFERENCE
. 158

Wen-Jung Hsin, Park University

2010 CENTRAL PLAINS CCSC REGIONAL BOARD MEMBERS 159

2010 CENTRAL PLAINS CCSC CONFERENCE STEERING COMMITTEE . . 159

REVIEWERS — 2010 CCSC CENTRAL PLAINS CONFERENCE 160

FORENSICS IN THE COMPSCI CLASSROOM — KEYNOTE ADDRESS . . . 162
Rebecca Mercuri, Notable Software, Inc

PLANETARY ADVENTURES: MY LIFE AS A NASA SOFTWARE ENGINEER
— BANQUET ADDRESS
. 163

Carol Browning, Drury University

jGRASP: AN INTEGRATED DEVELOPMENT ENVIRONMENT WITH
INTUITIVE VISUALIZATIONS FOR TEACHING HARD CONCEPTS IN
JAVA — PRE-CONFERENCE WORKSHOP . 164
James H. Cross II, Auburn University

THE ACTIVE-LEARNING TRANSFORMATION: A CASE STUDY IN
SOFTWARE DEVELOPMENT AND SYSTEMS SOFTWARE COURSES
. 165

Ross Sowell, Christopher Gill, Roger D. Chamberlain, Cindy Grimm, Kenneth J.
Goldman, Washington University, Mark Tranel, University of Missouri -
St. Louis

EXPERIENCES WITH ACTIVE LEARNING IN CS 3 . 173
Ross Sowell, Yixin Chen, Jeremy Buhler, Sally A. Goldman, Cindy Grimm,

Kenneth J. Goldman, Washington University

SOMETIMES STYLE REALLY DOES MATTER . 180
David Reed, Creighton University

vii

ONLINE COMMUNITIES IN THE ERA OF THE INFORMATION REVOLUTION
. 188

Igor Balsim, Elie Feder , and Sarwar Jahangir, Kingsborough Community
College of the City University of New York

THE SIGCSE SUBMISSION AND REVIEW SOFTWARE:
10(HEXADECIMAL) LESSONS . 196
Henry M. Walker, Grinnell College, John F. Dooley, Knox College

A CAPSTONE EXERCISE FOR A CYBERSECURITY COURSE 207
J. R. Aman, Saint Xavier University, James E. Conway, State of Ohio,

Christopher Harr, Saint Xavier University

AN INTRODUCTION TO VERSION CONTROL WITH SUBVERSION —
TUTORIAL PRESENTATION . 213
John Cigas, Park University

IMPLEMENTING AN INTERDISCIPLINARY CAPSTONE EXPERIENCE FOR
INTERACTIVE DIGITAL MEDIA MAJORS . 214
Carol Spradling, Jody Strauch, Northwest Missouri State University

A COMPARATIVE STUDY OF INFORMATION SECURITY AND ETHICS
AWARENESS IN DIVERSE UNIVERSITY ENVIRONMENTS 223
Max North, DeAnthony Perryman, Shekinah Burns, and Sarah North, Southern

Polytechnic State University

IDENTIFYING GENE REGULATORY NETWORKS USING EVOLUTIONARY
ALGORITHMS . 231
Carl Davidson, Simpson College

JAVA SLOT MACHINE APPLET — NIFTY ASSIGNMENT 238
Thomas Mertz, Kansas State University at Salina

HUMAN ROBOT ASSIGNMENT FOR CS0 OR CS1 — NIFTY ASSIGNMENT 241
Ernie Giangrande Jr., Wingate University

APPLIED PROBLEM SOLVING — NIFTY ASSIGNMENT 243
Wen-Jung Hsin and John Cigas, Park University

ANIMATIONS FOR COMPUTER NETWORKING PROTOCOLS 245
Wen-Jung Hsin, Park University

EXPERIENCES WITH ONLINE SQL ENVIRONMENTS 251
John Cigas and Barbara Kushan, Park University

viii

USING TOPIC MAP TO CREATE AN E-LEARNING ENVIRONMENT: THE
TOPIC OF OSI MODEL MAP . 258
Marcos S. Pinto, NYC College of Technology (CUNY)

STUDENT CLASSROOM SOFTWARE DEVELOPMENT PROJECTS: A
PRACTITIONERS PERSPECTIVE — PANEL DISCUSSION 265
Edward Mirielli, Westminster College, Kian L. Pokorny, McKendree University,

James Buchan, College of the Ozarks

TEACHING AND INTEGRATING SOCIAL AND PROFESSIONAL ISSUES INTO
A SMALL COLLEGE COMPUTER SCIENCE CURRICULUM —
TUTORIAL PRESENTATION . 267
Carol Spradling, Northwest Missouri State University, Brian Hare, University of

Missouri - Kansas City

CLUSTER COMPUTING ON A SMALL DEPARTMENT BUDGET 269
David Bainum, Bruce Mechtly, Washburn University

A ONE-CREDIT ARTIFICIAL INTELLIGENCE COURSE FOR A GENERAL
AUDIENCE . 275
Michael Black, American University

CONNECTING HIGH-LEVEL PROGRAMMING CONSTRUCTS TO ASSEMBLY
LANGUAGE USING FRANCES — TUTORIAL PRESENTATION 282
Kian L. Pokorny, McKendree University, Tyler Sondag, Hridesh Rajan, Iowa

State University

AUTOMATED GRADING OF STUDENT PROGRAMMING ASSIGNMENTS —
TUTORIAL PRESENTATION . 284
Stefan Brandle, Taylor University

RESISTOR NETWORK-BASED ALGORITHMS FOR ENUMERATING
RATIONAL NUMBERS . 287
Samuel C. Hsieh, C. Van Nelson, and Logeshbabu Sampath, Ball State

University

A WEB SERVICE MODEL FOR CONDUCTING RESEARCH
IN IMAGE PROCESSING . 294
Chengcheng Li, East Carolina University

WRONG NUMBER: AVOIDING THE HIDDEN PERILS IN IPHONE
DEVELOPMENT . 300
Michael P. Rogers, Northwest Missouri State University

ix

PROGRAMMING USER INTERFACES USING THE NINTENDO WII REMOTE
— TUTORIAL PRESENTATION . 306
Chuck Pheatt, Scott Goering, Emporia State University

TEACHING NETWORKING AND DISTRIBUTED SYSTEMS WITH SEATTLE
— TUTORIAL PRESENTATION . 308
Justin Cappos, Ivan Beschastnikh, University of Washington

EXPERIENCES WITH VIRTUALIZAION TECHNOLOGY IN EDUCATION
. 311

Timothy Bower, Kansas State University at Salina

CREATING A SUMMER PROGRAM TO ENGAGE STUDENTS 319
Jerome Eric Luczaj, Miami University Middletown

TEACHING MATHEMATICAL PROOFS TO CS MAJOR STUDENTS IN THE
CLASS OF DISCRETE MATHEMATICS . 326
Hongbiao Zeng, Keyu Jiang, Fort Hays State University

PVIF OF $1 TABLE CREATION & USAGE IN C# : FUNDAMENTAL — NIFTY
ASSIGNMENT . 333
Jean Hendrix, University of Arkansas at Monticello

ROULETTE SIMULATIONS AND MARTINGALE BETTING — NIFTY
ASSIGNMENT . 335
David Reed, Creighton University

PROVIDING A DIGITAL LOGIC LAB EXPERIENCE IN A COMPUTER
ARCHITECTURE COURSE — NIFTY ASSIGNMENT 337
James Feher, McKendree University

INDEX OF AUTHORS . 342

x

THE CONSORTIUM FOR COMPUTING SCIENCES IN COLLEGES
BOARD OF DIRECTORS

Following is a listing of the contact information for
the members of the Board of Directors and the
Officers of the Consortium for Computing Sciences
in Colleges (along with the year of expiration of
their terms), as well as members serving the Board:
Myles McNally, President (2010), Webmaster,
Professor of Computer Science, Alma College, 614
W. Superior St., Alma, MI 48801, (989) 463-7163
(O), (989) 463-7079 (fax), mcnally@alma.edu.
Bob Neufeld, Vice President (2010), Professor
Emeritus of Computer Science, McPherson
College, P. O. Box 421, North Newton, KS 67117,
neufeld@mcpherson.edu.
Jim Aman, Membership Chair (2010), Assoc.
Professor, Computer Science, Saint Xavier
University, Chicago, IL 60655, (773) 298-3454
(O), (614) 492-1306 (H), (630) 728-2949 (cell),
aman@sxu.edu.
Bill Myers, Treasurer (2011), Dept. of Computer
Studies, Belmont Abbey College, Belmont, NC
28012-1802, (704) 461-6823, (704) 461-5051,
(Fax), myers@crusader.bac.edu.
John Meinke, Publications Chair, (2012),
Collegiate Associate Professor, UMUC Europe, US
Post: CMR 420, Box 3668, APO AE 09063; (H)
Werderstr 8, D-68723 Oftersheim, Germany, 011-
49-6202-5 77 79 16 (H), 011 - 49-6221- 31 58 71
(fax), meinkej@acm.org.
Kim P. Kihlstrom, Southwestern Representative
(2011), Associate Professor of Computer Science,
Westmont College, 955 La Paz Road, Santa
Barbara, CA 93108, kimkihls@westmont.edu.
Elizabeth S. Adams, Eastern Representative
(2011), James Madison University - Mail Stop
4103, CISAT - Department of Computer Science,
Harrisonburg VA 22807, 540-568-2745(fax),
e-mail: adamses@jmu.edu.
Deborah Hwang, Midwestern Representative
(2011), Dept of Electrical Engineering and
Computer Science, University of Evansville, 1800
Lincoln Avenue, Evansville, IN 47722, (812)
488-2193 (O), (812) 488-2780 (fax),
hwang@evansville.edu.
Scott Sigman, Central Plains Representative
(2011), Associate Professor of Computer Science,
Drury University, Springfield, MO 65802, (417)
873-6831, ssigman@drury.edu.
Ernest Carey, Rocky Mountain Representative
(2010), Dean, College of Technology and
Computing, #249, Utah Valley University, Orem,
UT 84058-5999, (801) 863-8237 (O), (801)
318-6439 (cell), ECarey@uvu.edu.

L a w r e n c e D ’ A n t o n i o , Nor theas t e rn
Representative (2010), Ramapo College of New
Jersey, Computer Science Dept., Mahwah, NJ
07430, (201) 684-7714, ldant@ramapo.edu.
David R. Naugler, Midsouth Representative
(2010), Computer Science, Southeast Missouri
State University, One University Plaza, Cape
Girardeau, MO 63701, (573) 651-2787,
dnaugler@semo.edu.
Kevin Treu, Southeastern Representative (2012),
Furman University, Dept of Computer Science,
Greenville, SC 29613, (864) 294-3220 (O),
kevin.treu@furman.edu.
Timothy J. McGuire, South Central
Representative (2012), Department of Computer
Science, Sam Houston State University, Huntsville,
Texas 77341-2090, (936)294-1571,
mcguire@shsu.edu.
Brent Wilson, Northwestern Representative
(2012), Database Administrator, George Fox
University, 414 N. Meridian St., Newberg, OR
97132, (503) 554-2722 (O), (503) 554-3884 (fax),
bwilson@georgefox.edu.
Serving the Board: The following CCSC members
are serving in positions as indicated that
support the Board:
Will Mitchell, Conference Coordinator, 1455 S
Greenview Ct, Shelbyville, IN 46176-9248, (317)
392-3038 (H), willmitchell@acm.org.
George Benjamin, Associate Editor, Muhlenberg
College, Mathematical Sciences Dept, Allentown,
PA 18104, (484) 664-3357 (O), (610) 433-8899
(H), benjamin@muhlenberg.edu.
Susan Dean, Associate Editor, Collegiate
Professor, UMUC Europe, US Post: CMR 420,
Box 3669, APO AE 09063; (H) Werderstr 8,
D-68723 Oftersheim, Germany. 011-49-6202-5 77
82 14, sdean@faculty.ed.umuc.edu.
Robert Bryant, Comptroller, Professor &
Information Tech. Program Director, MSC 2615,
Gonzaga University, Spokane, WA 99258, (509)
313-3906, bryant@gonzaga.edu.
Paul D. Wiedemeier, National Partners Program
Coordinator, The University of Louisiana at
Monroe, Computer Science and CIS Department,
700 University Avenue, Administration Building,
Room 2-37, Monroe, LA 71209, 318-342-1856,
(office), 318-342-1101 (fax),
 wiedemeier@ulm.edu.

xi

CCSC NATIONAL PARTNERS

The Consortium is very happy to have the following as National Partners. If you
have the opportunity please thank them for their support of computing in teaching
institutions. As a National Partner they are invited to participate in our regional
conferences. Visit with their representatives there.

Microsoft Corporation
Cengage Learning

Shodor
Turings Craft

FOREWORD
And, once again two conferences have produced great programs which I’m proud

to be a part of. As I look at the programs I really wish that I could attend both!
Getting this manuscript out is always a challenge. We have the conference

committees trying to put programs together and then refining them, but we also have
printing deadlines. My thanks to the Dan Brandon and Dean Sanders for their hard
work feeding me manuscript that was carefully laid out by the respective conference
committees. My thanks also to Dan and Dean for their responsiveness when I was
“harassing” them that we had printing and shipping deadlines to worry about. The
programs for both conferences are excellent, and I heartily commend the papers in this
issue. Those able to attend the conferences will benefit greatly from the presentations
and we will all benefit greatly from having the copy of the papers from both conferences
available to us. This is particularly true for those of us unable to attend either conference.

Let me take a moment here to call your attention to our National Partners listed
above. Their financial support enables us to continue to offer the CCSC regional
conferences at an inexpensive registration rate, allowing those of us with minimal travel
budgets to attend professional conferences. Their generosity is very much appreciated.

Let me also recognize Upsilon Pi Epsilon as a supporter of student programs at our
regional conferences.

My thanks to all the supporters and facilitators, and it’s a pleasure to present you
with two more sets of excellent conference papers.

John Meinke
UMUC – Europe

CCSC Publications Chair

xii

Papers of the Eighth
Annual
CCSC

Mid-South Conference

March 26-27, 2010
Harding University
Searcy, Arkansas

2

WELCOME TO THE 2010 CCSC MID-SOUTH CONFERENCE

On behalf of the conference committee, I welcome you to the Eighth Annual
Consortium for Computing Sciences (CCSC) Conference for the Mid-South region. We
are pleased to be hosted this year by Harding University in Searcy, Arkansas.

The conference program includes eighteen refereed papers, five tutorials, two
workshops, one panel discussion, and two sessions of oral presentations of undergraduate
student research. We are also introducing our first Nifty Assignments session, and we
continue to host our annual undergraduate student programming competition. Sessions
include a broad spectrum of topics from the computing disciplines. We are especially
pleased to offer multiple presentations in the areas of security, machine learning,
robotics, computing curriculum, and networking.

The thirty-four papers submitted were reviewed using a double-blind process with
at least three reviewers per paper. Eighteen papers were accepted for publication in the
Journal of Computing Sciences in Colleges and for presentation at this year's conference.
We would like to especially thank all of the authors for their hard work and high-quality
submissions and all the reviewers for their careful reviews.

The Mid-South conference committee, the regional board, and the faculty and staff
of the Harding University Department of Computer Science worked hard organizing this
conference. I thank all of you for your varied contributions and the many hours of hard
work that make this conference possible.

We hope you enjoy the conference and find it to be a valuable opportunity for
professional development. We also look forward to seeing you at next year's CCSC
Mid-South Conference hosted by the University of Central Arkansas in Conway.

Gabriel J. Ferrer, Hendrix College
Conference Chair

2010 MID-SOUTH CONFERENCE COMMITTEE

Gabriel Ferrer, Conference Chair Hendrix College, Conway, AR
Tim Baird, Site Chair . Harding University, Searcy, AR
Larry Morell, Papers Co-Chair Arkansas Tech University, Russellville, AR
Sean Geoghegan, Papers Co-Chair University of Arkansas at Little Rock, AR
Jane Renwick, Papers Co-Chair University of Arkansas at Fort Smith, AR
Otha Britton, Panels/Workshops/Tutorial Co-Chair University of Tennessee - Martin, TN
H. Conrad Cunningham, Panels/Workshops/Tutorial Co-Chair
. University of Mississippi
Carl Burch, Nifty Assignments Hendrix College, Conway, AR

CCSC: Mid-South Conference

3

Steve Baber, Student Programming Contest Co-Chair Harding University, Searcy, AR
David Hoelzeman, Student Programming Contest Co-Chair .
. Arkansas Tech University, Russellville, AR
David Middleton, Student Papers Co-Chair .
. Arkansas Tech University, Russellville, AR
Mark Goadrich, Student Papers Co-Chair .
. Centenary College of Louisiana, Shreveport, LA
Linda Sherrell, Publicity Chair . University of Memphis

REGIONAL BOARD — CCSC MID-SOUTH REGION

H. Conrad Cunningham, Regional Board Chair .
. University of Mississippi, University, MS
David Naugler, CCSC National Board Representative and Past Conference Chair . . .
. Southeast Missouri State University, Cape Girardeau, MO
Paul D. Wiedemeier, Membership and Registration Chair .
. University of Louisiana at Monroe, LA
Gabriel Ferrer, Conference Chair (2010) Hendrix College, Conway, AR
Daniel Brandon, Editor Christian Brothers University, Memphis, TN
David Hoelzeman, Webmaster Arkansas Tech University, Russellville, AR
Linda Sherrell, Treasurer University of Memphis, Memphis, TN
Tim Baird, Site Chair . Harding University, Searcy, AR
Otha Britton, Past Site Chair (2009) University of Tennessee - Martin, TN
Larry Morell, Next Conference Chair (2011) .
. Arkansas Tech University, Russellville, AR
Vamsi Paruchuri, Next Site Chair (2011) .
. University of Central Arkansas, Conway, AR

4

REVIEWERS — 2010 CCSC MID-SOUTH CONFERENCE

Neal Gibson Arkansas Department of Education, Little Rock, AR
David Hoelzeman Arkansas Tech University, Russellville, AR
David Middleton Arkansas Tech University, Russellville, AR
Larry Morell . Arkansas Tech University, Russellville, AR
Matt Brown . Arkansas Tech University, Russellville, AR
Roger Fang . Arkansas Tech University, Russellville, AR
Yingbing Yu . Austin Peay State University, Clarksville, TN
Jenq-Foung Yao . Chicago State University, Chicago, IL
Arthur Yanushka Christian Brothers University, Memphis, TN
Dan Brandon . Christian Brothers University, Memphis, TN
Tebring Daly . Collin College, Plano, TX
John Stamey . Cosatal Carolina University, Conway, SC
Quinsulon Israel . Drexel University, Philadelphia, PA
Carl Burch . Hendrix College, Conway, AR
Gabriel Ferrer . Hendrix College, Conway, AR
John Ross . Indiana University Kokomo, Kokomo, IN
David Sonnier . Lyon College, Batesville, AR
Hira Herrington . Lyon College, Batesville, AR
Dennis Brylow . Marquette University, Milwaukee, WS
Jimmie Purser . Millsaps College, Jackson, MS
Cong-Cong Xing . Nicholls State University, Thibodaux, LA
Patrick McDowell Southeastern Louisiana University, Hammond, LA
Theresa Beaubouef Southeastern Louisiana University, Hammond, LA
David Naugler Southeastern Missouri State University, Cape Girardeau, MO
Max North Southern Polytechnic State University, Marietta, GA
Deborah Dunn Stephen F. Austin State University, Nacogdoches, TX
Robert Strader Stephen F. Austin State University, Nacogdoches, TX
Anne-Marie Eubanks Stephen F. Austin State University, Nacogdoches, TX
Robert England . Transylvania University, Lexington, KY
Haifei Li . UniversityUnion University, Jackson, TN
Wesley Deneke . University of Arkansas, Fayetteville, AR
Wingning Li . University of Arkansas, Fayetteville, AR
John Talburt University of Arkansas at Little Rock, Little Rock, AR
Kamilia Messaoudi University of Arkansas at Little Rock, Little Rock, AR
Sean Geoghegan University of Arkansas at Little Rock, Little Rock, AR
Serhan Dagtas University of Arkansas at Little Rock, Little Rock, AR
Soukaina Messaoudi University of Arkansas at Little Rock, Little Rock, AR
Rick Massengale University of Arkansas at Fort Smith, Fort Smith, AR
Janet Renwick University of Arkansas at Fort Smith, Fort Smith, AR
Greg Holland University of Arkansas at Little Rock, Little Rock, AR
Jose Cordova University of Louisiana at Monroe, Monroe, LA

CCSC: Mid-South Conference

5

Paul Wiedemeier University of Louisiana at Monroe, Monroe, LA
Chris Simmons . University of Memphis, Memphis, TN
Jake Qualls . University of Memphis, Memphis, TN
Linda Sherrell . University of Memphis, Memphis, TN
Conrad Cunningham . University of Mississippi, Oxford, MS
Lakisha Simmons . University of Mississippi, Oxford, MS
Jaime Nino . University of New Orleans, New Orleans, LA
Art Shindhelm Western Kentucky University, Bowling Green, KY
Andrea Edwards Xavier University of Louisiana, New Orleans, LA
Kun Zhang Xavier University of Louisiana, New Orleans, LA
Hyoil Han . LeMoyne-Owen College, Memphis, TN
Cen Li . Middle Tenn State University, Murfreesboro, TN
Roland Untch Middle Tenn State University, Murfreesboro, TN
Anatole Ruslanov State University of New York at Fredonia, Fredonia, NY
Milam Aiken . University of Mississippi, Oxford, MS

* Copyright is held by the author/owner.

6

CONCURRENT PROGRAMMING IN ERLANG*

PRE-CONFERENCE WORKSHOP

David R. Naugler
Southeast Missouri State University

One University Plaza
Cape Girardeau
573-651-2787

dnaugler@semo.edu

Erlang is not just another general purpose functional programming language and it
is not the best or most appropriate functional language for all uses. There are many
worthy programming languages and the best or most appropriate depends on the intended
uses. Erlang is currently the best and most appropriate functional language for writing
robust, scalable, programs that can effectively use a one core processor, multicore
processors , multiple processors, or trusted networks Concurrent programs in Erlang can
keep running when more processors or core are added, when some fail or are removed
and can be written to allow hot code swapping so updating does not even require stopping
the process being updated. This can be done using significantly less code and done faster
than in other languages. Erlang was designed for concurrency. The programmer can
concentrate on what the processes are supposed to do and let them fail if a problem
occurs. Failure of a process is a normal response, not a problem to be avoided. Much less
defensive coding is required and fault tolerance is much easier to achieve. This is not
magic, it is using a tool designed for the job. The Erlang programming model is to use
many very lightweight processes which do not use shared memory, locks, or
synchronized methods and which communicate by message passing. The processes are
controlled the Erlang runtime and not by the operating system. The programmer's focus
is on what the program is supposed to do and not on what can go wrong.

Erlang is tested, and documentation, source code, and Windows and Linux
implementations are freely available. There are two excellent books [1], [2]. It has been
generally available for over a decade years and has been used for large industrial
applications. It interfaces well with other languages. You many well have already used
software which has components written in Erlang. . Implementations for Linux and
Windows are readily available [1], there is good documentation, an Erlang

Erlang programming requires a different, but natural, way of thinking about and
implementing concurrent systems. It is relatively easy to learn and can be fun. It is not
the total solution to concurrent programming, it many not be the language that dominates

CCSC: Mid-South Conference

7

but Erlang will be almost certainly greatly influence the language or languages that do
dominate.

This workshop is a hands-on introduction to concurrent programming in Erlang.
An introductory knowledge of Erlang or experience with a modern functional language
is assumed.
[1] Armstrong, J., Programming Erlang:Software for a Concurrent World, Raleigh,

NC: The Pragmatic Bookshelf, 2007.

[2] Cesarini, F., Thompson, S., Erlang Programming, Sebastobol,CA: O'Reilly,
2009

David Naugler is a professor at Southeast Missouri State University where he has
taught since 1981. He has long had a special interest in functional programming
languages, most currently in Erlang. He also has an interest in Computational Science.
 He has given workshops in Erlang at the introductory and intermediate level in which
many aspects of sequential Erlang programming have been covered at previous CCSC-
MS conferences.

* Copyright is held by the author/owner.

8

AN INTRODUCTION TO OPENGL GRAPHICS

PROGRAMMING*

PRE-CONFERENCE WORKSHOP

Otha L. Britton
University of Tennessee at Martin

Martin, Tennessee 38238
731-881-7587

britton@utm.edu

In order to display computer graphics from a language such as C or C++, a graphics
application programmers' interface must be used. The most popular multi-platform API
for this is the OpenGL graphics system. Even the complex movie generation systems such
as the academy award winning Maya software, used for such computer animation movies
as Toy Story, is based on OpenGL. OpenGL, along with an appropriate windowing
toolkit such as GL Utility Toolkit (GLUT), can be used to effectively display computer
graphics. Students can be taught easily to display windows and make elementary
drawings using only the basics of OpenGL.

The workshop will start with a quick overview of how to set up various integrated
development environments (IDEs), such as MS Visual C++ Express 2008 and
Bloodshed's Dev-C++, to use OpenGL and GLUT. This will be followed by a basic
introduction to programming with the OpenGL graphics API. A brief discussion of the
OpenGL coordinate systems and simple 3D drawing techniques will be given. The
participants will then be shown how to use the scaling, rotation, and translation functions
as well as functions for processing mouse and keyboard events. Then the fun will begin
with an introduction to computer animation. Examples that will be constructed begin with
the standard rotating cube, then the bouncing ball, and will conclude with a 3D walking
robot, which utilizes the hierarchical structure to achieve appropriate motion.

The language used will be C++, but OpenGL can be used in many different
languages. All of the software utilized (except for the operating system) is free for
students and can be incorporated easily into beginning as well as advanced computer
programming courses. The workshop presenter has taught a course in computer graphics
for many years and has introduced the basic graphics concepts into a second-semester
C++ course. The introduction of graphics into such a course has spurred much interest
in most of the students and even the poorer students have seemed to perk up and do
high-quality work on the related assignments. Some textbooks are now available that

CCSC: Mid-South Conference

9

utilize an IDE to permit basic Windows programming early in a programming course, but
using OpenGL instead may make drawing and event-driven programming easier to
understand.

This workshop is a hands-on introduction to programming with OpenGL. A basic
knowledge of the C++ language is assumed, although those with Java programming
knowledge should be able to quickly adjust and follow along.

* Copyright © 2010 by the Consortium for Computing Sciences in Colleges. Permission to copy
without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the CCSC copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires a
fee and/or specific permission.

10

FOCUSED MULTI-DOCUMENT SUMMARIZATION: HUMAN

SUMMARIZATION ACTIVITY VS. AUTOMATED SYSTEMS

TECHNIQUES*

Quinsulon L. Israel
Drexel University

Philadelphia, PA 19104
(215) 397-4317

qisrael1906@acm.org

Hyoil Han
LeMoyne-Owen College

Memphis, TN 38126
(901) 435-1391

hyoil.han@acm.org

Il-Yeol Song
Drexel University

Philadelphia, PA 19103
(215) 895-2489

song@drexel.edu

ABSTRACT
Focused Multi-Document Summarization (MDS) is concerned with
summarizing documents in a collection with a concentration toward a
particular external request (i.e. query, question, topic, etc.), or focus. Although
the current state-of-the-art provides somewhat decent performance for
DUC/TAC-like evaluations (i.e. government and news concerns), other
considerations need to be explored. This paper not only briefly explores the
state-of-the-art in automatic systems techniques, but also a comparison with
human summarization activity.

1. INTRODUCTION

Multi-document summarization aims to create a compressed summary of a
collection of documents, while retaining the main characteristics and pertinent

CCSC: Mid-South Conference

11

information within those documents. Adding a focus on this process creates a summary
that also meets a specific request; hence, focused MDS. Extractive summarization uses
whole sentences from the documents in the collection that “inform” the most regarding
a specific request. However, abstractive summarization entails fusing bits and pieces of
information from various sentences in the document collection into semantically similar
information represented in a new way.

The process of summarization can be described in the following steps: 1) Process
sentences using sentence boundary detection, optionally using stop word removal,
tokenization, and other light syntactic parsing, 2) Score each sentence according to
heuristically or automatically ascertained features: terms of the sentence, position of the
terms and/or sentence, relevance with focus query, derived concepts, etc., 3) Rank and
select the most salient and informative of those scored sentences according to some linear
combination of features

Why do we need such an automated process? The burden of extensive amounts of
information (i.e. information overload), so readily available in digital form, has placed
a heavy cognitive burden (information overload) on society. It has become even more
important for a user to be able to quickly read, understand and utilize digital information
as easily as they can access it. For instance, fast generation of result snippets with search
terms within context has been done in Google for search results [22]; however, a
condensing of the actual text linked to each search result may distinguish better
usefulness.

Focused MDS has a wide range of usefulness and is applicable across many
domains. Considering the myriad of different types of texts publicly available, especially
within an immensely large and ever growing corpus such as the World Wide Web,
summarization representations and techniques need to be as robust and as efficient as
possible, in order to be useful in the average laymen’s everyday life.

The remainder of this paper is organized as follows: Section 2 discusses the process
of human summarization activity with some historical background, Section 3 discusses
sentences processing in automatic systems and its use of linguistic techniques, Section
4 discusses the representations of documents and they facilitate MDS processing, Section
5 discusses how position information improvements sentence scoring, Section 6 discusses
sentence scoring and ranking and using N-gram statistics versus language modeling and
classification versus clustering, Section 7 discusses sentence selection and how the issues
of redundancy, compression and coherence effect choosing the most salient sentences for
a summary, and finally, Section 8 concludes this work.

JCSC 25, 5 (May 2010)

12

2. THE INFLUENCE OF HUMAN SUMMARIZATION ACTIVITY

Human agreement studies have been performed since the 1960's [8], where there
was little agreement between sentences extracted by machines using frequency
expectation and those extracted by humans. For single document summarization, studies
reported that 79% of the sentences in a human-generated abstract were a “direct match”
to a sentence from a source document [10]. Therefore, it is natural that many current
MDS (Multi-Document Summarization) systems have been made to be extractive,
attempting to mimic this human behavior. However, for MDS, it has been shown that no
more than 55% of the vocabulary contained in human-generated abstracts can be found
within the source documents [5], signifying a move to a more abstractive means of
summarizing for this task. Also, different people choose different content for their
summaries [9, 12, 16]. This is also true for the human judges (usually four) creating
model summaries in DUCs/TACs, and a correlation of automatic scores and these human
model summaries is taken into account each year [6] to see how well automatic systems
are improving, or not. Even multiple human summaries on the same collection of
documents often do not have much agreement, with unigram overlap of only 40% in a
study from Lin and Hovy [11]. In fact, in order for a consensus summary to be created
from single document summaries from different humans, there must be as many as 30-40
summaries gathered before a consensus becomes stable [21].

3. SENTENCE PROCESSING

Processing a document can often involve several layers depending on the system’s
task and strategy, as well as the representation, structure and syntactic variations of the
document. Once processing is complete, the document is represented in a form in which
the system can interface. Normally, “syntactic parsing” is performed at the most atomic
level: each token of these sentences are “tagged” by machine-readable codes according
to the grammatical rules and context of its respective language for part-of-speech (POS)
[4].

The subjects, predicates and objects can also be parsed as terms or phrases into their
semantic roles, such as pred(sub, obj). The functional relationships have started to gain
more attention for summarization. This involves semantic role labeling and can be done
with the aid of the well known and expensive PropBank [14], a collection of annotated
propositions in predicates-argument form, or the freely available FrameNet [2], a
collection of semantic elements of logical units centered on actions in frame form. By
examining the roles of various elements in a sentence, a system can make better decisions
on what exactly to compare. In fact, Nenkova et al. [12] used semantic annotation in their
methodology to count occurrences of semantically equivalent content between summaries
and the corpus, but only used shallow parsing to determine the respective important
words. Consequently, they discovered factors that influence human judgments and used

CCSC: Mid-South Conference

13

them to create their system, only to increase the accuracy of content counting during
evaluation and distribution building. Wang et al. [24] used pair-wise sentence semantic
similarity. For each sentence, a “frame” was created. Next, WordNet was used to discover
the semantic relations of all terms in the first frame with those in the second to determine
if there is a semantic relation (e.g. synonym, hypernym, etc.). However, this was solely
used for their similarity metric. On the other hand, Ouyang et al. [13] used NER (Named
Entity Recognition) and NER counts, informative words, semantic similarity using
WordNet Lesk function, etc., but do not use deeper semantic parsing for comparisons
between semantic roles of different sentences.

The order of linguistic processing and the depth at which it is performed is a touchy
subject. For summarization tasks, it appears it is best to use “shallow” analysis techniques
that do not require heavy computing resources and trained deep parsers. Mostly all
research described in the previous sub-sections use shallow techniques such as POS
tagging and NER. This has been the normal standard of operation; however, systems such
as in Shi et al. [19] have started to use “deeper” syntactic analysis as a basis for nominal
semantic role labeling.

4. DOCUMENT (TEXT) REPRESENTATIONS

What is meant by the representation of a document? Document representation is
defined here as a tangible, either visual or physical, in our case digital, formalism of the
concrete (text) and abstract (meaning) properties embodying the document. It is a finite
way to automatically organize and store in some numeric form (index), and then later,
retrieve the document for a system to interface with it (e.g. as in early information
retrieval). Document representations must be applied to smaller bits of information such
as user queries, questions, and more importantly, sentences in order to be useful toward
MDS.

One of the fundamental and most efficient ways of representing a document was the
Vector Space Model (VSM) [17]. In the VSM, a subset of terms appearing within the
document at least once are placed in a weighted, linear combination of vectors of terms
to represent the document; when all unique terms present in the document are used, it is
also known as the “bag-of-words” model [18]. The term frequency and inverse document
frequency of the term are multiplied together to determine the final weight for that term,
and then, usually normalized. This allows for geometric calculations to be performed
with the vectors of other documents or sentences for similarity. An information need such
as a user query vector or a given topic vector can be compared against the document
vector as well, for specific focus. The VSM became the de facto standard in text
representation because of its simplicity and performance in large text collections, and is
the basis of early summarization methods.

JCSC 25, 5 (May 2010)

14

5. DOCUMENT POSITION

Until recently, the information provided by the structure of documents, or the
hierarchy of its units of varying granularity, has mostly not been leveraged effectively.
Research such as [13] for DUC 2005-2006 data has shown that sentence position can be
of benefit when choosing the most informative sentences. The use of sentence position
in an extractive method of summarization is intuitive since important information usually
is placed in specific locations within a well-formed, but unstructured text based, formal
document such as those found in DUC/TAC conferences. Since these corpora are
normally composed of news articles, the importance of information is consistently related
to how close it is to the beginning of the document, as reported by and found in the work
of Yih et al. [26] involving word positions; news reporting seeks to provide the most
salient information as quickly as possible. In fact, it is important to note that baseline
systems in DUC/TAC and other government sponsored evaluations used the first N words
in documents, the first (and sometimes last) sentences of every document, the first N
sentences of the most recent document, or some other derivations of lead words/sentences
to create baseline summaries. These automatic systems often outperformed peers. Hence,
researchers have begun to use the same position information, concentrating on enhancing
ROUGE scores on past DUC evaluation data.

There have also been studies of using surface level linguistic cues such as transition
(connecting or “cue”) terms [20] that identify changes in topic on both a document and
a segment level. These transition terms can be weighted in a meaningful way to help
improve focused judgments towards informative sentences. For instance, in work from
Sun et al. [20], it was shown that “cue” words could identify topic shift in a single
document as well as help identify the reversal of sub-topic order in a document compared
to another, when the focus was on globally shared topics among documents.

6. SENTENCE SCORING AND RANKING

6.1 Simple Word (N-gram) Statistics vs. Statistical Language Modeling

Scoring for summarization involves calculating a numeric value for the significance
of a sentence. However, of the utmost importance for focused summarization is scoring
with an external factor besides sentence-to-sentence comparisons; not only do sentences
need to be compared for similarity to each other, they also need to be skewed toward the
user focus. After the score is calculated, the sentences are ordered from the highest score
to the lowest. The most basic summarization, besides heuristic sentence choice based on
position, is to count word-for-word matches of the terms of the focus input (query,
question, or topic description) to the terms in sentences from the input collection. The

CCSC: Mid-South Conference

15

simplest approach for frequency-based probabilities is in [12] where summation of
within-document content word probabilities was empirically most performant.

Ouyang et al. [13] tested both frequency of occurrence and binary appearance on the
DUC 2005 data in an indirect manner, using human reference summaries to learn linear
feature combinations through Support Vector Regression, and on the DUC 2006 data for
direct testing. Results show that frequency of occurrence was more performant for actual
scoring estimation than binary appearance measures. However, the work of [4] showed
that using simple summation of the binary appearances of topic terms along with so-
called signature terms, to create an “approximate oracle score,” can improve sentence
scoring; signature terms for a topic under observation are believed to be those important
terms derived from a sub-corpus of related documents but are used less in the rest of the
corpus. More sophisticated than simply counting terms (or phrases) is the use of the
cosine similarity measure on the vectors of these terms. Cosine similarity is a fast and
efficient means to score sentences in terms of relatedness to each other; however, to add
focus to such a process, it is necessary to also compare the focus input vector with those
sentences. This is done in [25] by adding query-sensitive similarity to the centroid of two
documents with a metric similar to cosine similarity but with the addition of a complex
function on the query terms. In [3], the cardinality of overlap in topic terms is used in
their linear feature combination function, along with cosine similarity between only the
title of the topic in the DUC 2006 task and an individual sentence.

In fact, the work of Arora et al. [1] used the latent dirichlet allocation (LDA) model
with estimated probabilities based on the corpus to create multiple summaries, and then,
automatically chose the best. Their framework assumes that a complete sentence of a
document belongs to only one topic. Performance was reportedly better than the two top
systems in DUC 2002 for the ROUGE-1 (unigram) value.

6.2 Classification vs. Clustering

As stated by Ouyang et al. [13], classification based models are usually adopted to
solve discrete problems; therefore, they are imprecise against continuous real-value
functions like linear combination sentence scoring (using features). In any classification
method, an item either belongs to a particular class, or it does not. However, more
categorical delineations can be determined for the sentences if a real value can be
calculated for each observation. As such, clustering has proven more performant; similar
documents are gathered together according to the weight of their cosine similarity
metrics, and the document that has the highest similarity in its cluster should contain the
most worthy sentence for extraction into the summary about that topic. This process has
been used on a sentential level as well, as in [23]. Wan and Yang [23] cluster the
sentences of a document using various methods: k-means, agglomerative, and divisive.
Using these clustering methods they were able to find the clusters within the document

JCSC 25, 5 (May 2010)

16

that truly represented sub-topics, and then extract the best similar sentence from each
cluster centroid. This approach was similar to the MEAD system [15], which popularized
the use of the document centroid for choosing the most salient sentence from a document.
In this way, Wan and Yang [23] were able to choose the most salient yet diverse
sentences. Also, terms can be clustered in order to help differentiate topics in a document
as well [20]. The terms in each cluster can be associated by semantic similarity or by the
entropy between different documents or different segments of documents.

Matrix representations of scoring equations add an efficient means of performing
calculations due to the ability to use special manipulations such as in place normalization
and finding eigenvectors. In fact, [24] use symmetric non-negative matrix factorization
to calculate similarity to group similar sentences into clusters. In [3], a matrix was used
to compute the hamming weights of terms in different sentences; the concern was to
increase the significance of a sentence by the amount of pairs of significance words
found. This hamming weight is then multiplied by the significant word count in segments
and by word frequencies.

Using the techniques described above gives good results in terms of either speed of
computation (cosine similarity in a low-dimensional degree) or better accuracy (matrix
calculations). Clustering methods have shown a two-fold purpose in that they not only
group sentences according to similarity with each other and a topic, but also delineate
multiple sub-topics. It is also important to note that matrix calculations, though complex,
also cluster sentences but have not been used specifically to delineate topics/subtopics to
the authors’ knowledge. Also, more studies regarding the use of combining very
simplistic n-gram (bigram, named entities, phrases) frequencies and probabilities with
text unit clustering (or matrix use) are needed to be carried out in depth.

7. SENTENCE SELECTION: REDUNDANCY, COMPRESSION, AND
COHERENCE

Sentence selection is the second most important step for processing sentences as this
step actually adds sentences to the summary. Its consideration in MDS should not be
based solely on having the highest score, but also on sentence length, redundancy
removal, compression and coherence. Many sentences may be important; however, the
best among those containing redundant information must be selected.

Clustering via a cosine similarity metric is normally the method that has been used
to group similar sentences in order to choose the sentence closest to the centroid and
make subsequent choices from other clusters, as in [13] where maximum marginal
relevance (MMR) was used with a threshold of 0.60. Also, Wan and Yang [23] used a
variant of MMR between sentences to eliminate redundancy, whereas [24] used their own
semantic similarity score. However, [4] used a pivoted QR algorithm instead of MMR

CCSC: Mid-South Conference

17

and reported better performance because of it. Pseudo relevance feedback, which uses
sparse information to retrieve more information from a corpus, was also used by [4] to
help reduce redundancy.

Sentence Compression may allow more sentences to be chosen into a summary. Yih
et al. [26] eliminated syntactic units based on predefined heuristic templates and added
these new, modified sentences to the pool along with their original counterparts. During
sentence selection, the best sentence between the original sentence and its modifications
are automatically chosen; this helps alleviate the problems of over-simplification. It is
also important to note that simplification can either help or harm the coherence of system
summaries depending on the techniques used: adverb removal, parenthetical phrase
removal, phrases within commas, etc.

As mentioned in [7], coherence is a key factor that affects a judge’s perception of
readability for automatic summaries. [19] used longest common subsequences (LCS) of
the sentence to be chosen with the sentence previously chosen for the summary, to try to
maintain coherence. However, the weighting toward LCS is a tradeoff with attaining the
highest similarity to a particular search focus.

Although there are many considerations to be made for sentence selection, it appears
from the literature that there have not been many studies concerned with coherence.
Coherence has begun to improve slightly during the DUC/TAC evaluations, but it appears
to be mostly a byproduct of improved sentence ranking. Different concerns that can affect
coherence such as topic segmentation, document structure, developing a scheme for
information ordering, using cue words, etc. need to be studied.

8. CONCLUSION

Along with an explanation of multi-document summarization and its benefits, we
have explored briefly some of the most novel techniques for improvement of MDS from
the most promising and recently published research. Although the state-of-the-art of
focused multi-document summarization has seen quite some improvement within the last
decade, it has been shown that there is still room for further experimentation, using
knowledge gained from the previously outlined human summarization activity; sentence
processing, scoring, ranking and selection; and document representations and term
position information. Human summarization activity was explored from the angle of
instability in sentence consensus to the stability of salient words consensus. The subject
of sentence processing and related activities was explored from light syntactic processing
and semantics to term scoring and modeling techniques to the use of complex matrix
calculations and the use of position information. A few of the previously lesser used, but
important techniques were discussed; sentence compression and coherence improvement
techniques are described in the context of the most simplistic yet powerful use.

JCSC 25, 5 (May 2010)

18

REFERENCES

[1] Arora, R. and B. Ravindran, Latent dirichlet allocation based multi-document
summarization, Proceedings of the second workshop on Analytics for noisy
unstructured text data, 303, 91-97, 2008.

[2] Baker, C.F., C.J. Fillmore, and J.B. Lowe, The Berkeley FrameNet Project,
Proceedings of the 17th international conference on Computational linguistics,
1, 86-90, 1998.

[3] Boudin, F. and J.M.T. Moreno, NEO-CORTEX: A Performant User-Oriented
Multi-Document Summarization System, in Proceedings of the 8th International
Conference on Computational Linguistics and Intelligent Text Processing, 551-
562, 2007.

[4] Conroy, J.M., J.D. Schlesinger, and D.P. O'Leary, Topic-focused multi-document
summarization using an approximate oracle score, Proceedings of the
COLING/ACL on Main conference poster sessions, 152-159, 2006.

[5] Copeck, T. and S. Szpakowicz, Vocabulary Agreement Among Model
Summaries and Source Documents, ACL Text Summarization Workshop, 2004.

[6] Dang, H.T. Overview of the DUC 2005, Document Understanding Conference,
2005.

[7] Dang, H.T. Overview of the DUC 2006, Document Understanding Conference,
2006.

[8] G. J. Rath, A. Resnick, and T.R. Savage, The formation of abstracts by the
selection of sentences. Part I. Sentence selection by men and machines. American
Documentation, 12(2), 139-141, 1961.

[9] Halteren, H.v., New Feature Sets for Summarization by Sentence Extraction,
IEEE Intelligent Systems, 18(4), 34-42, 2003.

[10] Kupiec, J., J. Pedersen, and F. Chen, A trainable document summarizer,
Proceedings of the 18th annual international ACM SIGIR conference on
Research and development in information retrieval, 68-73,1995.

[11] Lin, C.-Y. and E. Hovy. Manual and Automatic Evaluation of Summaries,
Document Understanding Conference, 2002.

[12] Nenkova, A., L. Vanderwende, and K. McKeown, A compositional context
sensitive multi-document summarizer: exploring the factors that influence
summarization, Proceedings of the 29th Annual International ACM SIGIR

CCSC: Mid-South Conference

19

Conference on Research and Development in Information Retrieval, 573-580,
2006.

[13] Ouyang, Y., S. Li, and W. Li, Developing learning strategies for topic-based
summarization, Proceedings of the sixteenth ACM Conference on information
and knowledge management, 79-86, 2007.

[14] Palmer, M., D. Gildea, and P. Kingsbury, The Proposition Bank: An Annotated
Corpus of Semantic Roles, Computational Linguistics, 31(1), 71-106, 2005.

[15] Radev, D.R., H. Jing, and M. Budzikowska, Centroid-based summarization of
multiple documents: sentence extraction, utility-based evaluation, and user
studies, NAACL-ANLP 2000 Workshop on Automatic summarization, 4, 21-30,
2000.

[16] Radev, D.R., Teufel, S., Saggion, H., Lam, W., Blitzer, J., Qi, H., Çelebi, A., Liu,
D., Drabek, E., Evaluation challenges in large-scale document summarization,
Proceedings of the 41st Annual Meeting on Association for Computational
Linguistics, 1, 375-382, 2003.

[17] Salton, G., A. Wong, and C.S. Yang, A Vector Space Model for Automatic
Indexing, Communications of the ACM, 18(11), 613-620, 1974.

[18] Salton, G., Singhal, A., Mitra, M., Buckley, C., Automatic text structuring and
summarization, Information Processing & Management, 33(2), 193-207, 1997.

[19] Shi, Z., Shi, Z., Melli, G., Wang, Y., Liu, Y., Gu, B., Kashani, M., Sarkar, A.,
Popowich, F., Question Answering Summarization of Multiple Biomedical
Documents, Proceedings of the 20th conference of the Canadian Society for
Computational Studies of Intelligence on Advances in Artificial Intelligence,
284-295, 2007.

[20] Sun, B., Prasenjit, M., Hongyuan, Z., Lee, G., John, Y., Topic Segmentation with
Shared Topic Detection and Alignment of Multiple Documents, Special Interest
Group on Information Retrieval, 2007.

[21] Teufel, S. and H.v. Halteren, Evaluating Information Content by Factoid
Analysis: Human Annotation and Stability, Empirical Methods in Natural
Language Processing, 2004.

[22] Turpin, A., Turpin, A., Tsegay, Y., Hawking, D., Williams, H. E., Fast
generation of result snippets in web search, Proceedings of the 30th annual
international ACM SIGIR conference on Research and development in
information retrieval, 127-134, 2007.

JCSC 25, 5 (May 2010)

20

[23] Wan, X. and J. Yang, Multi-document summarization using cluster-based link
analysis, Proceedings of the 31st annual international ACM SIGIR conference on
Research and development in information retrieval, 299-306, 2008.

[24] Wang, D., Wang, D., Li, T., Zhu, S., Ding, C., Multi-document summarization
via sentence-level semantic analysis and symmetric matrix factorization,
Proceedings of the 31st annual international ACM SIGIR conference on
Research and development in information retrieval, 307-314, 2008.

[25] Wei, F., Li, W., Lu, Q., & He, Y., Query-sensitive mutual reinforcement chain
and its application in query-oriented multi-document summarization,
Proceedings of the 31st annual international ACM SIGIR conference on
Research and development in information retrieval, 283-290, 2008.

[26] Yih, W.-T., Goodman, J., Vanderwende, L., Suzuki, H., Multi-document
summarization by maximizing informative content-words, International Joint
Conferences on Artificial Intelligence, 1776-1782, 2007.

* Copyright © 2010 by the Consortium for Computing Sciences in Colleges. Permission to copy
without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the CCSC copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires a
fee and/or specific permission.

21

USING INFORMATION FLOW TO ANALYZE GRAMMARS *

Dr. Larry Morell
Computer and Information Science

Arkansas Tech University
Russellville, AR 72801

(479) 968-0355
lmorell@atu.edu

Dr. David Middleton
Computer and Information Science

Arkansas Tech University
Russellville, AR 72801

(479) 968-0628
dmiddleton@atu.edu

ABSTRACT
This paper presents algorithms for analyzing grammars using information flow
in a graph. A grammar problem is modeled by an annotated graph.
Information is then propagated around the graph and the problem solution is
extracted from the graph’s final state. By using this approach students need
learn only one generic algorithm (information flow analysis), which they then
can apply to several problems Teachers are able to develop problems to be
solved directly from the graphs, thereby simplifying the task of generating
grammars with required properties for homework and exams.

INTRODUCTION
When building a parser one must determine what terminals can begin or can follow

a non-terminal.[1] The algorithms for solving these problems are well-known, but are
somewhat difficult for many undergraduate students to comprehend, learn and apply.
They are particularly difficult to remember because each seems to have its own trick and
there appears to be no uniformity among the algorithms.

We present a uniform approach for solving all the problems based on the concept
information flow. Grammar problems are modeled by annotated graphs. Information
relevant to solving the problem is then propagated around the graph, using a standard
algorithm. Once propagation completes, the solution to the original problem is extracted

JCSC 25, 5 (May 2010)

22

from the final state of the graph. Using one generic algorithm simplifies the task of
learning to solve the collection of problems is simplified.

INFORMATION FLOW ANALYSIS
When a solving a problem involves propagating information through a network of

nodes, information flow analysis may be appropriate. In information flow analysis nodes
are annotated with initial information. This information is then propagated to neighboring
nodes, updating their information, which may cascade to further nodes.

There are many problems that can be modeled by annotated graphs and solved by
information flow. Classic problems such as determining the shortest path between two
nodes fit the paradigm for information flow analysis. A variant of information flow
analysis called data flow analysis [2] to check programs for various anomalies such as
consecutive assignments to a variable without an intervening use, use of an undefined
variable, and unused variables. Inherited and synthesized attributes in trees (attribute
grammars) can be characterized by information flow analysis and form the basis for
syntax-directed translation schemas [3].

Information flow algorithms consist of three basic steps:
 1. Model: Build a graph that represents the problem to be solved. Problem information

may be represented by annotated nodes or annotations
 2. Propagate: Merge annotations at each node with the annotations of connected nodes.

In many algorithms propagating may be as simple as forming the union of the two
sets. Continue this merging process until the annotations won't change.

 3. Extract: Extract the solution to the original problem from the graph
Propagation is illustrated by diagram

1. Propagation begins by extracting a
node X from a working set W. Merge
updates the information associated with
each successor node Y using the
information found from X. Y is added to
the working set W if it is updated. The
algorithm terminates when W is empty,
indicating propagation is impossible.

Here is a generic algorithm for solving problems in this way using forward
propagation:
1. Build a graph to represent the problem with each node X annotated with X.info.
2. Initialize W to contain a set of nodes that have special characteristics (sources).
3. While W is not empty

a.. Remove a single node X from W
. b. For each successor Y of X

i. Merge the information found in X.info with Y.info
ii. Add Y to W when changes to Y.info require further propagation.

4. Extract the solution to the problem from the graph.

CCSC: Mid-South Conference

23

Implementing W as a stack yields depth-first propagation; implementing it as a
queue yields to breadth-first propagation. The details of the algorithm vary across
problems, but the general structure remains fixed.

GRAMMAR ANALYSIS VIA INFORMATION FLOW ANALYSIS
In this section we discuss some traditional grammars analysis algorithms using

information flow analysis. Three examples are central to parsing: which non-terminals
can derive a null string, which terminals can start string derived from a non-terminal, and
which terminals can follow a non-terminal in a derivation.

Each algorithm is defined in three stages: (1) map the grammar to an annotated
graph, (2) propagate the annotated information around the graphs, and (3) extract the
solution from final state of the graph.
We use uppercase Latin letters to represent arbitrary non-terminals from a set N and
lowercase Latin letters to represent arbitrary terminals from a set T. Lowercase Greek
letters are used to represent a (possibly empty) string of terminals and non-terminals. If
we have a grammar rule A 6 β, then we say β is a right-hand side associated with A. If
we begin with an arbitrary string of terminals and non-terminals, α, and derive another
string of terminals and non-terminals, β ,by repeatedly replacing a non-terminal in α with
a right-hand side associated with that non-terminal in zero or more steps, we write α
=>* β. We use λ to represent the empty string.

Determining the non-terminals that derive λ is our first algorithm. We wish to
compute: DL[X] = true if and only if X =>* λ. We begin by setting up the graph:
1. For each A in N, create a

corresponding node labeled A in the
graph.

2. For each rule A 6 X1 X2 ... Xn (each
Xi in N)
a. For each Xi, add arc Xi 6 A to

the graph
b. Add the string X1 X2 ... Xn to

the A.info (unless some Xi =
A).When A6 λ, this places λ
into A.info

Diagram 2 illustrates the graph that would be constructed for a particular grammar.
A is linked to B in the graph if A appears in the right-hand side of some grammar

rule for B. Since it is impossible for grammar rule to contain a terminal and be used in a
derivation that yields the empty string, we only need consider grammar rules whose right-
hand side consists only of zero or more non-terminals. Similarly, self-loops indicating
recursion are excluded since a recursive rule can only be used to derive lambda if the non-
terminal derives lambda by some other rule. A.info is the set of all its associated right-
hand sides under these restrictions.
1. Initialize W it to contain all non-terminals A for which A directly derives λ.

JCSC 25, 5 (May 2010)

24

2. While W is not empty
a. Pick an element from W, call it X, and remove X from W
b. For each successor Y of X in the graph such that DL[Y] = false do:

i. Remove all X's from each string in Y.info
ii. If λ is now in Y.info , then place Y into W and set DL[Y] to true.

Propagation begins by taking A from W A is then removed from each right-hand
side found in S.info, reducing ABC to BC. S is not added to W since λ was not created.
The algorithm continues with W = {D}. Processing D causes D to be erased from B.info
and C.info λ is generated in C.info. DL[C] is set to true; C is placed into W .
Processing C erases C from S .info, but is not generated. W is empty, so propagation
terminates.

Diagram 3 shows the final
disposition of the graph. Note that DL
could be computed directly from the
graph by producing a list of nodes whose
information sets contain λ. In the
algorithm above, DL was computed
during propagation for the sake of
efficiency.

Our second algorithm computes
First(X), the set of terminals that can
appear at the beginning of a string
derived from a non-terminal X.
Formally, First(X) = {a in T | X =>* aβ}. Note that we calculate a slightly different
result from the classical First() function, which includes ε as an element of the result if
X =>* λ. We consider our version simpler and use DL for that purpose.
We setup the graph as follows:
1. For each X in N, create a node labeled X in the graph; set X.info = {}.
2. For each rule A 6 X1 X2 ... Xn (each Xi is in T+N)

a. If X1 in N add arc (X1,A) to the graph; If X1 in T add X1 to A.info.
b. Add arc (Xi,A) if DL[X1] && DL[X2] &&...&& DL[Xi-1] holds DL[t] = false

for every t in T.
Diagram 4 shows the initial setup of the
graph. Propagation proceeds as follows:
1. Initialize W to contain all nodes with

non-empty information.
2. While W is not empty

a. Remove an element X from W,
b. For each Y such that arc (X,Y) is

in the graph do
i. Y.info = Y.info union

X.info

CCSC: Mid-South Conference

25

ii. If Y.info changes, add Y to W
Propagation begins by initializing the working set W to all nodes which have non-

empty information sets. All non-terminals are included, therefore, except for S. The
initial information associated with a given node A are symbols which can appear first in
a single-step derivation from A. The construction of the graph ensures the sets always
contain symbols which can appear first in a derivation. When propagation completes, the
sets contain all first symbols: S:{a,b,c,d,e}; A:{a};B{b,d,e};C:{c,d}; D:{d}; E:{e}

Our last example computes Follows(X), the set of terminals that follow a non-
terminal in a string derived from S. Formally: Follows(X) = {a in T | S =>* αXa
β}. To compute this we need to extend First to operate on strings of symbols. If α=
X1X2…Xn then First(α) = {a ιν T =>∗ a β}. This can be computed by First(X1) U
First(X2) U … First(Xi) where i is the least value such that DL[Xi] is false.

To compute Follows using information flow we must determine when a terminal
follows a non-terminal in a derivation. The trivial case is when a terminal follows a non-
terminal in a grammar rule as a follows X in Y 6 αXaβ. However, when a grammar
rule has a string of non-terminals, say X1 X2 ... Xn, then any member of the
First(X2…Xn)will follow X1.. If all the non-terminals X2 ... Xn are nullable (i.e. each
DL[Xi] is true), then whatever follows Y also follows each of X1 ... Xn.

To implement these notions we initialize the graph as follows:
1. For each X in N, create a corresponding node labeled X in the graph.
2. For each grammar rule written in the form: Y 6 αXb, (X is a non-terminal),

a. Include First(β) in X.info
b. If β =>∗ λ include arc (A,Xi).
Consider the rule S6ABC. C

follows B, so First(C) is added to
B.info; since B follows A,
First(B) is added to A.info.
Because C terminates the rule, whatever
follows S also follows C. (S, being the
start symbol, is followed by the end-of-
file token, $.) Because C is nullable,
what follows S also follows B. Hence
the graph contains arcs (S,B) and (S,C).
Now consider E6EB. Since B terminates
the rule, $ will follow B. B is added
E.info; since B is not nullable, there is no
further processing of the rule.

The propagation is identical to that
for First. The final annotations are shown
in Diagram 6.

Understanding how these graph
algorithms work makes it easy to generate
sample grammars for class or exam use.

JCSC 25, 5 (May 2010)

26

For example, consider a graph with 2 source nodes (A and B) feeding node D, which
feeds node E which feeds the sink nodes (G and H). Initialize each node with at least
one unique terminal. Now, consider ways in which students often misunderstand these
algorithms. For example, for Follows(), there will always be an arc from the left hand
symbol to the final symbol in a rule, but only an arc to the second last symbol when the
final symbol is nullable. (For the sake of brevity, we gloss over some minor details).
Create a rule S 6 ABCDEFGH$, together with rules A6a ; B6b ; etc. to yield the unique
terminals for seeding the algorithm. Rules like A6aD; and B6bD yield the arcs (A,D)
and (B,D). The rule C6cDc ; should not yield the arc (C,D). D6E yields (D,E). Rules
like E 6 FGH ; where H is nullable and G is not, yield arcs (E, H) and (E, G) but not
(E,F).

CONCLUSION
Information flow analysis has been adapted to compute three standard analyses of

grammars: DerivesLambda, First and Follows. This approach have proven advantageous
in several ways: Because the algorithms have a common structure and can be readily
visualized, less time is needed to teach this material. Students are able to learn the
algorithms faster and to perform better when tested on this material. A pleasant benefit
for the instructor is that this approach simplifies writing certain exam questions that have
the right characteristics to check student understanding.

REFERENCES

[1] Fischer, C. and LeBlanc. Crafting a Compiler with C. Benjamin/Cummings,
Redwood City, CA, 1991.

[2] Fosdick, Lloyd, and Leon J. Osterweil. “Data Flow Analysis in Software
Reliability.” ACM Computing Surveys 8, 3 (Sept. 1976), 305-330.

[3] Aho, A.V.; ad Ullman, J.D. The Theory of Parsing, Translation and Compiling.
Prentice-Hall, Englewood Cliffs, New Jersey, 1972.

* Copyright © 2010 by the Consortium for Computing Sciences in Colleges. Permission to copy
without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the CCSC copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires a
fee and/or specific permission.

27

STATE DRIVEN SEMANTIC MODELING OF OPERATORS IN

ETL WORKFLOW*

Wesley Deneke, Wingning Li, and Craig Thompson
Computer Science and Computer Engineering Department

University of Arkansas
Fayetteville, AR 72701

479 575-6519
wdeneke@uark.edu

ABSTRACT
To process the flood of digital age data, ETL tools operating on grids have
provided organizations with the ability to efficiently filter, clean, and persist
very large data sets by means of complex workflows. Currently, however,
constructing such workflows is largely manual, human time intensive, and
error prone. Existing models omit the domain related knowledge necessary to
validate the structure of such large, complex ETL workflows during
construction. This paper introduces the concepts of preconditions,
postconditions, and field abstraction on ETL operators to provide a richer
model for ETL workflow that can leverage relevant domain knowledge to
represent and enforce operator constraints.

INTRODUCTION
The term workflow can be defined as a set of ordered tasks to be performed to

accomplish a goal. In Extract-Transform-Load (ETL) workflow, these tasks are
operators. Operators can be generally described as having input fields and output fields.
The input fields are a subset of columns from the dataset(s) in consideration that are
mapped as arguments into the operator, where each input field denotes a specific dataset
variable the operator will use during execution. Output fields denote modifications made
to the current dataset(s) as a result of the operator’s execution, which typically involves
appending or updating specific fields (columns). More advanced operators may
additionally include options, which are parameters used to alter the characteristics of an

JCSC 25, 5 (May 2010)

28

operator’s function. As many workflow operators are domain dependent, with the
corresponding procedures written in languages like Java or C++, the underlying logic of
these operators dictates conditions that must be true prior to execution in order to
guarantee conditions after their execution. A valid workflow then is one that satisfies
these conditions for each operator in the workflow. However, existing ETL tools neither
sufficiently represent nor enforce these conditions. Instead, such conditions are currently
captured only as knowledge in the heads of domain experts that construct ETL
workflows. Users may unknowingly construct an invalid workflow and a violation may
only be visible after execution when either the workflow fails to complete or incorrect
results are produced. In domains that have hundreds of operators, each with possibly
hundreds of input fields and options, ETL workflow specification becomes a human time
intensive, error prone process. Organizations today are creating and collecting an
overwhelming and ever increasing amount of data. ETL tools are a commonly adopted
solution to aid in handling and processing this data. Generally, ETL tools employ
operators sequenced in a user specified (defined) workflow to direct and manipulate data
from source to destination. Sources can range from relational databases to flat files, with
a typical destination being a data warehouse that can be used for, among other things,
business intelligence and marketing campaigns. Between source and destination,
transform operators that can filter, clean, and enhance the data are arranged in what can
be a complex workflow to ensure a desired level of data quality is achieved before data
integration [1].

ETL tools commonly model workflow as directed acyclic graphs, where nodes
denote operators and data sources, edges represent the directed flow of data (inputs and
outputs) between said nodes, and data fields are only represented by a name (an
identifier) and primitive data type (int, varchar, double) [5]. While this is sufficient for
users to visualize mapping data fields and ordering operators, this is insufficient with
regard to workflow validation as it does not enforce any operator conditions besides
ensuring fields of matching data type are mapped together. Constructing a valid
workflow involves knowledge of field content and state. The inner logic of operators
may expect certain field content beyond the data type to properly execute. For example,
the input field firstName may expect “name” data and not accept “email” or “address”
data, even though all of type varchar. Operators may also have a constrained set of valid
input combinations. An operator may accept fields A, B, and C, but internally, a valid
input may be A and B, or C. Finally, as it can be observed that operator transformations
change the state of data, such as unparsed to parsed, unfiltered to filtered, etc, operators
can require that the input data is in a specific state to execute properly. Data may need
to be parsed before it can be filtered. This factor constrains the sequence that operators
can be used in a workflow, pushing certain operators earlier in the workflow to satisfy the
state dependence of later operators. As no current modeling approaches account for these
constraints, workflow validation falls upon the user.

Several commercial ETL tools aid users in creating ETL workflows. IBM Datastage
[8] is one such visual tool that allows users to select and drag desired operators into a
work area and connect data fields between the operators to create a workflow. It comes
prepackaged with several generic operators and additionally provides users the ability to
incorporate custom C++ operators. These operators may have options and the software
enforces that they are set and not left blank. Despite such features, this tool allows any

CCSC: Mid-South Conference

29

combination of fields to be mapped as an argument regardless of the content or state. As
a result, operator conditions can be violated and invalid workflows may be unknowingly
constructed by users.

While there has been little academic research on modeling ETL workflow, the paper
Conceptual Modeling for ETL Processes [4] and subsequent works [5, 6] sought to add
understanding of what must take place during loading a data warehouse via ETL
processes and explain how the source attributes map to the destination. These works
recognized the need to incorporate additional constraints on operators (referred to in this
work as activities), where constraints could indicate an activity that should immediately
precede the activity with said constraint. However, the proposed model does not
recognize the content or state dependence of operators and workflow. Lacking the ability
to represent and enforce operators conditions, this model would allow user to
unknowingly construct invalid workflows.

The approach presented in this paper introduces new constructs to the model of ETL
workflow, allowing operator constraints to be represented and enforced. Data types are
abstracted into categories to ensure field content matches, attributed fields are used to
represent field state to enforce proper sequencing of operators, and boolean expressions
and predicates are used to represent valid input mappings. In this way, this model
redirects the validation of a workflow’s operator mapping and sequencing from the
human user to the implementation of the model, ensuring only valid workflows can be
built.

OBJECTIVE
The objective of this paper is to develop a richer model for ETL workflow that can

leverage relevant domain knowledge to represent and enforce operator constraints by:
 • Adding abstraction to data fields
 • Describing and enforcing preconditions & postconditions of operators

ARCHITECTURE
The design presented by this paper is limited in scope by the following assumptions.

First, as the focus of this research is transforming the data from source to destination, it
is assumed that the data fields are properly identified. Thus, data identification is
considered out of scope, as it can be handled by the related work of Layout Inferencing
[3]. Next, the domain of operators under consideration will be limited to those with a
defined set of input fields, output fields, and transformations.

With these assumptions in mind, this paper asserts the following model. Formally,
each operator consists of a set of input fields, output fields, options, and an input
requirement expression. Each input field and output field is defined by a name, data type,
and an abstracted field category. The state of each field is represented by a set of
attributes. An input requirement expression is a boolean expression, using descriptive
predicates, representing what combination of fields (including attributes) is valid input.
Options then consist of a set of possible value settings that are each represented by a set
of output fields and an input requirement expression. The new constructs of field

JCSC 25, 5 (May 2010)

30

categories, input requirement expressions, and attributes are explained in the following
sections.

FIELD CATEGORY
Taking a lesson from abstraction concepts in object oriented analysis and design

[10], different instances of a class can be related by object type. Similarly, data fields
may have incongruent names, yet still be categorized (related) by content type.
Abstracting data fields above their name and primitive type to a category can reflect
knowledge about their contents to meet higher level semantic relationships or conditions.
This model incorporates field categories as an abstraction of the content type in order to
represent operator constraints on the content of input fields.

Consider a workflow where operator A is followed by operator B (ref Fig. 1A). If
B’s input field B1 expects “name” data and A’s output field A3 contains “name” data,
then operator B should be able to validate A3 as a viable input for B1 despite the name
difference. Thus, it can be observed that data fields can also have object-like
categorization. However, based on the domain a generic category such as “name” may
not be sufficient to distinguish fields. A4 and B2 may also contain “name” data, but more
specifically A4 and B2 may contain “last name” data while A3 and B1 contain “first
name” data. Therefore, these categories could be extended to sub-categories, denoted as
[A1::Name.First], [B2::Name.First], [B3::Name.Last], and [A2::Name.Last], for a
finer grained semantic description of field content. Then each of these is related in that
they inherited from the “Name” category, but they are also differentiable by their
subcategory.

INPUT REQUIREMENT EXPRESSION
An input requirement expression is used to represent an operator’s precondition. In

programming languages, a precondition is a condition that must be true prior to a
program’s execution in order to guarantee the condition after execution, known as the
postcondition [7,9]. This model incorporates these concepts into ETL workflow,
representing the operator constraints on the content, state, and combination of input fields
as a boolean expression. Specifically, the input requirement expression represents the
subset of data an operator can accept as input and have a valid execution. Taking this
idea a step further, predicates [11] may also be incorporated into the input requirement
expression. Predicates are descriptive modifiers to input requirements, such as required,
optional, or specifically disallowed, providing semantic content to describing acceptable
input. To illustrate these ideas, consider the following example using Figure 1.
Assume operator A’s precondition requires either an email address (input A1) or a phone

Figure 1

CCSC: Mid-South Conference

31

number (input A2), but can only take one field as input or operator A will error. Operator
A’s input requirement expression (precondition) would then be represented as ([
A1::Name.First].Required && [A2::Name.Last].NA) || ([A1::Name.First].NA &&
[A2::Name.Last].Required), where the “.Required” predicate evaluates to true only if
the input it modifies is mapped in and “.NA” evaluates to true only if the input it modifies
is not mapped in.

ATTRIBUTED FIELDS
Operator’s transform data between states. Data enters an operator in one state and

exits in a new state. Attributes are semantic descriptors that can be appended to fields
post-execution to represent relevant knowledge about field state [2]. This post-execution
state can then be represented by the output fields of the operator with relevant attributes
appended to them; this would be the operator’s postcondition. These attributes may then
also be incorporated into each operator’s input requirement expression to represent
preconditions on the state of input fields. In this way, the sequencing of operators to
attain a valid workflow may be driven by the state of the data.

Assume operator A’s output fields A3 and A4 (ref Fig 1A) have the postcondition
“corrected”. This can be represented using attributes as [A3::Name.First + Corrected]
and [A4::Name.Last + Corrected]. Also assume operator B’s output fields have the
postcondition “validated”, represented as [B3::Name.First + Validated] and [
B4::Name.Last + Validated], and B’s input fields have the precondition “corrected”,
represented as [B1::Name.First + Corrected] and [B2::Name.Last + Corrected]. Thus,
in constructing a workflow involving these two operators, the operator A would have to
be sequenced some time before operator B to satisfy B’s preconditions, otherwise the
workflow could be invalid.

OPTIONS
The concepts of preconditions and postconditions may also be applied to an

operator’s options to capture how they affect operator conditions. While the options may
not add input fields to an operator, an option’s setting may affect the state and
combination of input fields that are valid. This option precondition is represented by the
option setting’s input requirement expression. Also, as an option’s setting may also affect
the output state of data from an operator, each option setting has a set of output fields
(including attributes) to represent the option’s postcondition. Performing a logical AND
of the operator’s and each option’s input requirement expressions would represent the
operator’s complete precondition. If an input mapping was valid for this precondition,
then both the operator’s and option’s postconditions would be applied.

Consider an option, B-Op1, on operator B that can have a value Y or N. The N
setting has no pre or post conditions, but the Y setting has the precondition [
B1::Name.First].Required and the postcondition [B3::Name.First + B-Op1]. Assuming
that operator B’s precondition is
[B1::Name.First + Corrected].Required || [B2::Name.Last + Corrected].Required and
taking B’s postcondition from the previous example, if B-Op1 is set to Y then a first name

JCSC 25, 5 (May 2010)

32

that is corrected must always be mapped in to satisfy both the operator and option
precondition. Then the resultant postcondition of B by combining both the operator and
option postconditions would be [B3::Name.First + Validated + B-Op1].

CONCLUSIONS

The approach presented in this paper has introduced how to use field abstraction,
attributes, and input requirement expressions in order to represent and enforce operator
constraints. Adding an abstracted category to each field allows for homogeneity between
fields with related content, clarifying relationships between the inputs and outputs of
different operators. Appending domain-specific attributes to fields as semantic
descriptors of data state provides a means of representing state related preconditions and
postconditions. Input requirement expressions then allow these preconditions to be
enforced on both the operators and options. By capturing the state and content related
domain knowledge of operator conditions in this model, validation of a workflow’s
operator mapping and sequencing may be handled implicitly during construction rather
than being stipulated only in the mind of the workflow designer.

FUTURE WORK
Looking forward, a use case for this model would be an implementation as an

overlay for an existing workflow domain to perform workflow validation. Model
constructs (fields, input requirement expressions, options) for each operator could be
encoded in an object-oriented or relational fashion. Logic can then test the pre and post
conditions during construction to validate or invalidate a workflow. Another natural next
step would be to incorporate workflow standards and preference related domain
knowledge with a workflow engine (i.e., an AI planner) to automatically generate a
workflow to achieve a given goal state. Taking advantage of these ideas, our present
work is on abstracting the specification of the workflow’s end goal using a higher level
intent language. Additional research paths include using attributes to determine the
heritage of data fields through a workflow, deriving a proof for workflow correctness for
a given workflow intent from operator preconditions and postconditions, and exploring
optimization based on cost or execution time.

REFERENCES

[1] Deneke, W., J. Eno, W. Li, C. Thompson, Towards a Domain-Specific Modeling
Language for Customer Data Integration Workflow, Grid and Pervasive
Computing Workshop, Kunming, China, May 2008.

[2] Eno, J., C. Thompson, W. Li, W. Deneke., Enhanced Workflow Service
Modeling, Conference on Applied Research in Information Technology, Acxiom
Laboratory for Applied Research, February, Conway AR, 2008.

[3] Phillips, R., W. Li, G. Beavers, C. Thompson, J. Loghry, D. Nash, Layout
Inference: Using Content Type Domain to Infer Record Structure, Conference on

CCSC: Mid-South Conference

33

Applied Research in Information Technology, Acxiom Laboratory for Applied
Research, Conway AR, February 2009.

[4] Vassiliadis, P., A. Simitsis, S. Skiadopoulos, Conceptual Modeling for ETL
Processes, ACM International Workshop on Data warehousing and OLAP
(DOLAP), McLean VA, 2002.

[5] Simitsis, A., P. Vassiliadis, T. Sellis, Optimizing ETL Processes in Data
Warehouses, 21st Intl. Conference on Data Engineering (ICDE), Tokyo, Japan,
April 2005.

[6] Simitsis, A., Mapping Conceptual to Logical Models for ETL Processes, ACM
International Workshop on Data warehousing and OLAP (DOLAP), Bremen,
Germany, 2005.

[7] Fikes, R., Nilsson, N., STRIPS: a new approach to the application of theorem
proving to problem solving, Artificial Intelligence, 2, (3-4), 189-208, 1971.

[8] http://www-01.ibm.com/software/data/infosphere/datastage/

[9] Gries, D., The Science of Programming, New York, NY: Springer-Verlag, 1981.

[10] Booch, G., Object-oriented Analysis and Design with Applications (3rd Ed.),
Upper Saddle River, NJ: Addison-Wesley 2007.

[11] Barwise, J., An introduction to first-order logic, Handbook of Mathematical
Logic, Chapter A.1, 6-47. Amsetdam, The Netherlands: Elsevier 1977.

* Copyright © 2010 by the Consortium for Computing Sciences in Colleges. Permission to copy
without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the CCSC copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires a
fee and/or specific permission.

34

 A BOOT CAMP APPROACH TO LEARNING PROGRAMMING
IN A CS0 COURSE*

John Stamey, Steve Sheel
{jwstamey | steves} @ coastal.edu

Coastal Carolina University, Conway, SC
jwstamey@coastal.edu, steves@coastal.edu

ABSTRACT
This research chronicles the experience a computer science department that
switched to a “boot camp” approach in the CS0 programming lab course. This
curriculum approach required students to write over 350 short programs during
the semester. The percentage of students who were successful in completing
the CS0 lab course dramatically improved during the two semesters in which
the boot camp approach was used.

INTRODUCTION
Back in college, we all took calculus. If we were successful, it was more than likely

we had a lecture followed by an assigned a series of 20 (or so) problems to work on
between the lecture and the next class. Assuming we wanted to do well in the course, we
were most likely diligent in doing our homework problems. At least, that's the way it was
twenty years ago.

In 2009, there are challenges in teaching introductory programming to students.
These (typically) 18 and 19 year olds are classified as millennials [1], in general born
after 1985. They have an information-age mindset [2] that "Doing is more important than
knowing. Knowledge is no longer perceived to be the ultimate goal, particularly in light
of the fact that the half-life if information is so short. Results and actions are considered
more important than the accumulation of facts." This leads us to understand why a class
or lab filled with active work would be more appealing to millennials than a traditional
lecture situation.

CCSC: Mid-South Conference

35

BACKGROUND
In response to the millennial mindset, a curriculum has been developed that focuses

on important introductory computing concepts reinforced by many short programs to be
written directly during a lab session. This “boot camp” approach has been used to teach
a weekly, introductory (CS0) programming lab at a mid-sized university in the southeast.
The curriculum is based on a set of twenty sets of programming, containing a total of 350
short programs to be written by the students and reviewed by the end of each 75-minute
lab session. The labs were written by a member of the faculty who has over ten years
experience in teaching programming labs at the CS0-CS2 level, as well as many years of
computer programming practice and experience.

The idea of many short programs (similar to the idea of a “boot camp”) involves
repetition and Learning By Doing. Bromage and Mayer [3] found positive effects of
repetition. The amount of correctly recalled information increased with repetition;
structurally important information (such as the main idea of a paragraph) was
remembered better with increased with repetition. Most important to programming,
functionally important information (such as names of components) was remembered
better than unimportant information with increased with repetition. Winslow [4] found
undergraduates became successful in programming with strong, persistent practice. The
Computer Science Boot Camp approach features over 350 programs that are to be written
during twenty programming lab sessions.

Anzai and Simon [5], in their approach Learning By Doing, concluded that dividing
a problem into smaller and smaller parts helped in completing a larger problem. Their
problem domain for their study was the Towers of Hanoi - a classic problem in both
recursion and programming. Pirollo and Anderson [6] found similar results when students
translated written solutions to recursive programs to the computer. Repetitive exercise
sessions were also found to be more useful in learning than traditional lectures for
beginning (novice) programmers. [7] The National Clearinghouse on Families and Youth
reports that learning by doing is an excellent approach to connect students with
technology to help build skills that will translate into job opportunities later down the
road. [8]

The Computer Science Boot Camp approach of teaching sub-goals to achieve a goal
is similar. We would teach the IF statement and then frame it into the programming
solution of a problem such "Is the length of a phrase greater than 10?" We note that
Learning By Doing is at Level 3 of Bloom’s Revised Taxonomy, “Apply.” [9]

The CS0 lab had been taught for three semesters, from Spring 2007 to Fall 2008 in
conjunction with the CS0 classroom course. Students received three credits for the course
and one credit for the lab. During the three semesters in which a lab was taught as part
of the CS0 course. A “passing” grade of C or better the CS0 lab meant was eligible to
take CS1. In the first three semesters, the average passing rate was just over 76%. Feeling
the need to improve the passing percentage out of CS0 lab, the Boot Camp approach was
implemented in Spring 2009.

The language selected for the lab exercises was Python (currently 3.1), which
available free of charge and downloadable from www.python.org. Python has a

JCSC 25, 5 (May 2010)

36

positive reputation for being used to teach basic programming concepts and constructs.
[10] These include:
 • Python operators, if statements and loop constructs are useful in subsequent

programming languages
 • Python has excellent string processing and regular expression functions/methods
 • Python supports arrays, functions and modules.

The Python development environment, IDLE, helps the instructor to see all the work
that has been done in a lab by scrolling through the output found in one display window.

CURRICULUM TOPICS
In the labs and on the tests, there is an emphasis on the three constructs of structured

programming. Programming skills stressed in the curriculum included:
Statements in Sequence
 • Writing over 100 programs to solve everyday problems involving basic

mathematics, statistics, along with string input and handling
Iteration of Statements
 • Writing FOR loops and WHILE loops (counting loops)
 • Converting FOR loops to WHILE loops, and WHILE loops to FOR loops
 • Using WHILE loops to collect input to compute sums, averages and standard

deviations
Selection of Statements
 • Write short programs requiring solutions with IF and IF-ELSE statements
 • Using IF statements to perform validation of input (such as emails, phone numbers

and zip codes –traditional topics covered in secure software engineering)
Other Topics
 • Reading and writing CSV files
 • Creating user-defined functions
 • Program tracing

LIMITS OF THE CS0 CURRICULUM
An important program for the students to master is writing a WHILE loop to enter test
scores, computing the average of the test scores once a sentinel value (any negative
number) is entered. The program, found in Figure 1, requires the following seven key
concepts/sub-goals:
 Initialize variables
 • A priming read, with casting
 • A WHILE loop with condition
 • Accumulating totals
 • IF statement to avoid division by zero
 • Arithmetic computations (count, sum, score, average)

CCSC: Mid-South Conference

37

def main():
 sum = 0
 count = 0
 score = int(input(“Enter a test score, negative number to stop”)
 while(score >= 0):
 count = count + 1
 sum = sum + score
 score = int(input(“Enter a test score, negative number to stop”)
 if(count = 0):
 print(“No scores were entered”)
 else:
 average = sum / count
 print(“The average of “, count, “scores was “, average)
main()

We note that seven is the approximate number of things one can keep in short term
memory. [11] For this reason, a program of this complexity – with seven key
concepts/sub-goals, is the program of maximum difficulty for the Computer Science Boot
Camp.

Figure 1

RESULTS OF THE BOOT CAMP APPROACH
The majority of the test questions dealt with writing code to specifications

(70%). The remaining questions dealt with concepts and tracing programs. Statistics
on tests across the seven sections for Fall 2009 are found in Table 1.

Test n Mean Standard Deviation Range
1 81 84.80 15.80 [100, 52]
2 79 87.46 12.12 [100, 51]
3 78 85.52 12.04 [100, 49]

Table 1: Results of three in-class tests
The department was very pleased with the average scores on the tests. Due to the

code-intensive questions, we feel the students are learning the important core skills set
out in the Course Objectives.

During Spring and Fall 2009, the passing rate rose dramatically, averaging close
to 94%, a statistically significant difference at α=.05. The data may be found in Table
2.

JCSC 25, 5 (May 2010)

38

Semester Students Taking
CS0 lab

Students Passing
CS0 lab

Passing
Percentage

Fall 2007 * 71 54 76.06%
Spring 2008 * 34 26 76.47%

Fall 2008 * 92 70 76.09%
Spring 2009 ** 42 40 95.24%

Fall 2009 ** 92 85 92.39%
Table 2: Results of Students Passing CS0 lab:

 * = performance prior to Boot Camp curriculum;
** = performances with Boot Camp curriculum

ADVANTAGES OF THE APPROACH AND STUDENT FEEDBACK
Advantages are numerous when using the “boot camp” approach in the lab. The pre-

written labs to the instructor allowed for:
 • Minimum preparation time for the instructor
 • Ease of conducting a class - a short talk, followed by helping the students in place
 • Ease of making sure the programs are done (with the Python IDLE)
Advantages of the labs to the student
 • Repetition and Learning By Doing
 • Short programs use subgoals (programming constructs) to provide immediate

solutions to real-world problems
 • Students can usually work until completion, thus using their 75 minute lab learning

and doing work
A mid-term survey was given to n=77 students with the following four questions:
 • Q1: Using Python has been a positive experience
 • Q2: The use of many short programs has been helpful in learning
 • Q3: The instructions in the lab materials are generally straightforward and easy to

understand.
 • Q4: I feel I am making positive progress toward learning programming

Descriptive statistics and confidence intervals, summarized in Table 3, show the
students felt they were having a very positive experience from the choice of the language,
and the multitude of short programming exercises.

CCSC: Mid-South Conference

39

Question Mean Std. Dev. 95% Confidence
Interval

1 4.276 0.778 (2.911, 3.089)
2 4.414 0.773 (2.912, 3.088)
3 4.224 0.839 (2.904, 3.096)
4 4.534 0.754 (2.914, 3.086)

Table 3: Descriptive statistics and 95% confidence interval from student opinion
survey

Based on comments on the survey, many students seem to be pleased with their
progress and feel their time is being well-spent in the programming-intensive labs.

CONCLUSIONS
The “boot camp” format of the CS0 lab material [12] proved to be successful

through its two semester of use. Students and faculty are on-board with the concept and
the Department is looking forward to improved performance in CS1 (and above) courses
from these students, based on their mastery of the concepts of structured programming
in the CS0 lab. Further studies will continue as the department measures and tracks the
performance of this group of students through the CS1 and CS2 courses.

 REFERENCES

[1] Oblinger, D., Boomers, Gen-Xers and Millennials: Understanding the New
Students, EDUCAUSE Review Magazine, 38, (4), 2003.

[2] Frand, J.L., The Information-Age Mindset: Changes in Students and Implications
for Higher Education, EDUCAUSE Review Magazine, 35, (5), 2000.

[3] Bromage, B.K., Mayer, R. E., Quantitative and qualitative effects of repetition on
learning from technical text, Journal of Educational Psychology, 78, (4), 271-
278, 1986.

[4] Winslow, L.E. Programming Pedagogy – A Psychological Overview, SIGCSE
Bulletin, 28, (3), 17-25, September 1996.

[5] Anzai, Y., Simon, H.A., The Theory of Learning by Doing. Psychological
Review, 86, (2), 124-140, 1979.

[6] Pirolli, P.L. Anderson, J.R. The role of learning from examples in the acquisition
of recursive programming skills, Canadian Journal of Psychology, 39, (2), 240-
272, June 1985.

[7] Lahitnen, E., Ala-Mutka, K. & Jarvinen, H. A Study of the Difficulties of Novice
Programmers. Proceedings of ACM SIGCSE ITiCSE ’05, Monte de Caparica,
Portugal, June 27-9, 2005.

JCSC 25, 5 (May 2010)

40

[8] National Clearinghouse on Families & Youth, Learning By Doing: Connecting
with Youth through Technology, n.d.,
ncfy.acf.hhs.gov/publications/lbd/tech.htm/, retrieved December 1, 2009.

[9] Anderson, L.W., Krathwol, D.R. (Eds.), A taxonomy for learning, teaching and
assessing: revision of Bloom’s Taxonomy of educational outcomes, New York:
Longman, 2001.

[10] Oldham, J.D. What Happens after Python in CS1? Journal of Computing
Sciences in Colleges, 20, (6), 7-13, 2005.

[11] Miller, G.A., The Magical Number Seven, Plus or Minus Two: Some Limits on
Our Capacity for Processing Information, The Psychological Review, 63, (2), 81-
89, 1956.

[12] Stamey, J.W., Computer Science Boot Camp, Featuring Python 3.1, Myrtle
Beach, SC: SoftwareEngineeringOnline.com, 2009.

* Copyright © 2010 by the Consortium for Computing Sciences in Colleges. Permission to copy
without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the CCSC copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires a
fee and/or specific permission.

41

A PROGRAMMING REMEDIATION PLAN*

Andrea Edwards, Kun Zhang
Xavier University of Louisiana

Department of Computer Science
1 Drexel Drive

New Orleans, Louisiana 70125 USA
504.520.7336

aedwards@xula.edu, kzhang@xula.edu

ABSTRACT
Many of the difficulties in junior and senior level computing courses stem
from deficiencies in programming skills. This paper describes a remediation
tool (PREP) designed for computing students who have completed the
introductory programming sequence but have an atrophy of programming
skills and knowledge. The strength of this self-paced system is based on a
compilation of programming problems with solution hints, a set of similar
problems for cognitive recognition, and simulations that encourage students
to explore complex problem sets. PREP has been successful in improving
student learning, especially those students in need of programming
remediation.

INTRODUCTION
Computing is an important area of study with engaging topics about emerging

technologies; a global need for the advances brought to technology-available
communities; as well as seemingly unlimited opportunities for new development, stable
work, and good salaries. Yet, the computing crisis persists. The crisis is well
documented having a drastic decline in enrollments in the past decade, fewer college
students expressing interests in computing studies, a smaller number of good graduates,
yet an increasing world-wide need for high-level computing knowledge and skills [7].
This paper considers ways of improving the foundational background of current
computing students. The goal is to provide opportunities for “eureka moments” to
students so they are (1) self-motivated to engage the difficult content in junior and senior

JCSC 25, 5 (May 2010)

42

computing courses; (2) have a solid basis for completing those courses; and (3) have a
proper assessment of their capabilities in this challenging field of study.

All people need eureka moments: the moments of satisfaction after a discovery.
These moments are individually attained and cannot be given or taken by another. Some
of today’s computing students are missing these intermediate cries of joy. It is not that
they are unsuccessful learners; instead they seem to be lacking the joy of self-discovery.
The content in the junior and senior computing courses is what attracted most students
to computing studies but that content is far a field of the introductory course content in
the freshman and sophomore computing courses. Many students begin computing
curricula without the stamina to persist through the foundational material.

Programming is a foundational skill in a computing education. Students who are
proficient programmers have a basis for more advanced computing concepts while under-
prepared programmers are dramatically hindered by their programming deficiencies.
Retention is affected because students who have difficulties completing the introductory
programming sequence change their area of study. Some students earn minimal passing
credit in the introductory programming sequence and continue to struggle through
subsequent course content while other students earn passing credit in the introductory
programming sequence but their programming skills seem to atrophy in subsequent
semesters. This paper addresses these students who are in need of remediation.

Most introductory programming sequences include one or two basic programming
courses (listed as CS I in ACM’s Computing Curricula) followed by a data structures
course (CS II). CS I requires knowledge of primitive data types, control structures,
functions, a collection container (for example an array), and usually a user-defined data
type. Data Structures (CS II) is the gatekeeper course to the advanced computer science
courses. It is CS II that teaches the implementation strategies and structures most useful
for upper level computing courses. This paper is most interested in the students who
successfully complete CS II but seem unable to apply those strategies and structures once
in upper level courses. These students are identified as remedial because they have
successfully completed CS II but have programming deficiencies in subsequent courses.
This paper has effective techniques of intense tutoring designed to help students improve
their programming knowledge and skills. In accord with [5], these tutoring techniques
are most effective for less proficient students who are reviewing material rather than for
students being introduced to the material. The purpose of this supplemental remedial
instruction is to assist students to overcome their programming deficiencies so they may
be successful in advanced computer science courses.

Intelligent tutoring systems are not new. Tutoring systems like Carnegie Learning’s
Cognitive Tutor [6] and the Andes Tutoring System [8] give individualized instruction
and make inferences about student work using an artificial intelligence component while
supplementing student learning through step-by-step feedback. The instructional
software of this paper uses human expertise rather than artificial intelligence and provides
human-expert programmer direction to student solutions rather than revealing actual
solutions. This paper discusses software that uses tutored problem solving to remediate
programming skills.

Remediation is required for students who lack the academic skills needed to be
successful in college courses. In the United States, mathematics and writing programs

CCSC: Mid-South Conference

43

have a history of remedial courses. Although remediation is not a new practice, some
institutions are unwilling (or unable) to provide remedial (non-college) level work at the
college level [1, 3]. The purpose of this paper is not to join the discussions about
remediation of under prepared students; instead this paper is about students who, once
prepared as programmers, are no longer ready to be successful programmers. If for no
other reason, the computing crisis makes programming remediation a worthy endeavor.

A PROGRAMMING REMEDIATION PLAN (PREP)
Typical college-level remediation courses are not-for-credit but have the cost and

time demands of a credit-bearing course. The programming remediation plan in this
paper is also not for credit. It is extracurricular with a continuum of helpful interventions
ranging from identification of programming deficiencies, individualized programming
assignments, faculty tutors, computer-based instruction, and consequences if the student
fails to demonstrate improvement. Participation in the plan extends a student’s class day
but no college credit is earned (since the student has already successfully completed the
courses in the introductory programming sequence.) The data shows that students
motivated to complete their programming remediation plan are better prepared for
subsequent computing courses --- this remediation plan is effective.

The PREP system has three major components: (1) A large number of computer-
based learning modules especially those covering the CS I content; (2) Students in need
of remediation, motivated to participate, or interested in improving their programming;
and (3) Faculty, those most familiar with the programming sequence, must be willing to
encourage and sometimes stipulate use of the system.

PREP began as merely a test bank of programming questions. During the class
immediately prior to a test, students often ask for “sample” test questions. This
compilation of test questions was usually offered with little context but with solution
programs. The students eagerly anticipated these questions but seemed unsure of how
to best study the material. They would often read the solution programs even before
reading the sample test questions. Because computing is much more about doing than
reading, these sample test questions seemed to be of little help from the instructor’s
perspective but allayed student’s curiosity about the test.

As the test bank grew, it became convenient to categorize each question by content
and by level of difficulty. The content categories follow the typical imperative
programming paradigm of sequential, selection, repetition, arrays, functions, and classes.
 The levels of difficulty are introductory, intermediate, or advanced categories. The test
bank had a partial order but was still more about reading rather than doing programming.

Finally, the test bank of programming questions was integrated into a technology
enhanced learning system. This web application is available to all students at any time
and is self-paced. The system was totally in-house using Linux, Apache, MySQL, PHP,
and Ruby on Rails. Students login the system using their student identification number
then either begin with the last problem solved or have the option of changing to another
problem, category, or level of difficulty. Figure 1 is a condensed screenshot of PREP’s
initial screen after login. The system displays the student’s last login timestamp and the
last problem reviewed. This is the main screen. Figure 2 is a screenshot of a

JCSC 25, 5 (May 2010)

44

programming problem showing how the user can show a solution hint, review similar
problems, show a simulation of the problem, or can return to the main screen.

The strength of this system is based on the functionality shown in Figure 2. A
student has options to get help via a hint, to review similar problems, and to see
simulations of ways the problem is used in more complex programs. Because students
have some familiarity with these categories of problems (having completed CS II), the
goal is to help them recognize similar problems and encourage curiosity by displaying
simulations.

An example may be useful. Suppose the student wants to review introductory level
loops via the problem “Write a program to output the integers from 1 to 10.” A student
who does not need assistance with this problem could open their favorite developer
environment and solve the problem. A student a bit unsure of a solution can read the list
of similar problems and jog their memory on how to begin or they could show a hint.”
The hint for this particular problem is “Your code should output 1 then increment a
counter, output 2 then increment again, output 3 then increment, … , until you have
output 10 integers in sequence.” The hints are intended to be sufficient for guiding the
student verbally through a solution. The hints are written as if an expert programmer
were described the problem, then describing in more depth, and further hints with deeper
explanation of the problem solution. The simulations are to encourage curiosity about
more advanced programming. The simulation for this particular problem is a digital
clock that waits ten ticks between time states. At any time the student can decide to
continue their review of similar problems or begin a different set of problems.

Figure #1 – Condensed PREP Screenshot

CCSC: Mid-South Conference

45

Figure #2 –PREP Programming Problem
Screenshot

PREP is a remediation system that is self-paced, interesting, and provides sufficient
guidance for students to solve problems with minimal assistance from others. Students
who are uncomfortable asking for help with material previously covered will be able to
practice solving problems in the context of their greatest need. Students interested in a
refresher can solve problems in sequence. Other students may enjoy the challenge of
considering solutions to the simulations.

Two aspects of the system are supervised: (1) the initial assessment of the student’s
programming abilities and (2) assessing the quality of student solutions to the review
problems. The system is most effective after a comprehensive assessment of a student’s
programming proficiencies. This assessment is a short (less than an hour) pencil-and-
paper problem set that surveys each topic and is weighted toward student’s understanding
of selection, repetition, and arrays. All faculty members can easily score the assessment
problem set using the provided rubric. What is more difficult and time-consuming is
scoring the solution problems that are not completed as course assignments. Good
programming is more than just producing the correct output so instructor comments on
the student solutions must be as thorough as in any introductory programming course.
This can result in extraordinary work for the faculty member but is time-critical in
retaining student interest in improvement and provides necessary feedback for their self-
reflection.

All students have access to PREP (a web application but behind the university’s
firewall) and assessments are scored and reported to students as soon as possible and
students in introductory programming courses receive feedback within 24 hours. With
that, the students are instructed to allot at least one hour to each remediation session, have
pencil and paper for independent solutions, and are assigned a faculty programming
coach with responsibilities for immediate scoring of student solutions.

JCSC 25, 5 (May 2010)

46

THE RESULTS
PREP is widely used by students in the introductory computing courses. Although

intended to remediate students who have successfully completed CS II, it is most used by
students in the CS I courses. CS II students only use PREP when required by their
instructor in subsequent courses. It seems that their programming deficiencies must be
pinpointed before they are willing to consider remediation. Conversely, the beginning
programmers in the CS I courses solve PREP problems sometimes taking time away from
their course assignments. They seem challenged by progressing through the difficulty
levels. One cohort of beginning programmers even posted progress reports listing the
problems they were able to solve. Solving PREP problems has become a competition
with teams of beginning programmers working together to discuss and design solutions
to the simulations without faculty leadership. Surprisingly, even non-computing students
have joined the competitions. It may be that PREP is a way to retain and also recruit
good students to computing.

Students use PREP during regular school hours but the greatest collaborative work
occurs in the early evenings and on weekends. This is a welcome addition since remedial
students sparsely attend course-based review sessions especially during evening and
weekend sessions. Eight-five percent of the computing students have accessed PREP and
submitted at least one solution that is not required by a computing course.

The strengths of PREP include the following: (1) students are engaged in voluntary
programming so are improving their proficiency and understanding; (2) faculty are
dedicated to providing specific feedback and encouraging student motivation, rapport,
and high expectations; (3) peer instruction and small group collaborations have resulted
in creative, hands-on problem solving and learning activities; (4) individual student
weaknesses are addressed with differentiated instruction so students ask directed
questions based on their specific needs; and (5) the PREP system is a comfortable
learning environment and students enjoy recommending hints, similar problems, and even
simulations.

Most of these results are anecdotal but of the twenty students who have used PREP
for remediation, their scores on programming assignments have improved, they are more
conversant about programming, they have a better understanding of their proficiency, and
are they seem more willing to ask for help in their current computing courses.

CONCLUSION
Of course, remediation occurs in many ways and on many different levels. High

quality instruction has the greatest impact on student achievement but when a student’s
skills erode, PREP has been successful in improving student learning, especially those
students in need of programming remediation.

REFERENCES

[1] Bettinger, E., Long T. B., Does College Remediation Work?, The Journal of
Human Resources, 44, (3), 736-771, 2009.

CCSC: Mid-South Conference

47

[2] Furst, M., Isbell, C., Guzdial, M., THREADS: How to restructure a computer
science curriculum for a flat world, Proceedings of the Thirty-Eighth SIGCSE
Technical Symposium on Computer Science Education, 420-424, 2007.

[3] Kentucky Council on Post-Secondary Education, Fall 2007,
http://cpe.ky.gov/info/dev_edu/, retrieved December 10, 2009.

[4] Pedroni, M., Meyer, B, The Inverted Curriculum in Practice, Proceedings of the
37th SIGCSE Technical Symposium on Computer Science Education, 481-485,
2006.

[5] Rose, M., Colleges need to re-Mediate Remediation, The Chronicle of Higher
Education, 8/3/2009.

[6] Razzaq, L., Hefferman, N., Tutor or Not to Tutor: That is the Question,
Frontiers in Artificial Intelligence and Applications, 457-464, 2009.

[7] Ritter, S., et al., Cognitive Tutor: Applied research in mathematics education,
Psychonomic Bulletin & Review, 14, (2), 249-255, 2007.

[8] Shackelford, Russ (chair) et al., Computing Curricula 2005: The Overview
Report, Computing Curricula series produced by the Joint Task Force for
Computing Curricula 2005, 2006.

[9] Vaniehn, Kurt et al., The Andes Physics Tutoring System: Lessons Learned,
International Journal of Artificial Intelligence in Education, 15, (3), 147-204,
2005.

* Copyright © 2010 by the Consortium for Computing Sciences in Colleges. Permission to copy
without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the CCSC copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires a
fee and/or specific permission.

48

A GRAPHICAL FRAMEWORK FOR ASSISTING PROOFS*

Cong-Cong Xing
Department of Mathematics and Computer Science

Nicholls State University
Thibodaux, LA 70310

cong-cong.xing@nicholls.edu

ABSTRACT
Theories in computer science, especially proofs, are a tough topic for the
student. Most students feel great bewilderment when studying example proofs
and writing their own proofs. In this short paper, we first identify some
common problems that students face when dealing with proofs, then define a
graphical framework for facilitating the reading and writing of proofs, next
present some proof examples under this framework, and finally summarize
what can be gained by this framework.

1 INTRODUCTION
It is well-known that theory courses in computer science, such as Discrete Math,

Analysis of Algorithms, and Theory of Computation, are of fundamental importance in
computer science education (see e.g. [6, 8, 7]). Unfortunately, as we have experienced,
theory courses are more difficult to learn for students and more challenging to teach for
instructors than non-theory computer science courses. In particular, (math) proofs
associated with various topics in theory courses are a substantial barrier. Students
generally feel that proofs found in textbooks are difficult to follow and understand, and
do not know how to proceed when writing their own proofs. Among all possible factors,
we believe that the two primary reasons that cause this situation are as follows.
 • Student math background. In our institution, the average ACT math scores of

computer science majors is only 20 (or equivalently, 56 of out 100). Students with
such a background are not sufficiently prepared to handle college level math and
theory courses, and not surprisingly, are having a difficult time in dealing with
proofs.

CCSC: Mid-South Conference

49

 • The way in which proofs are presented in textbooks. The usual way to present
proofs, as found in most textbooks, is to use the combination of regular English
statements with math notations. In this “linear” fashion of proofs, the logical
reasoning process and structure, which is critical for students to understand proofs,
are embedded in the lines of proofs, and may not appear to be explicitly clear to the
student. Students, when reading this kind of proofs, may feel unguided in terms of
how to write such a proof on their own.

While improving students’ math background does not seem to be feasible in a short
period of time (one or two semesters), we tackle the latter by proposing a graphical
framework for conducting proofs. This framework allows the reasoning process and
structure to be visualized clearly.

2 THE PROBLEM
Students show various kinds of troubles when working with proofs. Due to the page

limit, here, we illustrate some typical troubles using two short examples.
Example 1 Traditional proofs are written in the format of plain English sentences
combined with math notations. For instance, the following proof for A – (B c C) f (A –
B) 1 (A – C) is taken from [9].

Let x be any element of A – (B c C); then x 0 A, but x ó B and x ó C. Hence, x is
an element of both A – B and A – C, and is therefore an element of A – (B c C).

There are only two sentences in this proof. However, students, when reading such a short
proof,may have the following problems.
(1) They do not know that the word “but” in the first sentence actually means “and”.
(2) It is not clear to them why x ó B and x ó C are true. In particular, why x ó B and x ó
C are connected by “and”, not by “or”.
(3) Due to (1) and (2), students are not sure about what makes true “... x is an element of
both A – B and A– C...”.
Example 2 Suppose students are given this problem: show n2 +n + 1 $ 3n for all positive
integer n. Many of them would write something like the following as a proof.

n2 + n + 1 $ 3n
\

n2 + 1 $2n
\

n2 $ 2n – 1
\

n $ 2 – 1/n
When being asked to explain this proof, students’ response would be: take the first line,
subtracting n from both sides yields the second line; subtracting 1 from both sides of the
second line gives the third line; and dividing n on both sides of the third line yields the
last line. Since the last line is true when n $ 2, the proof is finished.

JCSC 25, 5 (May 2010)

50

This kind of argument is deceptive as each line is generated by a sound math
operation. There are two things that are worthy of noting: (1) Students are making a
fundamental and fatal error here.they have assumed n2 + n + 1 $ 3n (which is actually
what to be proved) is true from the beginning, and all subsequent inferences are based on
that. (2) Besides, what is really proved by the above lines is “n2 + n + 1 $ 3n implies n
$ 2 – 1/n”, not “n2 + n + 1 $ 3" at all.

3 THE FRAMEWORK
Toward resolving problems as illustrated in the previous section, we, in this section,

propose a graphical framework for proofs. This framework makes the logical reasoning
process and structure explicitly clear by blending them into the syntax, and thereby
provides a general guidance for students in the sense of learning and conducting proofs.

3.1 The Notation
Under this framework, a proof is essentially a directed graph specialized for logical

reasoning purpose. Details are as follows:
 • The graph is layered into multiple levels (or stages) where (sub-)facts and/or

(sub-)goals are displayed. The top level is formed by displaying what is originally
given/known/assumed. Each subsequent level is formed by inference (or “reverse
inference”) from (as many as necessary) previous facts and/or goals.

 • Nodes and edges can be either solid (__) or dotted (...). Solid nodes and edges
represent what is occurring in the current proof process whereas dotted nodes and
edges represent what will occur in the future proof process or has occurred in a
previous proof process.

 • A rectangle node represents a fact which is either given, or known, or assumed, or
derived in the process of reasoning.

 • An oval node represents the goal (to be proved) or a subgoal in the process of
reasoning.

 • An edge indicates an inference. Namely, what is represented by the target node of
an edge is derived from what is represented by the source node of the edge.

 • An edge is labeled by what causes the inference.
 • Multiple edges may be coupled to indicate an inference. This case is indicated by

an arc connecting these edges, and a single labeling is used for the these edges.

3.2 The Reasoning Process
The logical reasoning process and structure, by which a proof is shaped under this

framework, can be characterized as top-down, bottom-up, and hybrid. In each of these
approaches, the facts are always put at the top of the graph, and the goal is always put at
the bottom of the graph. A proof, thus, amounts to completing the graph by filling out
what is missed between the top and the bottom of the graph.

CCSC: Mid-South Conference

1Note the two subgoals must be true at the same time to make the goal true. This is
 indicated by the arc connecting the two edges.

2Due to the page limit, one graph may show the combination of several steps.

51

 • The top-down approach. The reasoning starts from the top and moves towards the
bottom until the goal is reached. Each level is formed by inference from (as many
as necessary) previous levels.

 • The bottom-up approach. The reasoning starts from the bottom and moves toward
the top until all subgoals are

satisfied. Each level is formed by the “reverse inference” from the next level (i.e., display
what wold be required in order to make true the next level). (Note, this approach can
result in a more effective proof than the top-down approach in many cases.)
 • The hybrid approach. This is the combination of the top-down and the bottom-up

approaches. There are two chains of reasoning; one moves from the top toward the
bottom and another moves from the bottom toward the top until they meet
somewhere in the middle of the graph.

4 EXAMPLES
In this section, we present several proof examples to demonstrate the top-down,

bottom-up, and hybrid approaches. Example 3 deals with a proof topic in the algorithm
analysis course, example 4 in the computing theory course, and example 5 in the discrete
math course. Examples 6 and 7 give the proofs for the problems discussed in Section 2,
and are left to the reader due to the page limit of this paper.
Example 3 (Bottom-up approach) The big-O notion and its associated proofs are an
essential skill required in analysis of algorithms. Suppose we would like to prove 3n2 +
4n – 2 = O(n2); by the definition of big-O, we need to find c, n0 0 R+ such that 3n2 + 4n
– 2 # cn2 for all n $ n0. Figure 1 shows the step-by-step construction of the proof for this
assertion. In step 1, the facts and the goal are simply depicted at top and at bottom
respectively. In step 2, two subgoals are “reversely” inferred, namely, in order to make
the goal true, it suffices to make each of the two subgoals true1. In steps 3 and 4, another
layer of subgoals is reversely inferred in the same fashion. In step 5, another subgoal is
added on an upper level. In step 6, the subgoal c = 4 can be satisfied by the fact that c is
a positive number. In step 7, the subgoal n0 = 4 is added which, together with the fact n
$ n0, can make the subgoal below it satisfied. In step 8, finally, the subgoal n0 = 4 can be
easily satisfied by the fact that n0 is a positive number. Since both subgoals (c = 4 and n0
= 4) on top of the reasoning chain can be satisfied, so is the original goal (3n2 + 4n – 2
cn2 for n $ n0), and the proof is completed.
Example 4 (Top-down approach) Formal language theory is among the most difficult
materials for students to comprehend. In particular, students feel that Pumping Lemma
(PL) is so abstract to grasp that using it to prove that a language is non-regular is a
daunting task. Figure 2 shows the steps of the proof in our framework for the classic
problem. the language L = {aibi | i $ 0} is not regular.2 In step 1, the definition of L and

JCSC 25, 5 (May 2010)

52

the assumption that L is regular as well as the goal (to look for a contradiction) are
displayed. In step 2, the (sub-)fact that there exists a n 0 N is derived from what is
assumed in step 1. In step 3, another fact is derived by the combination of two previous
facts. In steps 4 and 5, two more facts are derived, the first fact is derived from a
combination of two previous facts and the second fact is derived from the first fact. In
steps 6 and 7, two new facts are added, both are derived as the combination two previous
facts. In steps 8 and 9, the fact xy2z ó L is derived which contradicts with the fact xy2z
0 L derived in steps 6 and 7. Since a contradiction is reached, L thus cannot be regular.
Example 5 (Hybrid approach) Set theory plays a fundamental role in mathematics and
computer science theory. As such, set proofs are particularly important. In Figure 3, we
show how a proof for A – (B c C) f (A – B) 1 (A – C) can be constructed. In step 1, as
usual, the fact x 0 A – (B c C) and the goal x 0 (A – B) c (A – C) are displayed. In steps
2 and 3, two subgoals are reversely inferred from the goal; note that not both subgoals
have to be satisfied, satisfying one would be enough. We explore the first subgoal by
reversely inferring it yielding two more subgoals. In step 4, two (sub-)facts are derived
from the original fact. In step 5, the subgoal x 0 A is satisfied by the (sub-)fact x 0 A
obtained in step 4. In steps 6 and 7, two more (sub-)facts x ó B and x ó C are derived;
note that the two (sub-)facts may not be true at the same time, but one of them must be
true at any time; in the case that x ó B is true, the subgoal x ó B is then satisfied. At this
point, all subgoals are satisfied and so is the goal; hence the proof is finished for the case
that x ó B is true. Step 8 deals with case that x ó C is true; in this case, the subgoal x ó
B is not satisfied any more which affects all subsequent inferences. Therefore, the
subgoal x 0 A – C obtained in step 2 needs to be “turned on” and explored. In step 9, two
subgoals x 0 A and x ó C are reversely inferred with the first subgoal being satisfied
already. Step 10 shows that the second subgoal can be satisfied by the (sub-)fact x ó C
obtained in step 8, and the entire proof is now completed.
Example 6 This example shows the proof for the first problem discussed in Section 2 and
can be constructed in a similar way to Example 5. Due to the page limit of this paper, it
is left to the reader.
Example 7 This example shows the proof for the second problem discussed in Section
2 and can be worked out in a similar way to Example 3. It is also left to the reader for the
same reason.

CCSC: Mid-South Conference

53

JCSC 25, 5 (May 2010)

54

CCSC: Mid-South Conference

55

JCSC 25, 5 (May 2010)

56

5 RELATED AND FUTURE WORK
OR graphs and AND-OR graphs are commonly used in the area of artificial

intelligence (e.g. [11]) to organize the search space in a certain problem domain.
Although graphical notations are used in OR and AND-OR graphs, they primarily focus
on searching techniques rather than general logical inferences and proofs. It also seems
that there is a somewhat obscure notion of ¡°flow proof¡± in the literature which was used
to facilitate the geometry proofs in the secondary education (e.g. [10]). Compared with
the flow proof, our work is more systematic, general, complete, formal, and
methodological. In a sense, it is a substantial extension or rewriting of the flow proof.
Indeed, our work provides a graphical framework in which proofs in any theory area can
be constructed by following either the top-down, or the bottom-up, or the hybrid
approach, respectively.

There are many software tools for assisting math and theory work, for example,
Matlab [1], Maple [2], Mathematica [3], Coq [4], and Lillypadz [5]. However, as far as
we know, none of the existing tools is able to provide any assistance for writing
/constructing proofs in a graphical way as shown in this paper. Our work can serve as the
initial step towards building the first math software tool that offers an interactive and
user-friendly environment in which a math proof can be constructed graphically.
Considering that math proof ability is a common weakness among all college students in
the United States, this software tool could be significantly useful.

6 FINAL REMARKS
We have proposed a graphical framework for conducting math proofs. Compared

with the traditional style of writing math proofs, we believe that this framework has the
following advantages.
 • It is visual. The logical inference structure and the relationship among various

components in a (complicated) proof process are explicitly expressed as graphs.
 • It is minimum. No extra English sentences, which could make a proof unclear if not

carefully used, are needed to help describe the proof. A proof under this framework
is a big logical formula written in a graphical manner.

 • It is a template. It provides students an effective and easy-to-follow guidance in
terms of learning how to write/construct proofs.

REFERENCES

[1] http://www.mathworks.com/.

[2] http://www.maplesoft.com/Products/Maple/.

[3] http://www.wolfram.com/.

[4] http://coq.inria.fr/.

[5] http://lillypadz.com/.

CCSC: Mid-South Conference

57

[6] Code breakthrough delivers safer computing.
http://www.unsw.edu.au/news/pad/articles/2009/sep/, 2009.

[7] K. Devlin. Why universities require computer science students to take math (spe.
session). CACM, 46(9), 2003.

[8] Jeff Kramer. Is abstraction the key to computing? CACM, 50(4), 2007.

[9] H. Lewis and C. Papadimitriou. Elements of the Theory of Computation. Prentice
Hall, 2nd edition, 1998.

[10] Robert McMurray. Geometry: A Flow Proof Approach. 1976.

[11] Elaine Rich and Kevin Knight. Artificial Intelligence. McGraw-Hill, 2nd edition,
1991

* Copyright is held by the author/owner.

58

UNDERSTANDING NSF FUNDING OPPORTUNITIES*

TUTORIAL PRESENTATION

Scott Grissom
National Science Foundation
4201 Wilson Blvd, Suite 835

Arlington, VA 22230
(703) 292-4643

sgrissom@nsf.gov

ABSTRACT
This session highlights programs in the National Science Foundation (NSF) of
particular interest to computer science educators. Topics include a description
of program goals, guidelines, review process as well as strategies for writing
competitive proposals.

INTRODUCTION
NSF supports projects to improve education in science, technology, engineering, and

mathematics through several programs in its Education and Human Resources (EHR)
directorate, as well as in its research directorates, including Computer and Information
Science and Engineering (CISE). This tutorial presents a description of some education-
related programs in the EHR and CISE directorates, and enables participants to interact
with the presenters concerning specific project ideas that could be appropriate for the
various programs.

SPECIFIC PROGRAMS DISCUSSED
Complete details about each of the following programs can be found on the NSF

websites for the Division of Undergraduate Education (DUE) [1] and the Directorate for
Computer & Information Science & Engineering (CISE) [2].
 ! Course, Curriculum, and Laboratory Improvement (CCLI)
 ! CISE Pathways to Revitalized Undergraduate Computing Education (CPATH)
 ! Federal Cyber Service: Scholarships for Service (SFS)
 ! Research Experiences for Undergraduates Sites (REU Sites)

CCSC: Mid-South Conference

59

 ! Broadening Participation in Computing (BPC)
 ! Scholarships in Science, Technology, Engineering and Mathematics (S-STEM)
 ! STEM Talent Expansion Program (STEP)
 ! Advanced Technological Education (ATE)

WRITING COMPETITIVE PROPOSALS
NSF programs are quite competitive but there are simple strategies that investigators

should be aware of to improve their chances of success. First and foremost, read the
Program Solicitation carefully. The goal is to help reviewers quickly understand what
you intend to do and that you have given sufficient thought of how you intend to do it.
Organize the proposal to address the essential components described in the solicitation.
Use headings, boldface and bulleted lists to help the reader quickly understand the
organization of the proposals. Address each point thoroughly but succinctly. And finally,
start well before the submission deadline. Include sufficient lead time to allow colleagues
to provide feedback and for your research office to approve the proposal. Specific
directions for completing a proposal can be found online [3].

REFERENCES

[1] NSF Division of Undergraduate Education (DUE),
http://nsf.gov/div/index.jsp?div=DUE, 2009.

[2] NSF Directorate for Computer & Information Science & Engineering (CISE),
http://nsf.gov/dir/index.jsp?org=CISE, 2009.

[3] NSF Funding, How to Prepare Your Proposal, http://nsf.gov/funding/preparing,
2009.

* Copyright © 2010 by the Consortium for Computing Sciences in Colleges. Permission to copy
without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the CCSC copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires a
fee and/or specific permission.

60

GAPS IN THE COMPUTER SCIENCE CURRICULUM: AN

EXPLORATORY STUDY OF INDUSTRY PROFESSIONALS *

Chris B. Simmons
Department of Computer Science

University of Memphis
Memphis, TN 38152

901-678-5465
cbsmmons@memphis.edu

Lakisha L. Simmons
School of Business Administration

University of Mississippi
University, MS 38677

662-915-5777
lsimmons@olemiss.edu

ABSTRACT
Our study explores current industry needs in suggesting how to better prepare
computer science graduates with the appropriate background that will enable
a successful career. With the increase in outsource development, computer
scientists find themselves in some project management related capacity.
Unfortunately, computer science graduates lack the interpersonal skills needed
to successfully fulfill duties associated with outsourcing. We report findings
from qualitative interviews from IT professionals in Fortune 500 businesses,
small-to-medium businesses, and non-profit organizations. Our analysis
concludes that modifying computer science curriculum to provide more
emphasis on negotiation skills, time management, cultural differences,
outsource management, and information assurance would make the most
difference, in addition to a strong technical background.

INTRODUCTION
The computer science curriculum has continued to evolve throughout the years

within universities and colleges, even more so now with the high rate of outsourcing and
drop in computer science enrollments [5]. It is essential to provide a curriculum that
improves the industry as well as creates a well-rounded computer scientist. Patterson [7]
highlighted the need for computer science (CS educators to provide a curriculum that

CCSC: Mid-South Conference

61

reflect opportunities and challenges of information technology in contemporary times.
Therefore, is the CS curriculum relevant for today's industry needs? To date, there has
been a lack of research focusing on the current workforce needs for computer science
graduates.

Recent news indicates that industries that hire computer science graduates are
changing in this time of hiring freezes, low budgets, and increased outsourcing for
decreased costs. Some age old issues also still exist [e.g. 3]. In 2007, Havill and Ludwig
[4] stated computer science undergraduates have difficulty expressing their work to a
general audience due to the highly technical nature. This provides valuable insight into
the need to add focus on communicating in nontechnical terms more effectively.

Universities may teach students more about the development of technologies [8] as
well as soft skills such as determining what to develop and how to communicate during
development. There is a lack of research involving actual curriculum enhancements
based on industry needs. For example, how to teach computer scientists to ask the right
questions when attempting to contribute on a project team. Fitzpatrick [2] stated bridging
the gap involves students experiencing projects in action to help provide a needed
understanding of software development. We suggest curriculum enhancements based on
such literature and exploratory interviews with 20 IT professionals in a number of
industries. We asked how CS graduates are used in their companies and any suggestions
for curricula enhancements so CS graduates could be more productive and useful.

CURRENT CURRICULUM
Research into the computer science curriculum has suggested various phases of

software engineering are needed to improve students’ knowledgebase when entering the
workforce. Some literature suggests introducing extreme programming, testing
methodology, and communication skills. Patterson [7] addressed the need to include open
source software into the curriculum, as it provides graduates with the ability to help
improve potential organizations. The need to present computer scientists with open
source tools, such as Eclipse, enables CS graduates with near real world tools, contrary
to programming on the command line. Douglas et al. [1] provided insight to the need of
incorporating human computer interaction into the computer science curriculum, as 50%
of code written for software applications is designed for the user interface. With this
knowledge, it is becoming increasingly important for computer scientists to effectively
elicit customer requirements to prevent rework. Fitzpatrick [2] introduced the Software
Quality Star, a model for improving software quality motivated by ISO/IEC 12207, which
attempts to integrate human-computer interaction (HCI) and software engineering to
improve curriculum regarding customer usability. Havill and Ludwig [4] suggested three
approaches to improving CS undergraduate programs, which include improving
communication skills, exposing students to research early, and increasing exposure to
mathematics. This is a valid point for computer scientists moving towards a graduate
level degree, but lacks the increasing need of how to effectively work with customers and
understand what is being requested. We seek to understand the current gaps in CS
curriculum and what the industry needs from CS graduates.

JCSC 25, 5 (May 2010)

62

METHODOLOGY
In order to understand what industry requires from newly minted computer science

graduates, we conducted 20 interviews that consisted of 7 open-ended questions related
to what technical industry professionals described as being an important need for future
computer science professionals. Our interviews were conducted with IT professionals
such as 6 Sigma Black Belts, Senior Project Analysts, Quality Assurance Analysts,
Computer Scientists and one president of a nonprofit organization. The professionals
were from 8 Fortune 500 businesses, 9 small-to-medium businesses, and 2 non-profit
organizations. So far, we completed 20 interviews that provided insight to where
organizations see the future of computer science and potential areas of focus in the
computer science curriculum. We asked questions based on the literature above
discussing outsourcing, soft and behavioral skills, and duties of CS graduates. In the
results section we provide a summary of each question from each professional.

RESULTS
In this section we provide a summary of the interviews conducted with the IT

professionals.

1. What positions does your company usually fill with computer science graduates (
not MIS or business information systems majors)?
There is a consensus from the interviews that a wide range of positions are available
for computer scientists. Positions consisted of programmer analyst, software
engineer, test engineer, network admin, telecommunication, application
development, quality engineer, systems engineer, requirements engineer, project
engineer, operation support, help desk, technical advisor, software architect,
technical analyst, and business analyst.

2. How important is it for computer science undergraduates to know how to gather
and elicit customer requirements to fulfill IT positions in your company?
From the survey we find that gathering and eliciting customer requirements is very
desirable skill set for computer science graduates. 80% of professionals surveyed
stated the importance was high, where 20% stated the importance was medium to
low. Those in the minority state a senior level person performs this job, but this
further solidifies the need for computer science curriculum to include requirement
elicitation techniques to create a well-rounded graduate when entering corporate
America.

3, What do computer science undergraduates need to have in their undergraduate
programs in terms of soft/behavioral skill sets?

CCSC: Mid-South Conference

63

Participants suggested computer science curricula need to include training on
effective writing skills for documentation and status reporting and communication
and presentation skills. Team building, the ability to be flexible and how to deal
with hostile personalities were highly emphasized. Negotiation skills, software
requirement gathering, project management, and information management skills
were also mentioned as important soft skill sets.

4. What do computer science undergraduates need to have in their undergraduate
program in terms of technical skill sets (e.g. programming languages)?
Our interviewees discussed the importance of object oriented programming,
decoupling understanding, analytical skills, and integrity in programming. Specific
languages such as Java, JavaScript, Ruby, Perl, HTML, CSS, SQL, Python, JUnit,
.Net, C++, and UML were identified. Other concepts such as web services, network
administration, server administration, database administration, and requirement
engineering were stated.

5. What do computer science undergraduates need to have in their undergraduate
program to help them assist with your company’s outsourced development efforts?
Results suggest that more universities allow companies to come in to explain their
needs. Others suggest the following training opportunities to assist in outsourced
development: database knowledge, shell scripting, swing, configuration
management, process improvement, unit testing, documentation, project
management, time management, cultural differences, outsource management,
information assurance, and tools and technologies that will help improve software
during the software development lifecycle.

6. What do computer science undergraduates need to have in their undergraduate
program to help them when they are required to work on project teams (e.g.
process improvement teams or new product development teams)?
Interview participants recommend the need for CS students to be familiar with
process improvement frameworks (e.g. 6 Sigma and CMMI). Significant group
project related skills, good communication, time forecasting, and how to ask the
right questions were some of the most prominent comments for this questions. The
systems development life cycle was described as a fundamental piece of CS
curriculum but Microsoft Project, RUP, and PMBOK, placed in the curriculum
could enable success when entering the workforce in any position.

7. In general, what do computer science undergraduates need to know, to enable them
to have a successful career in an IT department?
Participants mentioned that CS graduates need to know how their work affects the
bottom line. Doing so could help them realize that their work matters and their best

JCSC 25, 5 (May 2010)

64

effort should always be put forth. Some characteristics mentioned include being
flexible, being able to meet short and long term goals, communicating with upper
management, having integrity and a great attitude. A wide knowledge of systems
and technology integration, certificates on the latest technology, open source
technologies, as well as being a good researcher, and obtaining a good mentor
would lead to success in today’s IT department.

CONCLUSION
This paper has presented preliminary, yet valuable information to improve the

computer science curriculum in preparing graduates for today and tomorrow’s positions.
This exploratory study has been conducted using rich interviews from IT professionals
in various types of organizations. Our analysis concludes that modifying computer
science curriculum to provide more emphasis on written and verbal communication skills,
gathering and eliciting customer requirements effectively (80% of respondents
emphasized), the ability to be flexible and the ability to deal with varying personalities
were highly emphasized. Negotiation skills, time management, cultural differences,
outsource management, and information assurance trainings were some of the most
notable skills in addition to a strong technical background. All of these skills will aid in
improving graduates’ ability to communicate on all levels of the organization when
entering industry in an IT capacity position. This is pertinent as companies continue to
outsource. The ability to provide well-rounded computer scientists is vital in these
situations. With the current literature aiming to improve various aspects of the computer
science curriculum, we feel there is a grave need to focus on the customer. We propose
enhancing the computer science curriculum to include more customer elicitation
techniques, albeit potentially through a business, to improve the ability for computer
scientists to hone in on the art of requirement elicitation and project management through
communication skills.

Future research can further quantify the needs of industry. Then focus on how to
successfully implement these important skill sets into CS curriculums. Requirements
elicitation, communication, and project management skills within the computer science
curriculum are some of the potential areas to make a great impact in the career success
of computer science graduates.

REFERENCES

[1] Douglas, S., Tremaine, M., Leventhal, L. and Wills, C.E. Incorporating human-
computer interaction into the undergraduate computer science curriculum, In
Proceedings of the Technical Symposium on Computer Science Education
(SIGCSE), 211-212, 2001.

[2] Fitzpatrick, R. The Software Quality Star: A conceptual model for the software
quality curriculum. In Closing the Gaps: Software Engineering and Human-
Computer Interaction, Harning, M. and Vanderdonckt, J., 9-13, 2003.

CCSC: Mid-South Conference

65

[3] Giangrande, E., Communication skills in the CS curriculum, Journal of
Computing Sciences in Colleges, 24, (4), pg. 74-79, 2009.

[4] Havill, J. T. and Ludwig, L. D. Technically speaking: fostering the
communication skills of computer science and mathematics students, In
Proceedings of the 38th SIGCSE Technical Symposium on Computer Science
Education March, 2007.

[5] Kahlon, A. and Lee, L. Essential programming concepts: the redesign of the
introductory programming course. Journal of Computing Sciences in Colleges,
24, (4), 53-53, 2009.

[6] McCrickard, D. S., Chewar, C. M., and Somervell, J. Design, Science, and
Engineering Topics?: Teaching HCI with a Unified Method. In Proceedings of
the 35th SIGCSE Technical Symposium on Computer Science Education
(SIGCSE) ACM Press, New York, NY, 31-35, 2004.

[7] Patterson, David A. Computer science education in the 21st century,
Communications of the ACM 49, (3), 2006.

[8] Walker, Henry M., Schneider, M. A revised model curriculum for a liberal arts
degree in computer science, Communications of the ACM, 39, (2), 1996.

* Copyright © 2010 by the Consortium for Computing Sciences in Colleges. Permission to copy
without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the CCSC copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires a
fee and/or specific permission.

66

WHY COMPUTATIONAL THINKING SHOULD BE

INTEGRATED INTO THE CURRICULUM*

Jake A. Qualls and Linda B. Sherrell
University of Memphis

Department of Computer Science
Memphis, TN 38152

(901) 678-5465
{jaqualls@; Linda.Sherrell@}memphis.edu

ABSTRACT
Computational Thinking (CT) is an approach to problem solving that
consolidates logic skills with core computer science concepts. This survey
paper reviews recent efforts to integrate CT into primary, secondary and post-
secondary curricula. The paper should prove beneficial to instructors
interested in investigating this important topic.

1. INTRODUCTION
Computer science is the theoretical evaluation of computation. Algorithmic

processes are analyzed and designed to computationally model and solve problems. The
need for problem solving techniques is inherent in all scientific and engineering
disciplines [11]. Improvements in computing have allowed these fields to incorporate
computational techniques; however, teaching professionals that want to take advantage
of computational advancements will need to adjust their current perception of thinking
skills.

Jeannette Wing’s seminal paper “Computational Thinking” (CT), proposes a way
to incorporate computing into all academic fields by emphasizing “a range of mental tools
that reflect the breadth of the field of computer science” [11]. Wing defines CT as the use
of computer science concepts to solve a problem in any domain. To help clarify the
notion of computational thinking, Wing lists six principles: 1) CT is conceptualizing via
abstraction; 2) CT is a fundamental skill needed to function in modern society; 3) CT

CCSC: Mid-South Conference

67

does not necessarily mean that problems must be solved like a computer, rather it
encompasses all critical skills of humans; 4) CT complements and combines mathematics
and engineering; 5) CT is principally concerned with ideas as opposed to artifacts; 6) CT
should be an integral part of everyone’s education. In summary, Wing’s article provides
a grand vision for computational thinking.

In [4], Guzdial stresses that educators need to make CT accessible to everyone.
Specifically, curriculum changes may need to occur to expedite the process. He identifies
questions that need clarification in order to make advancements within the field, such as:

 • What do non-computing students understand about computing?
 • What will they find challenging?
 • What kinds of tools can make computational thinking most easily accessible

to them?
 • How should we organize and structure our courses to make computing

accessible to the broad range of students?
He also emphasizes educators must understand better how to teach computing so that
students have the knowledge to successfully apply computing in their fields of interest.

In 2009, the Computer & Information Science & Engineering (CISE) division of the
National Science Foundation (NSF) recognized the importance of CT and how it plays
a critical role in education and society. In particular, CT is now a required component of
all CISE Pathways to Revitalized Undergraduate Computing Education (CPATH) grant
proposals, as documented in the current solicitation. It is important to note that this
modification to the program acknowledges the importance of CT not only in computer
science but in all disciplines.

2. INTRODUCTORY COMPUTER SCIENCE SEQUENCE
2.1 CT in Early CS Courses

The Tri-P-LETS (Three P Learning Environment for Teachers and Students)
outreach project at the University of Memphis focused on problem solving skills,
programming concepts and a software development process [9]. The project, which was
funded by NSF from 2004 to 2008, involved 11 high schools from two school districts.
Students could enroll in two years of coursework. First year students worked in teams to
plan, program and document projects using AgentSheets, a game authoring and
simulation-building tool. Object-oriented concepts were taught in a gradient fashion using
learning modules that incorporated concepts from a variety of disciplines. For instance,
one module required students to model the progression of the water cycle using
AgentSheets, while another simulated the spread of viruses. Students were also
introduced to more advanced computer science topics such as cellular automata and
combinatorics. The second course used Java and Lego robots to emphasize object-
oriented concepts. In summary, students gained hands-on experience by building
simulations and programming robots, while learning important computing skills and
reviewing concepts from other scientific domains in the process.

In 2006, Carnegie Mellon University initiated an outreach program called Computer
Science for High Schools (CS4HS). This program provides high school computer science

JCSC 25, 5 (May 2010)

68

teachers with material that emphasizes computational thinking [1]. Program goals include
an increased awareness among teachers and provisions for integrating computer science
into different fields. At the first workshop, a survey revealed the majority of high school
teachers believed computer science to be synonymous with programming. These findings
are similar to those collected from a survey of 800 high school students [2]. Participating
teachers named several reasons for the decline in high school computer science
enrollments: outsourcing reports, the dot-com bubble, ill-prepared teachers and lack of
understanding by administration. In a post-workshop questionnaire, teachers
demonstrated a better understanding of computer science. Note that CS4HS has recently
been expanded to aide faculty from colleges and universities to initiate similar programs.

In [7], Lu and Fletcher argue that CT proficiency should begin in primary and
secondary curricula with the teaching of vocabularies and symbols to form a solid
foundation for further skill development. They equate programming with the proof
construction found in mathematics. Unfortunately, theorem proving, which is a key skill
for computer scientists, is usually not mastered by students until later in the CS
curriculum. To remedy this problem, Lu and Fletcher propose a computational thinking
language (CTL). CTL introduces concepts such as state, data, iteration, searching and
efficiency. To handle more complex problems, the language includes basic tuple notation,
which familiarizes students with the concepts of elements and ordered lists. By adopting
Lu and Fletcher’s approach to teaching programming concepts, teachers can better
prepare students who choose computer science as a field of interest.

2.2 CT in College Courses
Integrating computational thinking within a CS curriculum requires the

reformulation of teaching techniques used within freshman level courses. One method of
change is to incorporate real-world analogies that aide in the understanding of core
computing concepts. Sooriamurthi [10] explores the object-oriented paradigm from the
perspective of an introductory CS0 course by providing “a conceptual 10,000 foot view
of the essential ideas of object orientation that is independent of any particular OO
language.” To establish and illustrate object-oriented concepts, both scientific and pop-
culture references are employed. As an example, the anthropomorphic nature of Disney’s
Bedknobs and Broomsticks eases students into the ideas and concepts of object oriented
thought. By incorporating anecdotes to which students can easily relate, the concepts
become memorable and form a solid foundation of core programming components.

Alice is a popular learning environment for introducing and teaching programming
concepts in CS0. In [3], Dougherty describes six virtual worlds created with Alice to
engage students while stressing important algorithmic concepts. His approach relies on
the visual nature of Alice to facilitate the knowledge acquisition of students. The three-
week module consists of lectures using virtual worlds to illustrate concepts along with
three mandatory lab sessions. The first virtual world introduces methods, functions,
parameters, iteration, recursion and generalizing a solution. The second week uses a new
virtual world to expand on looping, to introduce arrays, and to emphasize the distinction
between methods and functions. To complete the three-week module, the last virtual
world focuses on lists, sorting and event interaction. During each lab session, students
complete a virtual world to reinforce concepts discussed during lecture. Performance was

CCSC: Mid-South Conference

69

found to be comparable to the previous version of the course that used JavaScript.
Furthermore, the students are “engaged to a greater degree with Alice, motivated to
design and implement substantial term projects and (sometimes) continue to CS1.”

Haden and Mann discuss difficulties encountered when teaching programming and
define a course sequence to “act as a bridge between traditional procedural programming
and advanced Object-Oriented system development” [5]. The course sequence was
designed to emphasize basic programming skills, because the instructors had previously
found prolonged procedural experience made the shift to an Object-Oriented paradigm
difficult for their students. The sequence includes complex, but engaging problems that
seamlessly build on previous skills. The first course emphasizes syntax, variables, and
program logic using Pascal, while the second course introduces object-oriented concepts
through Object Pascal. The development environment, Borland Delphi, allows students
to efficiently construct graphical user interfaces. With this approach, students are able to
quickly produce games, while learning concepts such as the event-driven interface model.
Haden and Mann identified syntax errors and method implementation as the most
common types of errors in their approach.

3. INTERDISCLIPINARY APPROACHES
 The interdisciplinary acceptance of Computational Thinking can be readily

observed within the field of bioinformatics. Qin elaborates on the experiences of
developing an introductory bioinformatics course at Tuskegee University [8]. He notes
that for scientists to become productive in the 21st century, they need to embrace the
concepts of computing. Qin relates that teaching CT to life science students presented a
paradoxical situation as “most biology students readily express their interests in
improving their computational skills, however, few of them actually take computing-
oriented courses.” To organize his course, a direct mapping between key biology concepts
and CT topics was made. This exercise provided a blueprint for creating ideal projects
suited for the course. Faculty found non-computing students were intimidated by
interacting with computers and remedied the problem by creating peer-programming
groups. To maintain accountability for individual work, the instructor deployed the
following: 1) students were forced to change groups often; 2) they were required to
submit individual reports when working; 3) quizzes and in-class discussions were held
to emphasize understanding. Post-course surveys revealed students were satisfied with
the course organization. They also expressed positive feelings about the learning
experience. Qin notes some students went on to enroll in additional computing courses.

The initial assessment of a newly developed course in CT for science majors appears
in [6]. Hambrusch, et. al. argue that computing has become an integral part of research
within the scientific community, because humans can no longer process the amount of
generated data in an efficient manner. In collaboration with various science departments,
a course was developed that utilizes a problem-based approach while emphasizing
scientific discovery with computer science principles. The main objective of the course
is to create a firm understanding of computational ideas that students can apply to their
own scientific investigations. In addition, the course presents examples and projects
catered to students by using language familiar to their scientific disciplines. Post course

JCSC 25, 5 (May 2010)

70

surveys indicated that 60% of the enrolled students intended to take additional CS
courses, while 40% planned on pursuing a minor in CS.

 4. CONCLUSIONS AND FUTURE WORK
This paper has illustrated some recent work conducted in an effort to incorporate

computational thinking into curricula. Tri-P-LETS and the CS4HS outreach programs are
prime examples. However, the idea of CT is to integrate computational techniques and
approaches into all disciplines requiring problem-solving skills. To thoroughly transform
CT into one of the four primary skills, (reading, writing, arithmetic, and computational
thinking), CT activities must appear as early as the primary grades, and then continue
through the secondary grades and beyond. Recent recognition by the NSF proves that CT
is an important component for education and society and deserves our immediate
attention. Therefore, this paper has also discussed interdisciplinary approaches.

Resolving the underlying misconception that equates CS with programming is the
first step in paving the way for CT. Empowering teachers with valid information about
CT provides an opportunity that could inspire high school students to explore computing
with renewed interest. Results from computing education research enable educators to
measure the learning levels to make necessary curriculum changes to broaden
accessibility to all students.

This paper will be of benefit to instructors who wish to conduct their own literature
review of Computational Thinking, as it provides an initial survey of recently published
work in the field. The authors note that publications exist that do not explicitly mention
CT but have similar aims to those expressed by Wing. Future work will describe the
integration of CT into the introductory computer science sequence at the University of
Memphis.

5. REFERENCES

 [1] Blum, L., Cortina, T. J., CS4HS: an outreach program for high school CS
teachers, 38th SIGCSE Technical Symposium on Computer Science Education,
19-23, 2007.

 [2] Carter, L., Why students with an aptitude for computer science don’t choose to
major in computer science, 37th SIGCSE Technical Symposium on Computer
Science Education, 27-31, 2006.

 [3] Dougherty, J. P., Concept visualization in CS0 using ALICE, Journal of Computing
Sciences in Colleges, 22, (3), 145-152, 2007.

[4] Guzdial, M., Paving the way for computational thinking, Communications of the
ACM, 51, (8), 25-27, 2008.

[5] Haden, P., Mann, S., The trouble with teaching programming, 16th Annual
National Advisory Committee on Computing Qualifications (NACCQ), 63-70,
2003.

CCSC: Mid-South Conference

71

[6] Hambrusch, S., Hoffmann, C., Korb, J. T., Haugan, M., Hosking, A. L., A
multidisciplinary approach towards computational thinking for science majors,
40th SIGCSE Technical Symposium on Computer Science Education, 183-187,
2009.

[7] Lu, J., Fletcher, G., Thinking about computational thinking, 40th SIGCSE
Technical Symposium on Computer Science Education, 260-264, 2009.

[8] Qin, H., Teaching computational thinking through bioinformatics to biology
students, Proceedings of the 40th SIGCSE Technical Symposium on Computer
Science Education, 41, (1), 188-191, 2009.

[9] Sherrell, L. , Liu, C., Pottenger, W., Gross, P., NSF-DGE GK-12 teaching
fellowships: changing student perceptions about computer science, SIGCSE
2007: 38th Technical Symposium on Computer Science Education, 39, (1), 474-
475, 2007.

[10] Sooriamurthi, R., The essence of object orientation for CS0: concepts without
code, Consortium for Computing Sciences in Colleges, 25, (3), 67-74, 2010.

[11] Wing, J. M., Computational Thinking, Communications of the ACM, 49, (3), 33-
35, 2006.

* Copyright © 2010 by the Consortium for Computing Sciences in Colleges. Permission to copy
without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the CCSC copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires a
fee and/or specific permission.

72

HIVE: CROWDSOURCING EDUCATION DATA*

Neal Gibson and John Talburt
Department of Information Science

University of Arkansas at Little Rock
Little Rock, AR 72204

501 371 7616
neal.gibson@arkansas.gov jrtalburt@ualr.edu

ABSTRACT
Data Driven Decision Making is a well-worn mantra in education, best
personified by the enormous amount of data created by the yearly student
assessments of literacy, math, and science mandated by No Child Left Behind.
The U.S. Department of Education has recently begun giving states grants to
create longitudinal data systems. The purpose of these grants is to help states
organize and present these data in meaningful ways so that they can be used
to improve student achievement. However, little research has been done on
best practices on how educators should use these data. The Arkansas
Department of Education initiated a year-long study on data use by educators
and, based on this research, has developed an interactive data visualization
application that incorporates social networking tools which allow educators to
collaborate on data analysis.

INTRODUCTION
The National Center for Education Statistics’ Institute of Education Sciences, in its

Statewide Longitudinal Systems Grant Program, will have awarded $500,000,000 to
states, territories, and the District of Columbia once its third round of funding is finalized
early in 2010. These grants are intended to help “states, districts, schools, and teachers
make data-driven decisions to improve student learning.”[1] In its “Forum Guide to
Decision Support Systems,” the NCES outlines a general approach to how such a data
system should be constructed, but only a single page is devoted to user training, and this
discussion is entirely devoted to planning for training and not specific in any way to best
practices around data use.[2]

CCSC: Mid-South Conference

73

While No Child Left Behind (NCLB) and the accountability it represents for schools
makes Data Driven Decision Making (DDDM) a priority and generous federal grants
mean it is also well funded, there are many unanswered questions about how educators
should interpret and analyze data and about the effects DDDM is having on educational
outcomes.[3] There are some general guides for implementing DDDM, most modeled
after Edward Deming’s Plan, Do, Study, Act cycle. For example, Harvard’s “Data Wise”
improvement process lists eight steps, under the general categories of Prepare, Inquire,
and Act.[4] Victoria Bernhardt’s model, Education for the Future, is a bit closer to
Deming’s original model with seven steps under the categories of Plan, Implement,
Evaluate, and Improve, but these steps are organized around another central category of
Vision.[5] While both of these models represent the current thinking on how best to use
data in education, neither offer any specifics on how to implement these programs or any
metrics to judge the efficacy of the approach in improving student outcomes.

More comprehensive models of DDDM have been proposed. Mandinach, Honey,
and Light propose a framework whereby individuals at different levels of the hierarchy
have questions or problems which require data to be collected and analyzed in order to
make informed decisions.[6] Ikemoto and Marsh expand on this framework to
differentiate both “simple and complex data” and “simple and complex analysis and
decision making.”[7] Ikemoto and Marsh are somewhat dismissive of the Mandinach,
Honey, and Light framework, suggesting that it is not applicable to the nuances and
variation of decision making in real-world settings and that decision making is not always
as linear or continuous as they propose. What Ikemoto and Marsh fail to recognize is that
even “simple analysis and decision making” is fraught with potential problems. Even
simple analysis can lead the data consumer down erroneous paths if the common errors
of data analysis are not first recognized and somehow accommodated for in how the data
is presented.

What is somewhat assumed in all the aforementioned methodologies for analyzing
data is that educators somehow have an innate ability to analyze data, so more data is
always better. As Simon points out, we do know that information consumes attention, so
this “wealth of information creates a poverty of attention.”[8] What is missing in these
discussions is an abundance of research that documents the elementary errors even
intelligent consumers can make when analyzing data and making decisions based on these
data. Stanovich has labeled such errors “fundamental computational biases” because they
are innate and pervasive.[9] Any attempts at helping educators make decisions from data
must first begin with an analysis of how they interact with data and the types of mistakes
they make when analyzing data.

Background
The Arkansas Department of Education (ADE), in partnership with the Assessment

and Accountably Comprehensive Center, conducted a year-long pilot project to study
how educators from five different schools use data to make decisions. ADE has received
numerous accolades for its data system, for example, receiving an “A” for educational
data from the U.S. Chamber of Commerce.[10] However, this research was the first to
actually analyze how educators interact with data. Multiple visits were made during the
year, and each session introduced data with increasing granularity, starting with state

JCSC 25, 5 (May 2010)

74

yearly assessments and eventually ending with the educators analyzing local, more
frequent data.

The tendency for educators to contextualize and socialize their analysis was seen as
a consistent problem. For example, a single point of data from a single year would be
seen as confirming that a particular teacher, textbook, or program was not effective,
depending on the user’s own perspective. It was also discovered that the data system did
not provide data to users in a way that facilitated multiple forms of analysis. It was very
difficult for users to go from aggregate details to student-level data. It was impossible for
educators to combine their own local data with data available from the state’s system.
They did not have their own database to do this, and no one at their schools had the
technical ability to create one for them. Educators could also not objectively identify
student growth, other than to simply look at the movement of a student from one NCLB
category to the next. The lack of time available for teachers to come together for data
analysis was also identified as a major hurdle.

Project Goals
The goals of this project were to address each of the problems identified in the

pilot project and incorporate participant suggestions on how to modify the system. It was
decided that a new visualization tool should be created that would allow educators to
more easily manipulate data. The tool must also allow educators to upload their own local
data and use the same visualization tools for analysis of local data. To help alleviate
problems associated with educators having little time to come together for data analysis,
it was decided that social networking tools be included in order to facilitate asynchronous
collaboration. To prevent contextual biases from corrupting the analysis, a stepwise
framework and protocol for data analysis, specific to the type of data being examined,
would need to be developed.

METHODOLOGY
The first step was to create the data analysis framework and protocol and then build

the visualization tool to support the framework. The beginning reference for this
framework was from the much more general work of Van Houten et al, but the framework
was modified to be specific for Arkansas educators.[11] Each section begins with a
specific question to be answered, along with a methodology for determining the answers.
Educators use the framework to step through the data analysis process, beginning with
“big data,” represented by the state annual assessments, and ending with “little data,” the
much more frequent and timely local data. A protocol for writing data statements is
included to make sure that educators stay objective in their analysis.

The visualization tool was built using the prefuse visualization toolkit.[12] A
brushing class was added to allow users to quickly visualize various NCLB categories.
A zoom feature was added to allow users to “drill down” and “drill up.” New
visualization were added, including a bubble chart, scatter bar, bar chart with box plots,
and an animated scatter plot which shows a cohort over time. Basic social networking
functionality with threaded discussion was also built. This was added to facilitate the

CCSC: Mid-South Conference

75

creation of online, asynchronous professional learning communities around the analysis
of data.

The system is called “hive,” in the sense of “hive computing,” but in this case, it
is human computation. We are “crowdsourcing” the analysis of education data--
harnessing the power of collective intelligence for the task of finding patterns in the data
that would be missed by traditional data mining techniques. In crowdsourcing, every
individual possesses some specific knowledge that can serve the needs of others,[13] In
the case of education data, aggregate values may give educators and policy makers some
indication concerning trends, but those that are much closer to the problem, such as
teachers and administrators that know these data as individual students and programs of
support for these students, can provide much richer detail through the context they can
provide. If there are significant trends suggested by the data, it would be the local
educators that can best identify possible program or personnel changes that might explain
the differences.

The website is available at http://hive.arkansas.gov and provides two levels of
access, public and authorized educators. Here are some example visualizations:

Figure 1. Scatter Bar of Grade 8 2009 math scores in Little Rock by ethnicity. The
number of White students performing at the higher levels is clearly obvious, but the
category “Economic Disadvantaged” is brushed, which suggests the performance
difference is related more to poverty than to ethnicity.

JCSC 25, 5 (May 2010)

76

Figure 3. Scatter Plot of Grade Five 2008 and Grade Six 2009 literacy scores for
students in Bryant. A mouse hover allows an authorized user to see individual student
names at points of interest, in this case, a student whose score increased dramatically in
2009 compared to 2008.

A simple survey instrument was created, asking users to compare this system to
ADE’s current longitudinal data system. The visualization tool and framework were
presented to groups of educators in different parts of the state. Data will continue to be
collected as more educators are shown the system, and feedback from their use will be
used to make modifications.

RESULTS
Even though hive and the data analysis framework are very new, the preliminary

data is very encouraging. We have had 200 responses to the survey to date, and 95%
agree or strongly agree that the tools represent a clear process for analyzing data which
they did not have before. From all respondents, 91% report that the tools provide a clear
process for identifying and implementing needed changes based on data analysis. Also,
94% of respondents report that the tools will help them look at data objectively while
avoiding the bias of prior knowledge. Finally, 97% report that the system will allow them
to collaborate with colleagues outside their school or district about data.

CONCLUSIONS
Preliminary data show that users strongly believe the new visualization tool and data

analysis framework is an improvement over the existing longitudinal data system. As
mentioned before, ADE’s existing system was already held in high regard, so it is very

CCSC: Mid-South Conference

77

significant that respondents are finding the addition of hive and the framework to the
existing system as much better than what was already seen as an excellent data system.
By researching how users interact with the data and the common mistakes they make in
data analysis, we have taken a strong system and made it even stronger. We believe all
information products should undergo similar research to ensure that such products truly
meet the “fitness for use” criteria and that the interaction between user and data be part
of any information quality plan. Current research in information quality focuses mainly
on data inputs, but this research shows that a product that is seen as exhibiting high
quality can be made even better by focusing on consumers use of the data.

One area of hive that has not been heavily used is the social networking aspect of
the system. While users have created many visualizations, there are very few threaded
discussions. We are currently building group functionality into the social networking tool,
where, for example, a teacher can join a group of fourth grade literacy teachers and be
notified when a new visualization is created using that data. It remains to be seen if
educators will embrace social networking tools as part of their data analysis, but we
believe online collaboration to be an important part in ensuring that Arkansas’ educators
get the best use out of these data systems.

REFERENCES

[1 National Center for Education Statistics: Institute of Education Sciences,
Statewide longitudinal data systems grant program,
http://nces.ed.gov/programs/slds/ Retrieved May 24, 2009.

[2] National Center for Educational Statistics, Forum guide to decision support
systems, http://nces.ed.gov: http://nces.ed.gov/pubsearch retrieved May 24, 2009.

[3] Marsh, J. A., Pane, J. F., & Hamilton, L. S. (2006). Making Sense of Data-Driven
Decision Makingin Education: Evidence from Recent RAND Research.
http://www.rand.org/pubs/occasional_papers/2006/RAND_OP170.pdf retrieved
May 16, 2009

[4] Boudett, K. P., City, E. A., & Mumane, R. J. The “Data Wise” improvement
process, Harvard Education Letter, 22, (1) 1-3, 2006,
http://www.hepg.org/document/1/ retrieved May 14, 2009.

[5] Bernhardt, V. L., & Geise, B. J., Data, data everywhere: ASCD annual
conference, 2009,
http://eff.csuchico.edu/Downloads/ASCD%202009/ASCD%20Notes%20Mar09.
pdf retrieved May 14, 2009.

[6] Mandinach, E. B., Honey, M., Light, D. (April 9, 2006). A theoretical framework
for data-driven decision making,
http://cct.edc.org/admin/publications/speeches/DataFrame_AERA06.pdf
retrieved October 6, 2008.

[7] Ikemoto, G., Marsh, J., Cutting through the “data-driven” mantra,
http://www.rand.org/pubs/reprints/2009/RAND_RP1372.pdf retrieved October 6,
2008.

JCSC 25, 5 (May 2010)

78

[8] Simon, H., Designing organization for an information-rich world, 37-72,
Computers, communications, and the public interest, Baltimore, MD: The Johns
Hopkins Press, 1971.

[9] Stanovich, K., The fundamental computational biases of human cognition, 291-
342, The Psychology of Problem Solving New York, Cambridge University
Press, 2003.

[10] U.S. Chamber of Commerce, Leaders and Laggards,
http://www.uschamber.com/reportcard/default, retrieved November 3, 2009

[11] Van Houten, L., Miyasaka, J., Agullard, K., Zimmerman, J., Developing an
Effective School Plan: An Activity-Based Guide to Understanding Your School
and Improving Student Outcomes, Oakland, CA, WestED, 2006

[12] Heer, J., Card, S., Landay, J., Prefuse Information Visualization Toolkit,
http://prefuse.org/, retrieved March 3, 2008.

[13] Howe, J., Crowdsourcing: Why the Power of the Crowd is Driving the Future of
Business, New York, Crown Business, 2008.

* Copyright is held by the author/owner.

79

CS0: WHY, WHAT, AND HOW?*

PANEL DISCUSSION

Matt Brown
Arkansas Tech University

Russellville, AR
hbrown11@atu.edu

Carl Burch
Hendrix College, Conway, AR

cburch@cburch.com.

Chenyi Hu
University of Central Arkansas,
Conway, AR
chu@uca.edu

Michael Nooner
University of Central Arkansas,
Conway, AR
mnooner@uca.edu

CS1 has been commonly offered as the first introductory course in Computer
Science. For various reasons, the panelists have developed and offered a CS0 course at
different institutions during the last several years. The panelists will share their
experience in designing and implementing a CS0 course at their institutions. Discussions
will follow on the following questions:
 1. Why do we need a CS0 course? Whom should this course be for?
 2. What should be the expected objectives and appropriate contents of the course?
 3. How do we design, implement, and assess such a course?

POSITION STATEMENTS
Matt Brown, Arkansas Tech University

Students desiring to major and work in the field of computing often begin their
college career with many questions and misconceptions. A CS0 is one avenue to aid both
the student and university in addressing these issues. The course offered at Arkansas
Tech is CS0, IS0, and IT0 in the sense that it serves as an orientation to the three different
undergraduate fields of study, Computer Science, Information Systems, and Information
Technology. The course is required for all prospective CS, IS, or IT majors. A primary
goal is to offer students a chance to discern which of these three fields of study, if any,
is right for them. Additional goals include an introduction to the systems that will be
used in later courses, building problem solving skills, and providing students a broad and
lively survey of the topics within the fields (i.e. the breadth-first approach). By touching
on a diverse subject matter in CS0, students may find one or more topics that interest

JCSC 25, 5 (May 2010)

80

them and subsequently may find motivation before beginning courses with narrow focus
and challenging content.

Carl Burch, Hendrix College
In the environment of a liberal arts college, CS0 is generally most useful for students

who are discovering whether computer science is for them: Those who find programming
tedious can still complete the course without growing unduly frustrated by increasingly
complex programs, and they can leave the course knowing fundamentals of the discipline
that are unrelated to programming. Such a course can double as a service course for
students from a variety of disciplines. But CS0 can be problematic in circumstances
where other departments (such as physics or engineering) want their students to learn
programming, and it is problematic when many students enter with AP or transfer
computer science credits. Another challenge for CS0 is cohesion among topics.

Chenyi Hu and Michael Nooner, University of Central Arkansas
The knowledge of computing has evolved dramatically during last few decades. It

is a challenge for both educators and students to effectively introduce and learn
fundamental computer science. Many students are turned away from computer science
even in the early stages of their education. The University of Central Arkansas is a
comprehensive university serving about 12,000 students mostly from the State of
Arkansas. As with many other public institutions, some students majoring in computer
science do not have appropriate academic preparation. These students often have
difficulties in CS I and II. Our initial motivation was to develop a CS0 course for
remediation to help improve the retention rate. However, when we first offered the course
in the spring of 2008, most students were non-CS majors. We realized that the CS0 course
should also be designed and implemented for a broader range of students, to introduce
computational thinking and problem solving. We will share our experience with
participants.

ABOUT THE PANELISTS
Dr. Brown is an Assistant Professor of the Department of Computer Science at

Arkansas Tech University (ATU). Before joining ATU in 2008, he held positions in
programming, data mining, and statistics at the Wal-Mart Home Office and Tyson Foods
World Headquarters over the course of nine years. He received his Ph. D. from Nova
Southeastern University in 2007.

Dr. Burch is the Department Chair and Associate Professor of Computer Science at
Hendrix College. Before joining Hendrix College in 2004, he was on the faculty at the
College of Saint Benedict and Saint John's University, where he taught CS0 four times
and co-authored a paper about that curriculum [1]. He received his Ph. D. in Computer
Science from Carnegie Mellon University in 2000.

Dr. Hu is the Department Chairperson and Professor of Computer Science at the
University of Central Arkansas (UCA). Before joining UCA in 2002, he had been on the

CCSC: Mid-South Conference

81

faculty of Computer and Mathematical Sciences at the University of Houston-Downtown
for twelve years. He received his Ph. D. from the University of Louisiana at Lafayette in
1990. He taught CS0 at UCA twice.

Mr. Nooner is an instructor and the system administrator for the Computer Science
Department at UCA. He received both of his B.S. and M.S. degrees in Computer Science
from UCA. He taught a CS0 course three times at UCA.

REFERENCES

[1] Burch, C., Ziegler, L., “Science of Computing Suite (SOCS): Resources for a
Breadth-First Introduction,” Technical Symposium on Computer Science
Education (SIGCSE), 437-441, 2004.

* Copyright is held by the author/owner.

82

LABGRADER AND NIFTY ASSIGNMENTS*

TUTORIAL PRESENTATION

Bob Bradley and Paul Tesar
Department of Management, Marketing, Computer Science & Information SystemsThe

University of Tennessee at Martin
Martin, TN 38238

731 881 7238
bbradley@utm.edu

This tutorial will consist of a short presentation about LabGrader and its features,
as well as a hands-on nifty assignment session.

LabGrader is a locally written web-based system that assists in the teaching and
grading of introductory (C++, Java, etc.) programming classes. LabGrader allows
students to enter, compile, test and debug their programming assignments all from the
comfort of a web browser. It includes a web-based IDE, and students can submit their
assignments and view their grades along with comments from the instructor. From a web
browser, instructors can create new assignments, create new unit tests, view the grade-
book and test and grade submitted assignments. These assignments can have multiple
"unit" tests which the students run to ensure that their output is correct.

LabGrader is a free and open source system that instructors can download and use.
It is written in Microsoft ASP.Net MVC and is designed to be run on a Windows 2008
server with a MySql back-end. LabGrader supports multiple teachers and classes, and
it can be integrated with Active Directory.

The presentation will be followed by a hands-on session where attendees can try the
LabGrader system. Attendees will be able to try some of the sample assignments or
practice creating their own new assignments.

While most of the assignments will be of the text input/output type, this session also
will present some nifty assignments that can be given with (or without) the LabGrader
system. These nifty assignments include HTML assignments, photo image filter
assignments and audio assignments.

* Copyright © 2010 by the Consortium for Computing Sciences in Colleges. Permission to copy
without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the CCSC copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires a
fee and/or specific permission.

83

NETWORK SECURITY IN TWO-YEAR COLLEGES*

Russell Jones
Computer and Information Technology Dept.

Arkansas State University – Main Campus
State University, AR 72467

(870) 972-3988
rjones@astate.edu

Tamya Jean Stallings
Information Technology Services

Arkansas State University –
Newport

Newport, AR

ABSTRACT
Network security has become a growing challenge in industry and education.
With the increase of viruses, spam, hackers, and identity theft, organizations
are beginning to look at areas to improve the protection of their Information
Technology structure. Higher Education has the highest vulnerability to
network security threats, especially the two-year institutions. Computer labs
within institutions of higher learning are often known for their open or ease of
access. Open labs, limited staff and resources hinder security measures for
these institutions. This paper focuses on the current state of network security
at two-year institution.

Conflict, war and terrorism have elevated both apprehension in high technology
industries and awareness about the need for improved physical security as well as
information security (Casey, 2002).

First among the targets in cyberspace are colleges and universities because they
possess a vast amount of computer power most of which contains resources with open
access. Hackers attack educational institutions due to their perception of lax security that
is coupled with high capacity computer systems. Research lab servers and workstations
as well as student computers in dorms are not typically managed by IT staff thus opening
those resources for hackers and viruses (Updegrove & Wilson, 2003). The National
School Safety Center has acknowledged these open resources and is in the process of

JCSC 25, 5 (May 2010)

84

ensuring that higher educational institutions become more secure (National Strategy,
2003).

Higher education institutions have a moral as well as legal responsibility to protect
the sensitive data maintained on campus computers. The computers contain records with
financial, medical, and student data, intellectual property and digital communications
both internally and externally that are used in day-to-day activities (Oblinger, 2003). A
balancing act between cyber-security and the principles of the academy must be struck
so that institutional resources are protected without compromising the institution’s
mission.

Despite the recommendations from NSSC, academia has typically treated
Information Security as an after-thought. It is an area that has been left for the
Information Technology departments to worry over and pay for out of their already thinly
stretched budgets. For years it has been the responsibility of overburdened system
administrators or general IT staffers to make sure that the campus was safe and secure
(Recor, 2003). IT staff are faced with the daunting task of securing data while allowing
an open and convenient environment in academia. The balancing act between
convenience, openness and security measures is the biggest challenge for academia.
Campus policies and procedures must have the hierarchical support in place for a
successful and organized security infrastructure (Recor, 2003).

Two-year colleges run into a plethora of barriers when it comes to the
implementation of network security. A large barrier for any organization would be the
lack of financial resources. IT management must take numerous items into consideration
for network security which can become very expensive. Some considerations should
include physical aspects, hardware, and software. Staffing the IT department becomes
a barrier after the purchase of the hardware and software. An institution may have
hardware and software purchased for network security but the IT staff may not have the
skills necessary or the time to install and maintain the resources. When management does
approve funding for the equipment the next barrier would be security training for the
installation of equipment to make it work efficiently (Daniels, 2001).

Though network security has been heavily investigated in the for-profit and four-
year college sectors, very little research has been conducted of this issue in two-year
colleges. The study will fill this gap in knowledge by surveying the stakeholders in this
area thereby providing IT professionals with a report on the status of security in
community colleges. The results will allow community college IT professionals to
compare their environment to others in the region so that they can advocate for services
that are appropriate for two-year campuses.

METHODOLOGY
The purpose of this study was to determine how two-year colleges have protected

their campus computer networks from viruses and hackers. With the increase of viruses
and computer hackers, it is important to know whether the campuses have been proactive
with their security or reactive based on how their campuses have been affected.

To accomplish the study’s purpose, a survey was sent to all community colleges in
Arkansas and its six neighboring states in order to investigate the emphasis that two-year

CCSC: Mid-South Conference

85

colleges have placed on network security. The primary research question was to
determine the status of network security in community colleges in Arkansas and the six
surrounding states.

The Director of Computer Services was the targeted respondent for this descriptive
study designed to address the concerns directly relating to network security and how
policies and procedures are affected. The Directors were asked to complete the
questionnaire since they typically had responsibility for community college computer
networks in general and would be most likely to respond. It was assumed that they had
the most readily available and accurate information needed to complete the questionnaire.

RESULTS
Forty-five of the 134 surveys sent to the other six states were returned. The study

had a 33.6% questionnaire return rate. The respondent was asked if their organization
was where it should be in various areas of network security. Each respondent was asked
if, in their opinion, the organization was where it should be with network security. Over
74% stated their organization was not where it should be with network security. The
overwhelming explanations of what this existed was: lack of funding (29%), lack of staff
(26%), lack of hardware (16%) and lack of software (18%). Some additional reasons why
institutions were not where they should be included lack of planning, training, time, not
a priority and security has not been a problem, and upper management had a lack of
understanding. Respondents were also asked to indicate whether certain security
procedures were in place at their institution and if they thought they were necessary to
provide an adequate level of security. These responses are summarized in Table 1 below.

Security Issue % Currently in
Place

% Thought Was
Needed

Strong Passwords 50% 93%
Require Password Changes 64% 89%
Multiple Level Authentication 65% 84%
Regular Risk Analysis Performed 34% 86%
Firewalls on External Connection 94% 93%
Internal Firewalls 64% 80%
Encrypted Files Used 31% 63%
Routine Backups Performed 94% 100%
Security Patches Regularly Applied 86% 98%

Virus Protection Routinely Updated 96% 100%
Intrusion Detection Systems Utilized 40% 91%
PKI Certificates Utilized 16% 31%
Smart Cards Utilized 6% 28%

JCSC 25, 5 (May 2010)

86

Respondents were also asked how the institutions ensure their wireless connections
are secure if they have that option. Respondents were asked to list ways that wireless
connections were secured. The majority of the responses included the following:
 • use Blue Socket Appliance
 • limit access by using MAC addresses
 • don’t allow students access to wireless at this time
 • firewalls on access points
 • require authentication
 • virtual private networks
 • WPA/WPA2, 802.1x, WEP
 • VLANS

Finally, they were also asked about the use of patch servers. These were
implemented at 38 (75.0%) of the institutions. The 25.0% that did not have a patch server
were asked how the computers at the institution were updated. A list of three items was
provided with an area for additional responses to be added. Multiple answers could be
selected by the respondents for this question. Seven of the respondents who reported they
didn’t have patch servers indicated the IT staff visits each computer. Four participants
said that the individual employees were responsible. Three institutions set the computers
to automatically update the computers.

DISCUSSIONS, IMPLICATIONS, AND CONCLUSIONS
Network security has become a growing challenge in academic institutions.

Higher education institutions are beginning to look at areas to improve the protection of
their Information Technology structure due to the increase of viruses, spam, hackers, and
identity theft. Educational institutions have the highest vulnerability to network security
threats.

The Information Technology profession in the community college setting has
acknowledged the importance of security, both physical and network. The focus on this
subject gains strength every time a new spam technique is released or when a new
disaster like Katrina hits. The study indicates the core beliefs and prioritizing of
Information Technology personnel regarding security.

It is valuable to know what procedures are being encouraged by the leadership of
the IT departments in two-year colleges. The data indicates that directors have a real
concern about the time and money demands, administrative positions and the stressful
nature of the jobs.

At two-year colleges, 72.5% of Informational Technology staff spends about 0-
20% of their workday dealing with security issues. These issues include updating
software, monitoring firewalls, monitoring viruses, monitoring network activity and other
similar measures. The time spent on security is minimal considering all the hats that the
community colleges IT staff wear. Only 25.5% of the institutions included in the study
have a security support specialist on staff. The majority of these institutions (41.2%) do
not have anyone who has had more than a year of security training. The data suggests
that IT directors want to increase the knowledge and skills available to the IT departments

CCSC: Mid-South Conference

87

but currently are relying on individual staff member’s skills to react to security breaches.
The study supports the finding of the Educause Core Data Service 2003 Summary Report
(Educause Core Data Service, 2004). The lack of training is due to numerous factors
such as lack of funding, lack of staff, and lack of senior administrative support.
Administration has to get behind the IT staff and find the resources needed to get the
security expertise on their campus. Payne (2003) discussed having a security training
tailored for the administrators due to their decision making for allocating resources.
Network security should be marketed in business terms to the administrators to show how
the institution as a whole can be affected by security breaches (Payne, 2003). Another
article states that a computer service department does not have any protection,
creditability, or funding for security initiatives if the management does not get behind the
department (Hayes, 2001).

It is concluded that two-year colleges are facing a real crisis in IT security practices.
Many administrators are already addressing these issues but at a tragically slow rate. The
majority of current administrators have reported a lack of support from other
administrative positions and barriers such as excessive time requirements and stress
which may prevent them from incorporating policies that would more securely protect
their campus network.

REFERENCES

Casey, T. (2002, August 29). Option 1 – research on topics in information security
the national strategy to secure cyberspace: An in-depth review. Retrieved
January 7, 2005 from
http://www.giac.org/practical/GSEC/Tim_Casey_GSEC.pdf.

Daniels, Jack. (2001). The weakest link…This is not a game. Retrieved June 16, 2006
from http://www.sans.org/readingroom/whitepapers/basics/440.php.

Educause (n.d.b). About educause. Retrieved June 24, 2006 from
http://www.educause.edu/about.

Educause Core Data Service. (2004). 2003 summary report. Washington,
D.C.:Hawkins, B.L., Rudy, J.A.; & Madsen, J.W.

Hayes, H. (2001, June). Security training checklist. Retrieved June 16, 2006 from
http://www.sans.org/readingroom/whitepapers/basics/440.php

National Strategy to Secure Cyberspace. [www.securecyberspace.gov].2003.

Oblinger, D. (2003). IT security and academic values. In M. Luker & R. Peterson
(Eds.) Educause leadership strategies: Vol. 8. Computer and network security in
higher education (pp.31-44). San Francisco, CA: Jossey-Bass.

Payne, S. (2003). Campuswide security education and awareness. In M. Luker & R.
Peterson (Eds.) Educause leadership strategies: Vol. 8. Computer and network
security in higher education (pp.31-44). San Francisco, CA: Jossey-Bass.

JCSC 25, 5 (May 2010)

88

Recor, J. (2003). Organizing for improved security. In M. Luker & R. Peterson
(Eds.) Educause leadership strategies:Vol 8 Computers and network security in
higher education (pp15). San Francisco, CA:Jossey-Bass.

Updegrove, D. & Wishon, G. Foreword.. In M. Luker & R. Peterson (Eds.) Educause
leadership strategies: Vol. 8. Computer and network security in higher education
(pp.xi-xiv). San Francisco, CA: Jossey-Bass.

* Copyright © 2010 by the Consortium for Computing Sciences in Colleges. Permission to copy
without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the CCSC copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires a
fee and/or specific permission.

89

TEACHING FEDERATED IDENTITY IN COMPUTER AND

INFORMATION SCIENCE*

George Whitson
Computer Science Department

The University of Texas at Tyler
Tyler, Texas 75799

903-566-7006
gwhitson@mail.uttyl.edu

ABSTRACT
Computer security has become a major area of computer science. Most
colleges and universities now teach several courses in computer security and
also cover security topics in many of their courses. The introductory computer
security course covers security mechanisms like encryption, message
authentication techniques and SSL. The introductory programming course now
discusses how to avoid buffer overflow attacks rather than just looking at data
validation. But, Federated Identity, a logical extension of authentication, is
often little mentioned outside of Web security classes. In this paper we
describe Federated Identity as it is currently practiced and then describe a
number of courses where we have covered both the theory and practice of
Federated Identity.

INTRODUCTION
When accessing a computer a user must establish an identity. Initially, the user may

login to a workstation on a corporate network after being authenticated by a central server
using a CHAP login/password process. In addition, authentication may require the user
to have a digital certificate on a flash-drive, possess a secret piece of information or
demonstrate a biometric trait. After the authentication is finished, the identity then
becomes a list of attribute/value pairs that uniquely identify the user in the domain of the
authentication server.

JCSC 25, 5 (May 2010)

90

If the user needs to access resources in another authentication domain, then they
need to establish an identity in that domain as well. Multi-domain authentication was
introduced by Microsoft in the Windows NT operating system [12] and by OSF’s
Kerberos by in the 1980’s [10]. Microsoft’s original multi-domain authentication has
been replaced by Active Directory, and Kerberos has been implemented by many
computer vendors. While both Active Directory and Kerberos support multi-domain
authentication for a single vendor, neither of these systems currently supports multi-
domain authentication across vendors.

Federated Identity refers to a user being able to have a simple sign-on in a multi-
domain environment that is easy to use, provides adequate security and insures sufficient
privacy.

BASICS OF FEDERATED IDENTITY
Cameron defines digital identity as a set of claims made by one digital subject about

itself or another digital subject [3]. The Liberty Alliance defines (digital) identity as
consisting of traits, attributes, and preferences upon which one may receive personalized
services [7]. Combining these definitions we see that a digital identity consists of a set
of attribute/value pairs that uniquely define a subject in a domain.

As Web services matured, the development of a digital identity for applications
using Web services became important. In particular, for an application to function
seamlessly as it accesses remote Web services, each user of the application needs a Single
Sign-On (SSO). Standards have been developed by W3C and OASIS to support SSO for
Web Services [9, 16]. These SSO standards are actually quite general, and a number of
organizations are modifying them to provide an architecture for true Federated Identity
[1, 4, 13]. Microsoft announced Geneva as its Federated identity product and recently
changed the name to Windows Identity Foundation (WIF) [2].The Liberty Alliance is also
developing a Federated Identity standard called the Identity Architecture [7].

Kim Cameron, of Microsoft, has listed seven rules that any Federated Identity
architecture should satisfy [3]. These are generally recognized as a good starting point of
a discussion of Federated Identity:
 1. User Control and Consent. Federated identity systems must only reveal

information identifying a user with the user’s consent.
 2. Minimal Disclosure for a Constrained Use. The solution which discloses the least

amount of identifying information is best.
 3. Justifiable Parties. Digital identity must be designed so that the disclosure of

identifying information is limited to authorized parties.
 4. Directed Identity. A universal identity system must support both “omni-

directional” identifiers for use by public entities and “unidirectional” identifiers for
use by private entities.

 5. Pluralism of Technologies. A universal identity system must channel and enable
the inter-working of multiple identity technologies run by multiple identity
providers.

CCSC: Mid-South Conference

91

 6. Human Integration. The universal identity metasystem must define the user to be
a component of the distributed system and provide protection against identity
attacks.

 7. Consistent Experience. The unifying identity metasystem must guarantee its users
a simple, consistent experience.
The first rule captures the essence of WIF. The WIF authentication process requires

the user and the server to make a decision to share their authentication information. By
proper signing of this information, the receiver can be assured of its authenticity. WIF is
a user-centric Federated Identity architecture [2].

As with any active research area there are several groups proposing standards. Each
group has an active research program that is producing a multitude of ideas. One of the
standards is WS-Federation [8], and it provides a good starting point for classifying
Federated Identity architectures. The three Federated Identity architectures described by
WS-Federation are:
 1. A digital identity is fixed across domains. Here a subject would only need to

convince a provider of their identity which might be easily done by using a signed
set of authentication credentials provides by a Security Token Service (STS).

 2. There would be a pair-wise mapping of digital identities, where a unique digital
identity is used for each principal at each target service. Here a subject would only
need to map their identity to that maintained by each provider. Again, this might be
easily accomplished by providing a STS security token to the provider, but might
also require a trust relationship among the STS’s.

 3. Each service provider would have to generate a digital identity from the information
provided by a subject, given a small amount of information about the subject. Again
this would be accomplished by providing a STS security token to the provider and
letting the provider generate the identity from a trust relationship it has with the
STS’s of the subject.

A SURVEY OF FEDERATED IDENTITY SYSTEMS USED TODAY
Cameron’s seven rules and WS-Federation’s basic architectures provide a

foundation for Federated Identity systems. But a survey of current systems [5] being
developed is not quite that neat. Looking at the current systems a reasonable practical
classification of Federated Identity systems is:
 1. User centered – user/server exercises the ultimate control (CardSpace/InfoCard).
 2. Bridge centered – user/server may connect to an intermediate authentication system

(NCPDP and SAFE bioPharma).
 3. Server centered - user/server identifier by designated server (Open ID).

Microsoft, IBM and the Liberty Alliance all appear to be supporting user-centric
systems based on WS-Security [1]. Microsoft is centering its systems on SAML1 and
WS-Federation, while the Liberty Alliance is centering its system on SAML2. As
illustrated below,

JCSC 25, 5 (May 2010)

92

A user requests a signed authentication pack from a trusted identity provider, sometimes
after checking to see what credentials the server requires, and then sends them to the
server to be authenticated by the server. While there can be substantial automation of all
of these processes, the user and server have the control to either make a connection or to
refuse it.

Some Federated identity systems add some administrative control to the
authentication process. A good example of this type of Federated Identity system can be
seen in a standard implementation of the NCPDP (National Council for Prescription Drug
Programs) system for e-prescribing. Here users authenticate to a trusted bridge, the server
also authenticates to a trusted bridge, and the user is authenticated to the server with the
support of trusted bridges [11]. For NCPDP the diagram below illustrates the typical
authentication.

In the current Safe bioPharma standard of the medical research community [14],
users generally authenticate to a trusted bridge and the servers then accept the
authentication of the trusted bridge, although more complex bridge structures are allowed.
The SAFE in SAFE bioPharma stands for “Signatures and Authentication For Everyone.”
Thus, the bridge centered Federated Identity systems are similar to (and sometimes an
extension of) the Certificate Authorities of PKI.

Microsoft’s Passport, now called Windows Live ID, is a server-centric Federated
Identity system. Here the user places their authentication information on an authentication

CCSC: Mid-South Conference

93

server and can either use a signed token from the authentication server or request that
others contact the authentication server for authentication of the user. Other companies
than Microsoft offer a SSO for the Web, but none of these have been widely accepted yet.
An interesting server-centric Federated Identity system that has been well received is the
OpenID standard [15]. It is a lightweight service to provide a single digital identity for
a user to access all of the interactive Web applications, like FaceBook, that have
proliferated over the internet.

TEACHING FEDERATED IDENTITY IN AN ADVANCED VISUAL BASIC
COURSE

We began to cover computer security concepts in our Advance Visual Basic
programming course several years ago. The main emphasis was on checking all user
input, being sure to gracefully exit from program errors and threat analysis. In the fall of
2009, we added coverage of authentication for applications and how Federated identity
could play a role in developing secure enterprise applications. Some details of what was
covered in the course are:
 1. As soon as students were introduced to Forms, they were also introduced to

checking all user input for attacks, as an enhanced validating user technique.
 2. Shortly before Midterm, I gave a set of lectures on computer and application

programming security that stressed Howard’s Ten Rules and Threat Modeling [16].
 3. Early in the course, students were assigned a multi-Form program that combined

several programs used to calculate reverse mortgages. After the security lecture,
students had to return to this program and describe what changes were needed to
make it more secure.

 4. Later, a part of the program was implemented as a DLL. As a part of the security
analysis, we discussed the problems of authenticating the information returned from
a DLL. We then added a discussion of authentication if the contents of the DLL
were accessed through COM or DCOM. This led to a thorough discussion of
Federated Identity and its importance for application programming.

 5. During the last two weeks of the course, we discussed how to implement a Web
service that returned the mortgage data to a desktop VB application. A fairly
complete overview of how WCF and Geneva work together to implement SSO for
Web services was included with the material on Web services.
The introduction of Federated Identity, as represented by a SSO Web service

application, was an ambitious project for a junior level programming course, but at least
60% of the students seemed to master the material, and 100% of the students appreciated
covering some of the more recent topics in VB programming.

TEACHING FEDERATED IDENTITY IN WEB DEVELOPMENT COURSES
We teach a number of courses on building Web applications. Some stress Web

design, some stress e-commerce and some stress building database-driven Websites. Web
services, and the need to use Federated Identity, are now introduced in all of these
courses. For example, in the Web Design for E-Commerce course, we always have a

JCSC 25, 5 (May 2010)

94

chapter on computer security and secure payment methods. In the spring of 2009, we
added lectures on the use of Web services in modern Web applications and then gave an
overview of WS-Security, including material on how SAML authentication could be
implemented for the class project. We gave demonstrations in class of how to authenticate
in a single domain and had students write papers on how they would add multi-domain
authentication for a Microsoft only environment.

TEACHING FEDERATED IDENTITY IN A MEDICAL INFORMATICS
COURSE

In the spring of 2009, I taught a course on Medical Informatics. The main emphasis
in the course was HL7 as a technology to support an Electronic Health Record. At the end
of the class we added a detailed discussion of HL7’s new authentication classes and the
techniques for establishing a digital identity for an Electron Health Record. We also
added a detailed discussion of the NCPDP standard for e-prescribing. We were able to
get all three of the major hospital/clinic systems in our area to present an overview of
their information systems, and each added a complete discussion of how they were
approaching multi-domain authentication, Each of the hospital/clinic systems had
contracted with a vendor to provide SSO service for their systems, that followed a user-
centric approach to authentication. While we did not cover the theory of Federated
Identity in detail in the course, the industry presentations provided an excellent
introduction for students to some applications of Federated Identity.

TEACHING FEDERATED IDENTITY IN COMPUTER SECURITY COURSES
We teach three computer security courses and cover Federated Identity in all of

these. In our basic security course, we have an extensive coverage of authentication for
workstations, network domains and the Web. We then look at SSO for Web services for
a week, including a brief introduction to WS-Security. Students are then assigned two
papers to write about Federated Identity. The first is a guided discussion of the general
Federated Identity architectures, similar to that in this paper, and the second is a detailed
description of one real Federated Identity system, like Microsoft’s WIF. Students also set
up an Active Directory certificate authentication system for Windows Server 2003, and
we discuss how it can be a part of a multi-domain Federated Identity system based on
certificates.

In our Computer Security Management course, students are formed into teams
which plan and develop a certification document (including a plan, risk analysis and
policy) for a real system we set up in our security lab. This certification includes a
Federated Identity component. The teams are paired so that after they complete the
certification of their systems, including the need to support Federated Identity, each team
does an accreditation of another team’s certification.

In our Web security course we give a complete coverage of basic authentication,
including CHAP, Kerberos and certificates. We also cover TLS, as a way of
authenticating Web users and servers, as well as supporting secure transmission. We then
give a detailed coverage of the literature on Federated Identity [9, 16]. With this

CCSC: Mid-South Conference

95

background we then cover Web services security in detail [9, 16]. Finally, we finish the
course by applying the techniques of Web service security to the general security needed
in Federated Identity. In this course, students implement a simple multi-domain Web
service example with SAML authentication using certificates. Both domains are currently
Windows domains, but multi-domain authentication across different operating systems
is planned for the future.

SUMMARY
Federated Identity is an important topic in computer security and is now covered in

all of our security courses, and many other courses as well. This is a complicated subject
and can only be introduced in most courses. Developing multi-domain applications is still
hard, so in most of our courses at the present time, we cover only the theory or provide
demonstrations. In our Web security we do a thorough job covering the theory, and
students implement a simple multi-domain example using Microsoft’s technology. As the
Federated Identity architectures become more robust we plan to introduce multi-vendor,
multi-domain examples into all of our courses.

REFERENCES

[1] Balasubramaniam, Lewis, Morris, Simanta, Smith, Identity management and its
impact on federation in a system-of-systems context, 3rd Annual IEEE Systems
Conference, (March 2009), p179-182.

[2] Bustamante, Michele, Claims-Based Apps: Claims-Based Authorization with
Windows Identity Foundation, MSDN Magazine, November 2009(Vol. 24
Number 11), p 34-47.

[3] Cameron, Kim, The Laws if Identity,
http://www.identityblog.com/stories/2005/05/13/TheLawsOfIdentity.pdf
retrieved October 11, 2009.

[4] Fragoso-Rodriguez, et al., Federated Identity Architectures, Proc. 1st Mexican
Conference on Informatics Security, 2006 (MCIS’2006), Oaxaca, Mexico, IEEE
Computer Society, Mexico, p 1-8.

[5] Goth, Greg, Identity Management, Access Specs Are Rolling Along, IEEE
Internet Computing, Volume 9, Issue 1, Jan-Feb 2005, p 9-11.

[6] Howard and LeBlanc, Writing Secure Code, Second Edition, Microsoft Press,
2002.

[7] Liberty Alliance, Introduction to the Liberty Alliance Identity,
http://www.projectliberty.org , retrieved October 11, 2009.

[8] Lockhart, Hal, et al., Web Services Federation Language (WS-Federation),
Version 1.1(December 2006),
http://www.ibm.com/developerworks/library/specification/ws-fed/, retrieved
October 11, 2009.

JCSC 25, 5 (May 2010)

96

[9] O’Neill, Mark, et al., Web Services Security, McGraw-Hill (Osborne), 2003,
ISBN 0-07-222471-1.

[10] Rosenberry, Kenney, Fisher, Understanding DCE, O'Reilly Media(1992).

[11] Rothermich, Swanson, Electronic Prescribing Security and Authentication,
http://www.ncvhs.hhs.gov/041209p1.pdf, retrieved October 11, 2009.

[12] Russinovich, Solomon, Solomon, Allchin, Inside Microsoft Windows Internals,
Covering Windows 2000, Windows XP, Windows Server 2003, Microsoft Press,
2005.

[13] Shim, Bhalla, Pendyala, Federated Identity Management, IEEE Computer,
Volume 38, Issue 12, Dec. 2005, p 120-122.

[14] Stelex, Meeting the Need for a Global Identity Management System in the Life
Sciences, http://www.safe-biopharma.org/infocenter/a-
safewhitepaperstelexfinal.pdf, retrieved October 11, 2009.

[15] Weitzner, D.J., Whose Name Is It, Anyway? Decentralized Identity Systems on
the Web, IEEE Internet Computing, Volume: 11, Issue: 4, July-Aug. 2000, p 72-
76.

[16] Whitson, G., Security for Service Oriented Architectures, Journal of Computing
Sciences in Colleges, Volume 23, Issue 4(April 2008) p 8-9.

* Copyright © 2010 by the Consortium for Computing Sciences in Colleges. Permission to copy
without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the CCSC copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires a
fee and/or specific permission.

97

THE PNTFS FILE SYSTEM IN THE MOSES2 OPERATING

SYSTEM ENVIRONMENT SIMULATOR*

Robert England
Transylvania University

300 North Broadway
Lexington, KY 40508

Ph: 859-576-7021
rengland@transy.edu

ABSTRACT
The Moses2 operating system environment simulator is a software tool
developed by the author to teach concepts of operating systems in upper level
undergraduate O/S courses. Using the Moses2 system, students write their own
version of a limited functionality operating system kernel that manages the
processes and resources that are provided with the Moses2 simulator. This
paper describes the PNTFS file system component that students develop as one
of an incremental series of Moses2 features.

OVERVIEW OF THE MOSES2 SYSTEM
The Moses2 operating system environment simulator is a software system that

provides a platform consisting of simulated hardware and a set of simulated user
processes for student O/S construction projects in upper level undergraduate operating
systems courses. Using Moses2, students design and implement their own small operating
system kernel, which runs Moses2 user processes on the Moses2 simulated hardware. The
Moses2 simulated hardware includes a Program Status Word, or PSW, a set of general
purpose registers, a main memory area, a virtual output device, and a virtual disk drive.
All of the simulated user processes that are provided as part of the Moses2 system are
specially constructed to run only on the Moses2 simulated hardware and to request
services that require the use of Moses2 simulated resources.

JCSC 25, 5 (May 2010)

98

The conceptual and implementation details of the Moses2 virtual hardware machine,
the user process model and context switching among processes, support for virtual
memory, and mechanisms for shared resource management have all been previously
described in [2,3,4]. After students have incrementally incorporated these features into
their operating system kernel programs, the next in the sequence of Moses2 O/S projects
that students undertake is the design and implementation of a simulated file system,
which is described here.

GOALS OF THE FILE SYSTEM PROJECT
Clearly, with any operating system simulation system designed for use in a college

course, the primary challenge is how to clearly illustrate both the types of problems that
must be solved and the types of services that must be provided by an operating system,
but while still keeping the scope of O/S code development within the realm of what can
reasonably completed in one or two college semesters. The development of the Moses2
simulation system itself has proceeded since its beginning with this challenge and this
constraint as its primary and guiding concerns.

The main goal of the PNTFS Moses2 file system project is to help students
appreciate and understand the inner workings of a real file system, but without asking
students to actually implement software that is as extraordinarily complex and lengthy
as that of a real file system. In the PNTFS assignment, students implement a user-level
API to map four high-level file operations --- open, close, write, and print --- to
underlying low-level operations provided by the Moses2 simulator, such as disk cluster
allocation. The hands-on experience achieved by implementing this simulated file system,
limited though it may be, is invaluable to illustrating the types of problems that must be
solved in the design and implementation of a real file system.

Furthermore, writing a Moses2 file system gives students the chance to see and
develop real, practical applications of computer science course material that they may
have viewed as more abstract than practical in their other courses such as data structures
and systems programming. For example, following the model of the Windows NTFS file
system, students are encouraged to implement their file system indexes for PNTFS as B+
trees. These trees are themselves stored externally among the set of virtual clusters on
disk, providing extra programming practice for students in managing a large nontrivial
data structure. Also, the writing to and reading from the file buffers which students must
manage in the file handling component of their O/S requires treating the memory frames
involved in these operations as bounded buffers: a user process may write varying
numbers of characters at a time to an output file, for example, and the student O/S file
manager is responsible for recognizing when a virtual frame in memory has become full,
and therefore must be flushed out to disk.

Thus, the experience of constructing a PNTFS file system for use in the Moses2
simulation environment can serve the dual purpose of solidifying the basic concepts of
O/S file services while avoiding intractable complexity, as well as providing a
challenging test of students’ advanced software construction skills.

CCSC: Mid-South Conference

99

THE PNTFS FILE SYSTEM ENVIRONMENT
The Moses2 file system name PNTFS (for PseudoNTFS) was suggested by students

in an operating systems class because the system is conceptually based loosely on the
design of the Windows file system NTFS [1,5]. Some features of the NTFS system, for
example, the B+ tree structure model for the file index data, are used in PNTFS in a
simplified form.

Before beginning to implement the PNTFS file system in a Moses2 project, a
student must first have a fully functioning Moses2 operating system implemented through
the level of all of the earlier incremental Moses2 assignments. In other words, context
switching among processes must be in place, virtual memory must be implemented, and
so on, through all features described in [2,3,4].

The descriptions of the technical details about the file system environment that are
described here are offered primarily to relate this project back to other Moses2 O/S
projects covered in the earlier papers, and to illustrate the level of technical detail that
students must grapple with as they develop their own O/S kernel projects. New hardware
and software specifications developed specifically for the file system project include the
following:
 M The cluster size, or disk file read/write unit, is the same as a virtual page size: 64

bytes.
 M A total of 4096 virtual disk clusters are available on the virtual disk drive for use by

the student O/S file system and for storing user files, starting at a virtual disk
address called cl_base which is provided to the student O/S in simulated register Tx
at system startup.

 M The following new system-level functions are provided as part of the Moses2
simulator:

" void frPrint (unsigned frame_no); // frame print
The frPrint function prints the current contents of virtual memory frame
number frame_no to the screen as a plain text string. This function is a
valuable tool for debugging.
" int clAlloc (unsigned cluster_count); // cluster allocate
The clAlloc function allocates a total of cluster_count clusters from the virtual
disk, if that many are available, and returns 1 or 0 to indicate success or
failure. The first cluster allocated during the first run of a student O/S will
always be cluster 0, so the student O/S can be written to assume that it can load
its saved file system information by starting with cluster 0.

When a call to clAlloc is successful, the student O/S will find in register Sx the address
of an array of 32-bit unsigned values that contain the following:

0th element: 0th starting logical cluster number
1st element: number of clusters in the 0th run
2nd element: 1st starting logical cluster number
3rd element: number of clusters in the 1st run

Etc.

JCSC 25, 5 (May 2010)

100

The first negative value in an even-numbered array element marks the end of the cluster
allocation. For example, if a Moses2 O/S successfully calls clAlloc requesting 10 clusters,
then on return from clAlloc the O/S could possibly find the following array at Sx: 13 3
5 2 17 5 -1. This indicates that the system has claimed clusters 13, 14, 15, and 5, 6, and
17, 18, 19, 20, 21, for a total of 10 clusters, which the student O/S can now access
through the pageRead / pageWrite interface for virtual disk reads and writes. This
interface is described in detail in an earlier paper on virtual memory in Moses2 [2].
Contents of the virtual disk in Moses2 are automatically preserved across runs of a
student O/S program, so the file system can be restored in its entirety to the state that it
was in at the end of the previous run of the system.

Rather than simply reading from or writing to a file using standard input and output
operations, a user process in Moses2 only accesses files through a well-defined interface
of four system calls:

 M System call 4 Activity 0 opens a file
 M System call 4 Activity 1 closes a file
 M System call 4 Activity 2 writes to an open file
 M System call 4 Activity 3 prints the complete contents of an open file to the

terminal screen

The occurrence of any one of these calls is communicated to the student O/S though a set
of bits in the simulated PSW that are designated for just such system call
communications. The simulated general registers communicate other information
required per file operation, such as a 1 or a 2 from the user process in register Rx for
Activity 0 to indicate whether the file should be opened for reading or writing, and a
unique “file handle” integer (determined by the file naming scheme set up by the student
O/S developer) returned to the user process by the O/S in register Sx after a file is opened
successfully. Other information communicated via the registers for these system calls
includes sequences of bytes to be written to a file, the count of bytes to write, and the file
handle of a file that a user process wants to close. Return values from the O/S in register
Rx report back to the user process whether or not the requested file operation completed
successfully.

STUDENT IMPLEMENTATIONS OF PNTFS
Subject to the requirements and constraints imposed by the Moses2 simulator and

described above, the student implementers of a PNTFS system are free to design and
implement any type of file system they choose, as long as the required functionality is
complete and correct. Most students so far have chosen to model their file systems after
the NTFS system, since that was the model that they felt most familiar with when the
project was assigned.

CONCLUSIONS AND FUTURE WORK
The PNTFS project is the newest of the Moses2 operating system projects. To date,

it has only been assigned as required course work in one special topics course offered by

CCSC: Mid-South Conference

101

request to computer science students who had already completed a standard operating
course which was taught by the author. Consequently, these students had already written
a Moses2 kernel of their own, complete with the requisite functionality of context
switching, virtual memory, and so on, so only the file system component remained to be
implemented. Results to report are thus largely anecdotal, but uniformly positive:
Students felt that they did in fact have a much better understanding of file systems in
general, and after taking standardized tests such as the GRE Computer Science Subject
Test, they reported that they had been quite well prepared for the questions about
operating systems and file systems.

The incorporation of a file system project into the suite of Moses2 operating system
construction projects may well represent the final addition to this collection that can
reasonably be completed by students in the time available to them during an operating
systems course. The author plans to apply for an NSF CCLI grant in the spring of 2010
to complete the preparation of the Moses2 system for distribution to other schools so that
any instructor who wishes to use the Moses2 system in an operating system course may
freely do so.

REFERENCES

[1] Custer, H., Inside the Windows NT File System, Redmond, WA: Microsoft Press,
1994.

[2] England, R.E., Teaching concepts of virtual memory with the Moses2
microcomputer operating system environment simulator, Journal of Computing
Sciences in Colleges, 20, (6), 84-91, 2005.

[3] England, R.E., Teaching principles of shared resource management with the
Moses2 microcomputer operating system environment, Journal of Computing
Sciences in Colleges, 21, (5), 46-52, 2006.

[4] England, R.E., The virtual machine and user process model used in Moses2: a
microcomputer operating system environment simulator, Journal of Computing
Sciences in Colleges, 17, (2), 301-309, 2001.

[5] Nagar, R., Windows NT File System Internals: A Developer’s Guide, Sebastopol,
CA: O’Reilly, 1997.

* Copyright is held by the author/owner.

102

JAVAWIDE – INNOVATION IN AN ONLINE IDE*

TUTORIAL PRESENTATION

Jam Jenkins, Evelyn Brannock, Sonal Dekhane
Information Technology Program, Georgia Gwinnett College

(678) 407 – {5770, 5848, 5762}
{cjenkins, ebrannoc, sdekhane}@ggc.edu

ABSTRACT
Over the past decade applications have been moving from the desktop into the
cloud. Only relatively recently have integrated development environments
begun emerging in cloud computing. The Java Wiki Integrated Development
Environment (JavaWIDE) is one of these new online IDEs, and it is designed
to be simple enough for novice programmers to use. JavaWIDE is free and
provides anyone the capability to create, edit and run programs anytime,
anywhere, all from within a web browser – no specialized software required.
JavaWIDE promotes collaboration, integrates well with social networking
sites, and includes novel features such as concurrent editing support, a
common code base for all users, revision history explorer, automatic posting
of programs as applets, annotated and hyperlinked source code, an integrated
Java API and many others. This workshop is presented by the developer of
JavaWIDE Jam Jenkins, by Evelyn Brannock who has used JavaWIDE in the
classroom, and by Sonal Dekhane who has surveyed students about their
perceptions of using JavaWIDE.

INTRODUCTION
The objective of this tutorial/workshop is to give participants experience using

JavaWIDE so that they can start realizing the potential of moving the IDE into the cloud.
The developer will share his experience creating JavaWIDE and using it in the classroom
for two years. Participants will use JavaWIDE during the workshop, and therefore should
bring a laptop with wireless capability and Java 1.5 or higher installed (JRE or JDK).
The target audience is those interested in cloud computing, innovative programming
environments, collaboration, and those who teach introductory programming.

After briefly discussing the motivation for JavaWIDE and its development history,
the majority of the workshop will be devoted to demonstrations and hands-on activities.
This will include an introduction to concurrent editing and many other novel features,

CCSC: Mid-South Conference

103

using JavaWIDE with frameworks such as GridWorld, and handling file I/O securely.
The workshop will conclude with some comments about the social networking aspects
of JavaWIDE and student perceptions of using the system. Time at the end will be
reserved to have some general discussion and address participant questions.

MOTIVATION
Setting up an efficient development environment is not always a simple task. The

novice programmer can have an especially hard time learning, setting up and maintaining
their own development environment. This simple observation motivated the creation of
JavaWIDE.

Replicating the development environment to multiple platforms and different
hardware is even more challenging. This is the problem faced by programming and
software development instructors. Not only must they set up their own environment, but
they also have to make sure all classroom computers are properly configured and they
often must provide technical support to each student setting up his or her own
environment on a variety of hardware and operating systems. Such activities are not only
time consuming but they also require quite a bit of lead time for installation and testing.

One way to solve these problems is to avoid needing any specialized software at all
– deliver the development environment using what is available on nearly every computer:
a browser, an Internet connection, and the Java Runtime Environment (JRE) 1.5 or
higher. Once the IDE moves online, many existing problems are eliminated and new
opportunities emerge. JavaWIDE exemplifies what is possible as the IDE moves off the
desktop and into the cloud.

DEVELOPMENT HISTORY
JavaWIDE was created in November 2007 as a basic Mediawiki extension. Since

then it has grown in scope into a rich internet application that spans efficient client- and
server-side scripts and programs. A high level overview of JavaWIDE's design will be
described and justified with respect to security, performance, flexibility and scalability.

DEMONSTRATION
The demonstration portion of the workshop starts with creating, editing, and running

an application and an applet. This demonstration includes important details such as how
to handle the single namespace (because the single code base is shared), how compilation
and runtime errors are detected and displayed, and how to use auto-import and code
completion. After this brief demonstration, participants will be given time to write, edit
and run their own programs.

TEACHING TIPS
Beyond being easy to use, JavaWIDE facilitates quite a few new teaching techniques

based upon its novel capabilities. Since most have never used any concurrent editor

JCSC 25, 5 (May 2010)

104

before, all workshop participants will be given this opportunity as they work together to
create a single program at the same time. Following this experience, there will be a
discussion about strategies for coordinating the editing process and for using concurrent
editing to create an engaging classroom atmosphere. Several other novel capabilities of
JavaWIDE such as the history explorer, hyperlinked source code and embedded Java API
will also be demonstrated. The presenters will describe the purpose for including each
feature within JavaWIDE and will discuss the pedagogical advantages of using these
features.

GRIDWORLD & OTHER FRAMEWORKS
JavaWIDE easily integrates with frameworks that are designed to be compatible

with unsigned applets, and JavaWIDE can also be used with other frameworks as well,
even if they include file input and output or make outside network connections. This part
of the workshop will give an overview of how to import and use frameworks within
JavaWIDE, and the strategies that are used to adapt applications to fit the security
restrictions of unsigned applets.

FILE I/O IN APPLETS
An interesting part of any online IDE is how it handles file input and output and

security. Since untrusted applets cannot do file input and output, no online IDE that is
applet based can directly perform file input and output. Unsigned applets can perform
URL input and make network connections to the server from which they were
downloaded. JavaWIDE transforms programs that have file I/O into programs that can
run as applets by redirecting file input and output via a safe mechanism that is not a
security risk. This redirection happens seamlessly and is very easy and straightforward
to use. This part of the session will talk about the capabilities and limitations of
JavaWIDE's file I/O and will discuss the relevant design considerations that led to this
structure.

STUDENT FEEDBACK, SOCIAL NETWORKING & QUESTIONS
This final part of the workshop will discuss student feedback from those using

JavaWIDE in and outside of class over the past two years. The social networking
capabilities of JavaWIDE will be demonstrated and the student perception of this social
networking integration will be discussed. The workshop will conclude with questions
and answers and future plans for JavaWIDE.

* Copyright is held by the author/owner.

105

USING DATA MINING TO INTRODUCE DATABASES*

NIFTY ASSIGNMENT

Matt Brown
Department of Computer and Information Science

Arkansas Tech University
Russellville, AR 72801

(479) 356-2161
hbrown11@atu.edu

In this CS0 assignment, students collect and clean data, create simple relational
databases, and then mine their data for interesting rules. Data mining provides a nifty
way to motivate students as they learn basic database concepts. The process of using
automated algorithms to discover useful nuggets of previously unknown knowledge is not
only intriguing, but also allows insight into the value of storing data.

In the initial stages of the assignment data are generated and cleaned before later
insertion into a database. Students fill out surveys about their personal interests and
preferences (favorite dessert, TV show, holiday, etc.). The data are consolidated into a
spreadsheet and then students must clean the data (correcting misspelled words,
eliminating inconsistencies in terminology, etc.). This data quality step demonstrates one
of the more important tasks involved in creating modern databases and warehouses.
Tables are then created to teach the concepts of relational databases and normalization,
requiring students to decompose the tables in a way that reduces storage space but keeps
the tables linked for updates and queries. At this point, students run simple SQL queries
to answer questions such as "What is the most preferred dessert?"

Finally, students are given an unsupervised association analysis algorithm to mine
the database. Students discover affinity rules within their survey answers. Often
unexpected results are generated such as {Christmas}® {American Idol}, i.e. students
whose favorite holiday is Christmas are nine times more likely to pick American Idol as
their favorite television show.

This assignment provides a memorable hands-on experience while demonstrating
many important database concepts. Any database supporting standard SQL could be used
to implement the assignment. It could be tailored to fit different skill levels—requiring
more advance students to normalize the database and/or develop the data mining
algorithm on their own. The survey results can also be appended over the course of
several semesters to increase the size of the database. The full assignment description
and supporting files can be downloaded at http://www.ccsc-ms.org/nifty/10/bro/.

* Copyright is held by the author/owner.

106

DATA MODELING FOR REAL*

NIFTY ASSIGNMENT

Donna Wright
College of Science, Technology, Engineering & Math

University of Arkansas-Fort Smith
Fort Smith, Ar. 72914

(479) 788-7903
dwright@uafortsmith.edu

INTRODUCTION:
This assignment is suitable for entry level database students in their first data

modeling class. It is assigned after students have a good grasp of fundamental database
design but does not require an understanding of normalization. The assignment
addresses the challenge of helping students relate the dry concepts of database design to
their own "real world". When students can visualize the interactions between the data in
tables they are designing and real people's lives, they will better understand how and why
to apply database design concepts. This assignment can be found at
http://www.ccsc-ms.org/nifty/10/wri/

ASSIGNMENT OVERVEW:
This assignment includes two parts - a homework assignment and an in-class

activity performed in the following class session. The homework assignment requires
students to select a document from their own life and write up proposed entities, attributes
and relationships and entity relationship diagram (ERD) that might be relevant to a
related database.

The in-class activity puts students in groups to analyze their documents and
supporting information and then demonstrate selected documents to the class along with
guided classroom discussion
.
LEARNING OUTCOME:

This assignment led to lively student discussion about documents as varied as a
restaurant receipt, fishing license, immunization record, and one of the most interesting
- a fire report. It helped students recognize that the data they are learning to model is
"real" and is a dynamic part of their everyday world. Database design issues were

CCSC: Mid-South Conference

107

brought into focus as the students recognized problems they have encountered in relation
to their document that result from poor database design. Example: The student who was
a fireman discussed issues he encounters when trying to file the fire report and students
were able to recognize likely design flaws in the database that were causing his issues.

* Copyright is held by the author/owner.

108

HANDWRITTEN CHARACTER RECOGNITION*

NIFTY ASSIGNMENT

Gabriel J. Ferrer
Department of Mathematics and Computer Science

Hendrix College
Conway, AR 72032

(501) 450-3879
ferrer@hendrix.edu

In this Nifty Assignment, for use in an Artificial Intelligence course, students are
given code for a GUI in which they can draw and save handwritten characters on a 20x20
grid. Both the provided code and student solutions are written in Java. They employ a
self-organizing map (SOM), which is a type of neural network that reduces a
high-dimensional input space into a lower-dimensional output space. It is trained by
means of an unsupervised learning algorithm. They must implement the following:
 1. The Self-Organizing Map unsupervised learning algorithm, using a threshold

neighborhood function.
 2. A means of encoding binary drawings as SOM inputs.
 3. A classification algorithm that translates SOM outputs into labels.

Once the implementation is complete, students can use the GUI to create, train, and
view the SOMs. To view the SOM, students may either:
 1. Move the mouse across a grid representing the SOM output nodes; the "ideal" input

for the node will appear in the drawing area, or
 2. For the drawing currently on display, show the intensity of match for each SOM

output node on a color-coded output map.
Once the students have implemented their SOMs and experimented with them a bit,

they are tasked to do a series of experiments. In these experiments, they assess the impact
of varying the number of SOM iterations, the number of output nodes, the classification
algorithm, and the neighborhood function. Once the experiments are complete, the
students write a report describing their findings.

This assignment fulfills several course goals:
 1. Students apply a machine learning technique to a realistic application domain.

CCSC: Mid-South Conference

109

 2. As this infrastructure can also be used with a multi-layer perceptron (or any other
machine learning technique), our students were able to compare the performance of
the SOM and the MLP on a common application domain.

 3. Students gain practice with the scientific method.
Nearly all of our students were able to create very effective character recognition

learning algorithms using this infrastructure. The full assignment description and
supporting files can be downloaded from: "http://www.ccsc-ms.org/nifty/10/fer/".

* Copyright © 2010 by the Consortium for Computing Sciences in Colleges. Permission to copy
without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the CCSC copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires a
fee and/or specific permission.

110

MAINTAINING CONTROL OF A ROBOT’S LIMBS USING THE

BAKERY ALGORITHM *

Patrick McDowell, Theresa Beaubouef
Department of Computer Science and Industrial Technology

Southeastern Louisiana University
Hammond, LA 70402 USA

(985) 549-2189
{pmcdowell, tbeaubouef}@selu.edu

ABSTRACT
This paper discusses a technique for maintaining control of robotic equipment
given a single control line for both actuator control and limb position sensing.
In particular, the bakery algorithm is used for preventing the problem of
command/response packet collisions. These techniques can benefit any robot
builder using a servo controller/IO board linked to a command and control
computer via single control channel where there is a chance of collisions.

INTRODUCTION
At our university we are currently pursuing a robotics research program focused on

providing robots with the ability to adapt and learn as necessary in order to keep their
goals in target. That being said, our program is in its early stages, and one of the
immediate tasks is to create the infrastructure necessary in order to do the research. This
step is a necessary one; valid research cannot be done without working hardware
platforms and the low level software to control the actuators and collect the sensor data.
To that end we have embarked on a handful projects, one being an automated tennis court
cleaning system [1], another being a robotic air hockey opponent [2], and the project that
is the subject of this paper: the large actuator test bed.

While there are many novel examples of robotic technology, we are pursuing a path
that we hope will result in the development of a series of cost effective “blue collar”
robots. That is, for an end result, we want our robots to be able to perform some useful

CCSC: Mid-South Conference

111

work. Much as MIT’s Big Dog is designed to carry heavy (upwards of 300 lbs) [3] loads
across uneven terrain, our long-term goal is create systems that can assist humans in
doing work, much as horses and mules have in the past, and tractors do now.

In order to do so, we must be able to control actuators whose force output is in the
range of 20 to 1000 pounds of linear thrust, instead of that of typical hobby servos whose
peak output is generally from 40 to 350 ounce inches of torque. At first glance it may not
seem like that much of a difference, but some quick calculations show that at the low end
of the spectrum there is about a 96 to 1 increase in strength, while the high end comes
close to a 550 to 1 increase in strength. Given these large differences, in order to lessen
equipment breakage, and avoid getting ourselves in a pinch (literally), we are taking a
methodical approach to control by building a test bed to facilitate equipment and low-
level algorithm development.

This paper details these activities and specifically focuses on our technique of
maintaining control of the equipment given a single control line for both actuator control
and limb position sensing. While we use a PC linked to an SD 84 servo controller board
[4], these techniques can benefit any robot builder who is using a servo controller/IO
board linked to a command and control computer via single control channel where there
is a chance of command/response packet collisions.

This paper is organized as follows: the background section provides information
on typical servo operation versus large actuator control, the approach section describes
the bakery algorithm and how its use solved control and sensing conflicts inherent in our
application, and finally the conclusions and future work describes issues with the project
and the directions in which we plan to head.

BACKGROUND
Many of the robots available in kit form from vendors or those built by researchers

and hobbyists use radio control (RC) servos to provide the muscle for moving the joints
and ultimately allowing the robot to accomplish a myriad of motions, such as walking,
dancing, punching, and arm waving. RC servos were originally used to move the control
surfaces and motor throttles of RC planes. The servo itself is a small box (see Figure 1),
usually about the size of a small cell phone. On one side of it is an arm, called the horn,
which typically can rotate between 0 to about 225 degrees. By attaching a rod from this
horn to a control surface, such as a rudder on an RC plane, the servo can move the rudder
to the position requested by the plane’s pilot.

JCSC 25, 5 (May 2010)

112

Figure 1. Typical RC servo. The circular white plate on the top of the box is the
horn. The horn has a range of rotational motion from 0 to about 225 degrees. Power,
control and ground signals enter the servo through the multi-colored cord as seen in
the figure.

The servo’s position is proportional to the duty cycle of the signal generated by the
pilot’s remote control. One of the beauties of the RC servo is that it has an internal
system that detects the horn’s current location and works through a feedback loop to
move the horn to the position indicated by the input control signal. This system works
independently of the remote, with the implication being that the remote can send a
position signal and let the servo handle the details of moving to the position requested.
So essentially the communication from the pilot’s controller to the plane is one way.

This method is great, until more force than the strongest RC servo can supply is
needed, or one would like to monitor the servo’s progress. In the latter case, there are
some specialty servos that can provide feedback, but they are expensive, and they have
no more torque than the run-of-the-mill servos of the same size.

Consider a situation in which a walking robot gets one of its legs in a bind; how can
this be detected? The position information of the actuator is not readily available. A
separate sensor at the joint can be used to monitor its progress, but in order to get this
information the sensor must be polled. If the sensor is attached to an analog to digital
(A2D) port on the servo controller board, the channel from the computer to the controller
board will have to be a bi-directional connection, opening the possibility for a collision.

CCSC: Mid-South Conference

113

Our end goal is to be able control large actuations such as linear actuators or
hydraulic cylinders. Unlike RC servos, these systems do not have internal feedback
controllers, so they require that the computer monitor their progress by polling a sensor
so the actuator can be shut down when it approaches its target position. Given these
requirements, and the PC-to-SD84 control system, a reasonable way to manage the
communication line between the PC and the controller board is needed. The requirements
are as follows:
 • Speed. The sensors need to be polled on a regular interval, at about 50 times per

second—not blazing by any stretch, but still reasonable for getting information from
the computer to the controller and reading the response on a serial line.

 • CPU usage. The system cannot be CPU intense. Controlling the low level actuators
is only one of many requirements being asked of the computer.

 • Fairness. There cannot be a situation in which a sensor response back to the
computer, or an actuator stop command, has to wait an indefinite amount of time
because the control line is busy.

 • No collisions. This point cannot be over stressed. If the control board misses an
actuator shutdown command because it collides with a sensor position response, the
result with even 20-lb strength actuators can be catastrophic. It was these types of
events that motivated this work. Out of control linear actuators can flip chairs,
move tables, bend metal work carts, and kick researchers with much more starch
than ever possible with RC servos.

Figure 2. An assortment of linear actuators. Linear actuators
work by turning a threaded rod with an electric motor. The
threaded rod in turn extends the actuator arm from the
actuator’s case. In the figure, the arm is the narrow end of the
actuator.

JCSC 25, 5 (May 2010)

114

APPROACH
The basic system consists of a laptop PC linked via a USB cable to an SD84 84

Channel Servo Driver Module made by Devantech. Among this board’s features are
eighty-four configurable channels, with up to thirty-six being 10-bit resolution A2Ds, or
any combination of pulsed width modulation (PWM) and digital I/O. Note that the
reference voltage for the A2Ds is 5-volt TTL level, but the channel’s voltage signal going
to the sensor is at battery level. This means that initially, if the battery has 7.2 volts (the
normal amount for a servo battery) the A2D will read maximum value (1024) at every
sensor reading at 5 volts or above. The implication is that roughly one third of the sensor
range is at maximum value. The solution is to use a regulated 5-volt supply for the A2D
channels.

Basic communication with the board is a straightforward programming affair in
which a serial communications port is opened and data packets are sent to and fro using
the board’s command language. For this effort a console program was written in Visual
C++ 6.0.

The control software is set up as follows. The main program starts a sensor
monitoring thread whose job is to read the potentiometers in the linear actuators so that

Figure 3. Block-level view of the control software. The gait generator resides in the main
program, while the sensor monitor and all leg movement routines run as separate threads.

CCSC: Mid-South Conference

115

the degree of extension is always known to the leg part (calf, thigh, as seen in Figure 3)
controller threads. The sensor monitor thread operates in a continuous loop, alternating
between reading the sensors and sleeping. The sleeping is necessary in order to let the
other processes have CPU slices.

 A linear actuator provides the muscle for each leg part’s movement. To control a
linear actuator, a PWM port on the SD84 board is connected to a Victor motor controller
that in turn provides voltage to the actuator’s motor. The Victor controller is basically
an amplifier whose input is the same as that of an RC servo (it is a PWM input) and
whose output is a voltage between –12 and +12 volts. The leg part controllers (left thigh,
right calf etc.) manage movements directed from the gait generation module in the main
program. In order to move a part to a particular position, the leg controller sends a signal
to the Victor amplifier, which in turn provides the linear actuator with the voltage to get
it moving. Then the leg part controller enters a monitor/sleep loop and stops the leg when
it reaches its ending position.

 All actuator control and sensor reading commands go through the USB line to the
SD84 board. Since the parts on a leg are moving in phase with one another, and directly
out of phase with their counterparts on other legs, if left unchecked, conflicts between
sensor values coming from the control board and actuator commands going from the
computer to the control board will occur. In order to assure that no conflicts occur,
Lamport’s bakery algorithm [5] was used to manage the communications.

 The bakery algorithm is usually presented as a tool for managing critical sections
in an operating system setting, such as a piece of memory that producer and consumer
processes share. The algorithm is extensible to N processes and fulfills the critical
section requirements of mutual exclusion (only one process can use the resource at a
time), progress (processes that wish to enter a critical section can participate in the
decision about which process enters next), and bounded waiting (the wait time is not
indefinite and a process can only be deferred a set number of times). The pseudo-code,
along with clarifying comments, for a two-process bakery algorithm is shown below.
 Process P(i) /* The variable i = (0, 1) */
Entry: flag[i] = TRUE; /* This process wants to enter the critical section. */
Turn = 1-i; /* This process defers to the other process. */
While(flag[i-1] && (turn = 1 – i)) { /* Wait while the other process is in the critical

Do nothing; critical section (flag[i – 1] is TRUE) and the
} other process has not deferred to this process. */

/* Here is the body of /* In our case, we use the USB serial line to
 code to be executed in get a set of sensor values, or send a command. */
 the critical section.
/ / When complete, we indicate to the other
 Exit: flag[i] = FALSE; process that we no longer need the critical section,

thus allowing it to enter. */
The purpose of the flag variable is to indicate that a process wants to enter a

critical section, and that once it is in the critical section the other process cannot enter
until it is reset. The Turn variable breaks any ties, that is, if both processes hit the entry
point at the same time (they set their flags to TRUE), then (assuming a one CPU

JCSC 25, 5 (May 2010)

116

situation) the last process to set the Turn variable will wait for the other process (process
0 sets Turn to 1, process 1 sets Turn to 0, thus allowing process 0 to enter the critical
section).

Figure 4 shows our implementation of a 3-process bakery algorithm. The
algorithm protects the 3 critical sections (for process numbers i = 0, 1, and 2) in which
data is moved between the PC and the servo controller/A2D board.

 CONCLUSION
The bakery algorithm provides a quick and easy-to-implement solution for problems

that need a fair way to administer mutual exclusion for a group of processes and/or
resources. By using this algorithm versus an OS dependent solution such as a semaphore,
execution speed is preserved. The “Sleep” command works to prevent busy waiting,
resulting in a system whose CPU slice usage is minimal. While the algorithm is usually
discussed in reference to operating systems, it has provided an ideal solution for low-level
communication management for our robot’s hardware/software interface.

ACKNOWLEDGEMENT
This research is supported by Louisiana Board of Regents LEQSF (2007-10)-RD-A-

27.

 Figure 4. This figure shows the bakery algorithm/critical section code for 3 processes
in C. The code sections are nearly identical, except for the process numbers and
references to the turn0 and turn1 variables.

CCSC: Mid-South Conference

117

REFERENCES

1. Beaubouef, T., McDowell, P., Ice [Air] Hockey and Tennis Balls: Playing at
Computer Science Research with Robotics, SIGCSE Bulletin, December 2007

2. Lakin, M., A Robotic Air Hockey Opponent; CCSC-SC Hammond La., April
2009

3. Boston Dynamics, “BigDog - The Most Advanced Rough-Terrain Robot on
Earth,” http://www.bostondynamics.com/robot_bigdog.html, October, 2009.

4, SD84 Technical Specification; http://www.robot-
electronics.co.uk/htm/sd84tech.htm

5. Silberchatz and Galvin, Operating Systems Concepts, 5th Edition, Addison
Wesley, 1998.

* Copyright © 2010 by the Consortium for Computing Sciences in Colleges. Permission to copy
without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the CCSC copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires a
fee and/or specific permission.

118

A PARETO-OPTIMALITY BASED ROUTING AND

WAVELENGTH ASSIGNMENT ALGORITHM FOR WDM

NETWORKS*

David L. Sonnier
Lyon College

Batesville, AR 72501
(870) 307-7270

ABSTRACT
 A routing and wavelength assignment algorithm is presented for optical

communication systems. The algorithm, which is robust, flexible, and
computationally feasible, is a hybrid fixed-alternate and adaptive routing
algorithm based on Pareto optimality.

INTRODUCTION
The efficient use of optical networks requires algorithms that take advantage of the

current technology to achieve maximum use of the optical transmission media. In
Wavelength Division Multiplexing (WDM) this is achieved through efficient routing and
wavelength assignment (RWA) algorithms. This class of algorithm has as its objectives
the routing and assignment of wavelengths according to the demand. Let G = (V, E) be
a graph where each edge represents an optical fiber link between endpoints. For any pair
p = (s, d), a request for a connection from node s to node d is satisfied by assigning a
route from among a set of candidate routes, and then assigning a wavelength to carry the
information over the selected route.

The problem of satisfying all requests using a minimum number of wavelengths is
NP-Hard in general. It can be solved in polynomial time in certain networks. [1] The
main objective of this paper is to show that the RWA problem can be formulated as a
Multicriteria Shortest Path Problem (MCSP), and then solved using common techniques
applicable to the MCSP.

CCSC: Mid-South Conference

119

Background
Multiobjective network optimization requirements are occasionally found in

network design problems. In such cases, the requirement would typically be to
simultaneously optimize competing objectives in a communications or transportation
network. Given more than one objective to be simultaneously considered in finding the
optimal route from source s to destination d in a network, our problem becomes the
MCSP. For routing and wavelength assignment, let:

 be candidate lightpaths (routes) for source-destination pairR R R Rp
P

p
n
p

0 1 2, , , ,K
p = (s, d),

W be the number of wavelengths available,

 be the distance for a particular lightpath (route) for a source-destinationD R j
p()

(s, d) pair,

 be a cumulative measure of the number of occupied wavelengths on everyB Rj
p()

link (u, v) from s to d.
We seek routes based on simultaneously minimizing the route lengths and utilizing links
which are least utilized. What we are seeking, then, is the Pareto-optimal set of
solutions. Let Rp be the entire set of candidate routes for pair p = (s, d):

 { }R R R R Rp p p p
n
p= 0 1 2, , , ,K

Assume we have a vector of K $ 2 criteria to be minimized for each route:

 f R f R f Rj
p

j
p

K j
p

1 2(), (), , ()K

We define as that subset of candidate routes having the property that, forR Ropt
p p⊆

all routes there is no route such thatR Ra
p

opt
p∈ R Rb

p p∈

 and for some (1)f R f R i Ki b
p

i a
p() (), .. ,≤ = 1 f R f Rj b

p
j a

p() ()< { }j K∈ 1.. .

In this paper we confine our model to the two-objective case (K = 2) since we seek
to simultaneously optimize two objective functions: minimize the number of links used
in each selected route, and at the same time select a route in which the number of
wavelengths being used is minimal (or conversely, the number of available wavelengths
is maximal). There may be other considerations such as minimizing the total number of
switching operations at a node, or fairness. The proposed algorithm can be applied when
 K > 2, but we shall focus on these two criteria. We make several assumptions for the
purpose of demonstrating the algorithm described herein. We assume that the
approximate demands on the network are known a priori, that the demand on the network
is symmetric (i.e., traffic from s to d will be approximately the same as that from d to s),
and that wavelength conversions along the route are not allowed. This last constraint is
known as the wavelength continuity constraint, and may be relaxed in actual
implementation.

JCSC 25, 5 (May 2010)

120

Project Goals
Based on this view of the problem we can see a multiobjective problem formulation,

in which we seek to minimize two competing objective functions, B(Rj) and D(Rj) for all
j, subject to a set of routing constraints, topology constraints, and lightpath assignment
constraints. Once the problem is reduced to a multiobjective formulation, it may be
solved using a number of methods. A multiobjective problem with two objective
functions lends itself to several algorithmic solutions, depending on whether the complete
solution set or an approximation of that solution set is sought and also depending on
whether or not there is a requirement for real-time solution set construction. Regardless
of these conditions, the routing and wavelength assignment problem presents an example
of a problem that can be solved using multiobjective problem solving and presents an
opportunity for research for upper level Computer Science students.

METHODOLOGY
A general solution to the MCSP is described in [2], and summarized along with

other methods in [3], where the dimensional intractability of the problem is shown. In
practice there is often an upper bound on the number of Pareto-optimal solutions to
multicriteria shortest path problems, based on ratio restrictions. [4,5]

In this problem we are seeking to select routes with the shortest distance and the
least-used links. Using a weighed sum approach, it is possible to reduce the problem to
a single-objective problem and solve it using Dijkstra’s algorithm but the solution set is
not complete. Consider the cost function defined as follows:

 (2)C R B R D Rj
p

j
p

j
p() () () (),= + − ≤ ≤α α α1 0 1

where and are as described above. Using a “weight” such as α, a two-B Rj
p() D R j

p()
objective function can be reduced to a single-objective function. We may obtain a set of
solutions by applying various values of α to the objective function (2) and solving the
problem multiple times using Dijkstra’s algorithm [6,7], but this methodology, while
computationally feasible [7], has severe drawbacks. This method reveals a Pareto-optimal
set of solutions, each solution being optimal depending on the importance of wavelength
utilization or hop-length reduction. Unfortunately, approaching the problem in this
manner excludes viable candidate solutions which may not lie on the convex hull of the
Pareto-optimal solution set. Another shortcoming of this approach is that we have little
knowledge of the desired value of α. A similar formulation is found in [8] (p. 76) but it
requires two constants instead of one, and the optimal value must be determined
experimentally. This paper describes an approach for reducing the problem of routing
and wavelength assignment to the MCSP and then solving the problem. The algorithm
described herein determines α dynamically based on network conditions and dynamically
maintains a list of routes for each pair. Ropt

p

CCSC: Mid-South Conference

121

RWA Algorithm
The following algorithm, which is a hybrid between fixed-alternate and adaptive

routing [9], provides a set of Pareto-optimal paths between all pairs (s, d).

 1. Solve the All-Pairs Shortest Path Problem to find the most direct route, or D R j
p()

between node pairs.

 2, Apply expected demands to obtain estimated for each node pair.B Rj
p()

 3. Using the two matrices generated in Steps 1 and 2 we solve the problem as a Multi-
Criteria Shortest Path problem, generating a Pareto-Optimal set of paths, Ropt

p

between all pairs p.

 4. Order by increasing for all p. Ropt
p D R j

p()

 5. Compute α.

 6. For all pairs (i, j) use the route that minimizes (2) while keeping remaining paths of Ropt
p

 as alternates.
Step 1 is only executed one time. We reach a balance of simultaneous optimization

of B and D by continuing to adjust the value of α used as we monitor the traffic flow. The
desired value of α is determined based on the congestion on the most used link in the
network. If the most used link is approaching maximum utilization we would want 0 <<
α # 1 to reduce the importance of the distance in route selection. If the difference
between most-used and least used is minimal we set 0 # α << 1 so that routing decisions
are based more on distance than on network conditions. Therefore we let α be the percent
utilization of the most used link, (u, v), in the network:

 (3)α =
B R

W

u v()(,)
1

We now have a fixed-alternate scheme for selection of routes, wherein we select
candidate routes with decreasing and increasing from our ordered listB Rj

p() D R j
p()

depending on the network traffic conditions. Periodically Steps 2-7 of the algorithm are
repeated, with “expected demands” replaced by “existing network conditions” in Step 2.

RESULTS
Consider the network in Fig. 1, in which we assume that W is uniformly 10 on each

link. We determine a set of routes between all pairs using classical routing techniques,
then determine the flow over each link of the network based on expected demands. This
gives us the occupied wavelength matrix (Fig. 3), the number of occupied wavelengths
on each link that would result from simple shortest-path routing. Now we solve the

JCSC 25, 5 (May 2010)

122

problem to find for all pairs p. Table 1 shows several Pareto-optimal sets of routesRopt
p

for various pairs (s, d) based on the expected utilization matrix in Fig. 2.

Based on the congestion of the most-used links, (1, 2) and (1, 4), lightpaths are
selected from initially using α = 0.7, and then alternate routes are selected asRopt

p

necessary.

Wavelength assignment is made based on First Fit (FF). Periodically the occupied
wavelength matrix is replaced based on current conditions and the set isRopt

p

recomputed. In the event of failure of one or more links the algorithm is repeated
beginning with Step 1.

CONCLUSION
The algorithm described herein proposes a methodology for routing and wavelength

assignment by reducing the problem to a multiobjective formulation. In that case the
problem being solved is the Multicriteria Shortest Path Problem (MCSP). Although the
MCSP is NP-Hard in general, computational studies have shown that it is rare to find
real-world problems in which the size of the solution set and the computational time
required to find it are exponential. This is not necessarily true for other classes of
multiobjective problems, such as the Multicriteria Spanning Tree problem, for example,
in which both the solution set and the time to find it balloon exponentially for even a
small or sparse network.

CCSC: Mid-South Conference

123

To accommodate fluctuating demands over the network, the algorithm must include
periodic evaluation and recalculation of the route assignments. Further analysis and study
of this algorithm could provide senior level Computer Science students with an
opportunity for a computational study. The next level of study would involve simulation
using real data, and possibly a hardware implementation. However, even as a mere
theoretical solution to the routing and wavelength assignment problem, this methodology
presents an example of a situation in which a problem can be cast as a multiobjective
problem and then solved using multiobjective problem solving techniques.

REFERENCES

[1] R. Dutta and G. N. Rouskas, “ Traffic Grooming in WDM Networks: Past and
Future”, IEEE Network, November/December 2002, p. 46-56.

[2] E.Q.V. Martins, “On a Multicriteria Shortest Path Problem,” European Journal
of Operational Research, 16, 236-245 (1983).

[3] M. Ehrgott, Multicriteria Optimization, Lecture Notes in Economics and
Mathematical Systems (Springer-Verlag Berlin/Heidelberg, 2000).

[4] M. Müller-Hannemann and K. Weihe, Pareto shortest paths is often feasible in
practice, Lecture Notes in Computer Science, pp. 185-197 (Springer., 2001).

[5] M. Müller-Hannemann and K. Weihe, On the cardinality of the Pareto Set in
Bicriteria Shortest Path Problems, Annals of Operations Research, vol 147, pp.
269-286, Springer. (2006).

[6] J. Mote, I. Murthy, and D.L. Olson, “A Parametric Approach to Solving
Bicriterion Shortest Path Problems,” European Journal of Operational Research,
53, 81-92. (1991)

[7] D. Sonnier, “Multicriteria Optimization – Some Parallel Approaches” Presented
at WMSCI 2005. Proceedings, Volume III, The 9th World Multi-Conference on
Systemics, Cybernetics, and Informatics, 30-35. (2003).

[8] Murthy, C. Siva Ram, and Gurusamy, Mohan. WDM Optical Networks:
Concepts, Design, and Algorithms. Prentice-Hall, 2002. (this one is not actually
referenced?)

[9] Zhu, Keyao; Hzu, Hongyue, and Mukherjee, Biswanath. Traffic Grooming in
Optical WDM Mesh Networks. Springer, 2005.

* Copyright © 2010 by the Consortium for Computing Sciences in Colleges. Permission to copy
without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the CCSC copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires a
fee and/or specific permission.

124

CRITERIA-BASED PARALLELISM FOR MULTIOBJECTIVE

PROBLEM SOLVING*

David L. Sonnier, Matt Bradley
Lyon College

Batesville, AR 72501
(870) 307-7270

david.sonnier@lyon.edu

ABSTRACT
Computer scientists typically solve problems that require the optimization of
some objective function. Given more than one objective to be simultaneously
optimized, the problem becomes a Multicriteria Optimization Problem.
Whereas the single objective version of a problem may be solved by use of
well researched and studied algorithms, the Multicriteria version of the
problem is typically not so quickly and easily solved. In fact, typically there
is no polynomial-time algorithm for solving the multicriteria version, and the
solution is not a single solution but rather a Pareto-Optimal set of solutions. In
some cases it is possible to find an approximation of the solution set by solving
Reduced Criteria Subproblems, then merging the solutions. This paper
provides an overview of this approach, presents a parallel computing solution
based on merging reduced-criteria subproblems, and gives consideration to the
limitations of this methodology.

INTRODUCTION
A problem requiring that more than one objective function be simultaneously

optimized is referred to as a multicriteria or multiobjective problem. Using a weighed
sum approach, it is possible to reduce the problem to a single-objective problem and solve
it using classical algorithm designed for the single-objective version. Computational
studies are described in [1] and [2] with the latter being a parallel implementation. In a
multicriteria optimization problem, a supported solution is defined as an extreme point
of the convex hull formed in the outcome space. The supported solutions can be found

CCSC: Mid-South Conference

125

quickly in parallel using a weighted-sum approach. However only supported solutions are
found in this manner. We compare the results obtained in this manner against results
obtained using reduced criteria subproblems.

Background
An optimization problem can be generally described as:

Min f(x) = [f1(x), f2(x), ..., fK(x)], x 0 X, (1)
s.t. constraints

The decision variables are
x = [x1, x2, ... , xn] (2)

in decision space X. We say that solution x* is Pareto-optimal if there is no x 0 X such
that:

fi(x) fi(x*), i = 1..K, and fj(x)< fj(x*) for some j 0 {1..K}. (3)≤
An example would be the multiobjective "best" path problem in a transportation network,
in which we optimize distance, f1, but also road quality, f2, and perhaps two other
objective functions, f3 and f4 based on other criteria such as maintenance / gas station
availability or availability of some other logistics support. The set of "best" paths would
be those which make up the Pareto-optimal set, and the decision maker would choose
from the set based on the relative importance of the objective functions. The decision
variables correspond to the route selected. Unlike the single-objective counterpart, which
can be easily solved using Dijkstra's algorithm, finding the complete solution set has been
shown to be non-polynomial. [3]

Solutions fall into the category of supported and unsupported. Supported solutions
can be found using a set Λ of weights, with the following property:

(4)Λ = ∈ = >
⎧
⎨
⎩

⎫
⎬
⎭=

∑λ λ λR K
i i

i

K

, ,1 0
1

Using (λ1, λ2, ..., λK) we reduce the problem defined in (1) to a single-objective problem
and solve it using classical algorithms. In essence, then, the problem becomes the single
objective one:

Min λ1f1(x) + λ2f2(x)+ ... + λKfK(x) : x 0 X (5)
for some set (λ1, λ2, ..., λK) of weights as defined in (4) above. This provides an easy and
convenient approach for providing a reasonable approximation of the solution set in
polynomial time. Supported solutions lie on the convex hull of the feasible region of the
objective space. For K = 2, for example, we can find a set of supported solutions as
follows. Define a weight λ such that 0 1 and define the following objective≤ ≤λ
function:

λf1 + (1-λ)f2 (6)

JCSC 25, 5 (May 2010)

126

A study using this approach can be found in [2]. A parallel method based on the
parametric approach is used, with each processor finding the supported solutions residing
within a portion of the range of values of λ.

Project goals

We can find a set of supported solutions quickly by generating a series of
weighted-sum vectors. This approach leaves out unsupported solutions. We show herein
that in some cases it is possible to find a more complete set of solutions in reduced time
by simultaneously solving sub-problems involving K-1 criteria and then merging the
solution sets, as described in [4]. We describe a parallel implementation herein, based
on the Multiobjective Shortest Path Problem.

METHODOLOGY
The Merge of any two nondominated sets A and B is defined as the set of

nondominated vectors in the union of sets A and B: [5]
Merge(A,B) = {AcB}-{x0[AcB|fk(x*) fk(x) for some x*…x, k0K, x*0AcB]} (7)≤

A K-1 criteria sub-problem of a K-criteria problem is defined as a subproblem
obtained by considering only K-1 of the K criteria of the original problem. In [4] we find
the definition of MOP(i) as the following K-1-criteria subproblem, with fi(x) dropped
from the set of K criteria:

min f(x) = [f1(x), ... fi-1(x), fi+1(x), ... , fK(x)] (8)
s.t. x 0 X

The solution set resulting from the Merge (·) of all K-1-criteria subproblems is
referred to in [4] as OptK-1. To obtain a solution by use of the Merge (·) of solution sets
of reduced criteria subproblems, it is necessary to understand the nature of the
subproblems. First we consider the following three limitations of K-1-criteria
subproblems by illustrating with K = 3:
 • PROPERTY 1: Solutions to K-1-criteria subproblems may not be "K-efficient," or

Pareto Optimal for the K-criteria problem. Consider a tri-objective problem with
the solution set in Figure 1. Here we can see that even though (3,3,5) is 2-efficient
for criteria 1 and 2, it is dominated in the 3-criteria case, by (3,3,1). Therefore the
solutions must be filtered, as suggested by Equation (7).

 • PROPERTY 2: Pareto-optimal solutions for the K-criteria problem may not be
Pareto-optimal for the K-1-criteria subproblems. Consider a tri-objective problem
in which the solution set is as depicted in Figure 2. We cannot determine all
solutions by merging the bi-criteria subproblems. The solution (3,3,3) is
Pareto-optimal (in fact it is supported) yet it is not a solution to any of the bi-criteria
subproblems; only {(-,2,2), (2,-,2), (2,2,-)}.

 • PROPERTY 3: Supported solutions to K-1-criteria subproblems are not
necessarily supported for K criteria. Consider the problem in which the solution
set is as depicted in Figure 3. According to Definition 1, note that the solution

CCSC: Mid-South Conference

127

(3,3,5) is supported for criteria 1 and 2, for λ1 = λ2. However, it is not supported for
the 3-criteria problem for any combination of [λ1, λ2, λ3].

Assume that a solution is K-efficient but not K-1-efficient. Then it is dominated in
all K - 1 criteria subproblems, for any subset of K-1 objectives. It may be either a
supported solution or an unsupported solution. Consider the nondominated set in Figure
4.

Solutions 4-7 are not dominated in K objectives, but they are dominated in all K-1
objective subproblems. Approximating this solution set using K-1 criteria subproblems
would reveal only the first three of the seven solutions. On the other hand, consider a
solution set with four criteria (Figure 5). Note that the first three objectives are the same
as in Figure 4. Approximating this solution set using K-1 criteria subproblems would
reveal all of the seven solutions. The reason for this is straight-forward. In the pair-wise
test for optimality between solution x and solution y, x may be spuriously eliminated
from consideration if it is dominated in all K-1-criteria subproblems.

To quantify this, let K = 3 and consider a solution, x, to the K-criteria problem, that
is under consideration in the 2-criteria subproblem MOP(3). Denote by xi that solution

JCSC 25, 5 (May 2010)

128

x is not dominated by solution y in objective function i, and denote by that solutionxi

x is dominated by y in that same objective function. Then we have the four possible
outcomes in the optimality check used in MOP(3) (see Table 1). Assuming uniform
distribution of the solutions, there will be a probability of 0.5 that neither solution will
spuriously dominate the other, a probability of 0.25 that x will spuriously dominate y, and
a probability of 0.25 that y will spuriously dominate x. Therefore, the probability of
solution x not being dominated by solution y in MOP(i) is 0.75.

For K = 4 the optimality check for the K-1-criteria subproblems involves 3 criteria.
Here again we concern ourselves with those Pareto optimal solutions which are, in reality,
4-efficient being dominated spuriously in a 3-criteria subproblem.

The probability of one solution spuriously dominating another solution in a pairwise
comparison is 0.25, and the probability of solution x not being dominated in MOP(i) is
87.5. And in general, for a K-criteria problem solved by decomposition into K-1-criteria
subproblems, one Pareto-efficient solution will dominate another in a subproblem with

a probability of (9)
1

2 1K−

Recalling that each of these comparisons in which one efficient solution dominates
another in a subproblem, it follows that for larger K we can expect fewer occurrences.
Similarly, for 2-criteria comparisons, 50% of the comparisons result in no one solution
dominating another; for 3-criteria comparisons 75% result in no one solution dominating
another, and for four criteria comparisons 87.5% result similarly, and in general for

K-criteria comparisons, (10)
2 2

2
100

K

K

−
⋅ ()

yields the percent of comparisons in which no one solution dominating another. This
ratio approaches 100% with increasing K. Whether or not it is beneficial to further
decompose the subproblems into bi-criteria subproblems depends on the desired
completeness of the solution set. The merge of bi-criteria subproblems was one of the
methods tested in this study.

RESULTS
To compare various methods, the 4-criteria Shortest Path Problem is used. The

graphs used for this study were derived from problem instances taken from the web page
of the Konrad Zuse Institute in Berlin [6]. For each problem, one of the sets of edge costs
was generated using NETGEN, and the other sets were generated randomly. We compare
the results of both time and solution set completeness using four methods: finding the
complete solution set, finding the solution obtained using a weighted sum method, finding
the solution set obtained by merging bi-criteria subproblems, and finding the solution
obtained by merging K-1-Criteria subproblems. In each case the problem is solved with
an eight-computer cluster using Message Passing Interface (MPI) extensions to the C
programming language. In Table III we can see the number of solutions obtained using
K-1-Criteria subproblems confirms the predictions made in Equations 9 and 10. Figure

CCSC: Mid-South Conference

129

6 and Figure 7 show the computational time and the number of solutions obtained. Note
that in Figure 6 the time for generating the complete solution is normally several times
greater than the time required to generate the solution by merging K-1-criteria
subproblems, but in Figure 7 the number of solutions generated using these two methods
is similar. For problems of size 500 or less there is very little benefit in using cluster
computing, For a problem of size 500 or larger we can see definite benefit in terms of
computational time.

CONCLUSIONS
Further studies of these methodologies provide excellent opportunities for senior

level Computer Science students. The problems are relatively easy to understand and
student contributions can be meaningful. Other areas to investigate are weight set
generation, various categories of multiobjective problems, and real world applications of
multiobjective problem solving.

JCSC 25, 5 (May 2010)

130

REFERENCES

[1] HU, J. AND CHAN, Y., A Multi-criteria routing Model for Incident Management.
Presented at the 2005 IEEE International Conference on Systems, Man and
Cybernetics, Waikoloa, Hawaii October 2005.

[2] SONNIER, D., Multicriteria Optimization - Some Parallel Approaches Presented
at WMSCI 2005. Proceedings, Volume III, The 9th World Multi-Conference on
Systemics, Cybernetics, and Informatics, 30-35, 2003.

[3] Ehrgott, Matthias , "Lecture Notes in Economics and Mathematical Systems:
Multicriteria Optimization." Springer-Verlag Berlin/Heidelberg, 2000.

[4] EHRGOTT, M. AND TENFELDE-PODEHL, D., Computation of Ideal and Nadir
Values and Implications for their Use in MCDM Methods, European Journal of
Operational Research,151,119-139, 2002.

[5] BRUMBAUGH-SMITH, J. AND SHIER, D., An Empirical Investigation of Some
Bicriterion Shortest Path Algorithms. European Journal of Operational
Research,43, 2, 216-244, 1989.

[6] ZUSE INSTITUTE, BERLIN. See Minimum Cost Network Flow and
Transportation, NETGEN INSTANCES Files, containing instances of the minimum
cost flow problem generated by NETGEN or just the NETGEN parameters.
www.zib.de/ Service/index.en.html. For generation see D. Klingman, A. Napier,
and J. Stutz: NETGEN: A program for generating large scale capacitated
assignment, transportation, and minimum cost low networks, Management Science
20 (1974), pp. 814-820, non-standard problems contributed by A. Löbel.

* Copyright is held by the author/owner.

131

TEACHING A GAME PROGRAMMING CLASS FOR THE

FIRST TIME*

TUTORIAL PRESENTATION

Frank McCown
Computer Science Department

Harding University
Searcy, AR 71239

501 279-4826
fmccown@harding.edu

In an effort to increase interest in Computer Science (CS) and offer compelling and
attractive electives, many CS departments are contemplating offering a game
programming course for the first time. A major obstacle for offering such a course is
finding faculty who are already experienced game programmers. Inexperienced faculty
may be interested in teaching game programming but may hesitate tackling a subject that
students are perceived to be more knowledgeable about; after all, college students are
much more experienced playing the latest games and have logged considerably more time
on a variety of gaming platforms than most CS faculty.

This tutorial is designed for CS instructors with no background in game
programming who are interested in learning how to teach a game programming course
for the first time. We will share our experience developing an upper level game
programming class at Harding University that uses the XNA platform, a C# programming
environment for creating games on the Xbox, Windows, and Zune. We developed our
course to actively engage students in learning and teaching others various game
programming concepts. Students performed independent research on topics like
animation, sound, collision detection, 3D modeling, and deployment, and they shared
their findings in a number of presentations given to their fellow classmates. The structure
of the course allowed the instructor to gain experience along with the students in learning
rather than being pressured to play the “sage on the stage.” This lessoned the amount of
preparation required by the instructor at every class meeting.

In this tutorial, we will introduce the XNA platform and have the participants build
a simple Pong game. We will share the various team projects and homework assignments
that made our class a success and discuss lessons learned from teaching this course the
first time.

JCSC 25, 5 (May 2010)

132

PRESENTER BACKGROUND
Dr. Frank McCown is an assistant professor of Computer Science at Harding

University. Since 1997 he has taught numerous CS courses including Computer
Graphics, Graphical User Interface Programming, Internet Development, Search Engine
Development, and most recently, Game Programming. His research interests are in
search engines, web crawling, and web archiving, but he has had a life-long interest in
computer games. Although Dr. McCown had little experience in game programming, he
endeavored to teach a game programming class after many students requested the
department offer such a course. The class was held in the Fall of 2009 and was well
received.

* Copyright © 2010 by the Consortium for Computing Sciences in Colleges. Permission to copy
without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the CCSC copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires a
fee and/or specific permission.

133

ENCODING ROBOTIC SENSOR STATES FOR Q-LEARNING

USING THE SELF-ORGANIZING MAP*

Gabriel J. Ferrer
Department of Mathematics and Computer Science

Hendrix College
Conway, AR 72032

(501) 450-3879
ferrer@hendrix.edu

ABSTRACT
The self-organizing map (SOM) [1] reduces a large input space to a fixed-size
output space. It is trained by means of an unsupervised learning algorithm.
One application of the SOM is to transform a set of robot sensor readings into
a state space suitable as the input for the reinforcement learning algorithm Q-
learning [5].
We have implemented two different formulations of this concept [2][3] using
the Lego Mindstorms NXT robot [8], a robot commonly used in undergraduate
computer science courses. We compared the performance of our
implementations against a traditional Q-learning implementation. We found
that the number and type of sensors encoded by the SOM has a significant
impact on the quality of the behavior the robot learns.

INTRODUCTION
The Q-learning algorithm [5] is a very popular algorithm for reinforcement learning.

It is straightforward to implement and tends to learn effective behaviors. Mahadevan and
Connell [6] pioneered the use of Q-learning for a mobile robot to learn behaviors in the
physical world.

The main drawback of Q-learning from the point of view of robotic implementation
is that it requires all possible combinations of sensor values to be reduced to a finite
number of states. Furthermore, the rate at which the algorithm converges to a behavior

JCSC 25, 5 (May 2010)

134

depends directly on the number of states selected for encoding the sensor values. This
becomes particularly troublesome when high-resolution sensors such as sonars are
employed.

In order to address this, Touzet [3] and later Smith [2] combined the Q-learning
algorithm with Kohonen's Self-Organizing Map (SOM) [1]. The SOM is a type of neural
network that learns how to classify its inputs into a fixed number of output nodes. By
feeding sensor input into a SOM, the strongest SOM output can be used to define the
current state for the Q-learning algorithm.

Touzet [3] implemented and tested his formulation using the Khepera robot [7].
The Khepera is a cylindrical robot of radius 6 cm. It has eight infrared proximity sensors
that report distances ranging from 2 to 5 cm. The robots from Smith's paper [2] exist
entirely in simulation.

The Lego Mindstorms NXT robot [8] has proven to be popular among
undergraduate computer science educators. However, its sensor inputs and performance
profile differ significantly from the robot platforms used in the previously mentioned
papers. Consequently, we decided to implement both approaches using the Lego
Mindstorms NXT to assess their utility with this popular platform. We have found that
we can reproduce their successful results as long as the state of the motors is not part of
the state encoding given to the SOM.

The first two sections describe the Q-learning algorithm and the unsupervised
learning algorithms used for training a self-organizing map. The third section describes
our experimental setup. We then describe and analyze our results, followed by our
conclusions.

Q-LEARNING
In reinforcement learning, the agent learns a behavior based on its expected reward.

In the Q-learning implementation of reinforcement learning, expected rewards are stored
in a two-dimensional array. One index of the array is the current state; the other index
denotes an action to be performed in that state. The value of a particular state/action pair
is the expected reward for performing the given action from the given state. The elements
of this array are called “Q-values”.

At each time step, the learning agent performs the following tasks:
 1. Calculate the state index based on current sensor values.
 2. Calculate the reward earned by the most recent action.
 3. Update the Q-value for the previous state/action pair.
 4. Select and perform a new action based on the Q-values.

The first two steps (calculating the state and reward) are implemented based on
domain constraints. The Q-value is updated according to the following formula:

Q(s,a) = (1 - α) Q(s,a) + α (r + γ max(Q(s',a)))
In this formula, the term α is called the “learning rate” and γ is called the “discount”.

The learning rate controls the speed with which the Q-values change; the discount
represents a trade-off between current and future rewards. The state s' is the state that

CCSC: Mid-South Conference

135

results from applying action a from state s, and r is the reward received after applying a
in s.

Actions are selected based on the Q-values. From the current state, the action that
is predicted to yield the largest reward (i.e. has the largest Q-value) is selected and
performed. Formulated in this way, assuming that every state/action pair is visited an
infinite number of times, Q-learning will converge to an optimal controller.

Since infinite state exploration is impossible in practice, action selection becomes
a trade-off between exploration of the state/action reward space and exploitation of the
predicted rewards stored in the Q-table. A common solution to this problem is to use an
additional constant ε. At each time step, if a randomly generated value is greater than ε,
the agent will use the best available action. If not, an action will be selected randomly.

SELF-ORGANIZING MAPS
The self-organizing map (SOM) [1] is a type of artificial neural network. Each

output node is associated with a vector representing the “ideal input” for that node. The
output of a SOM is determined competitively when an input vector is presented to it. Let
the distance between an input vector and the ideal input for an output node be defined as
the square root of the sum-of-squared-differences between the two vectors. We then say
that the activated output node is the output node whose ideal input has the smallest
distance to the input vector.

The output nodes themselves are arranged in a Cartesian grid. On each iteration, the
ideal input for the winning output node as well as some of its neighbors in the grid is
modified according to the following formula for each affected output node i and ideal
input element j:

weightij = weightij + (learningRate * (inputij - weightij))
One approach for determining affected nodes is to set a radius parameter. All output

nodes within the radius are updated according to this rule. Another common approach
is to use a Gaussian neighborhood function e-d2 / (2c2), where c is the radius parameter
and d is the Cartesian distance in the grid between the winning output node and the output
node being modified. The result of the Gaussian is multiplied by the learning rate in the
above computation for every output node in the SOM. This approach is used in Smith's
implementation [2].

In Touzet's implementation [3], the winning output node uses a constant learning
rate of 0.9, and each of its Manhattan neighbors in the Cartesian output grid is updated
with a learning rate of 0.4. No other output nodes are updated on a given iteration.

The SOM is biologically inspired by the cerebral cortex. The use of neighborhoods
enables the SOM to imitate the cortical phenomenon of regions that specialize in
recognizing certain sensory data.

EXPERIMENTAL SETUP
We implemented the combination of Q-learning with a SOM in the Java language

using the LeJOS implementation version 0.85 [9] for the Lego Mindstorms NXT robot.

JCSC 25, 5 (May 2010)

136

In our implementations, the winning SOM output node is the state index for the Q-table.
Each experiment ran for 240 seconds, which in all cases represented 800 iterations of the
Q-learning algorithm. All experiments had 36 state indices for the Q-table and three
actions: Both motors forward, left motor backward with right motor stopped, and right
motor backward with left motor stopped. Our robot was configured with a single
forward-facing ultrasonic sensor and two forward-facing bump sensors, one on the front
left, the other on the front right.

We used two different Q-learning implementations without a SOM as controls. In
 the first implementation (designated Qa), the state was derived from the combination
of each bumper state, the current selected action (out of three), and one of three
discretized sonar states. The first discretized sonar state represented distances from 0-19
cm; the second state was 20-39 cm; and the third state was 40 cm or more.

In the second implementation (designated Qb), we did not represent the current
action at all; instead, we discretized nine sonar states. The first state represented 0-11 cm;
the second state 12-23 cm; and so forth up to the eighth state at 84-95 cm. The ninth state
was 96 cm or more.

In all cases, the reward was calculated as follows. If either bump sensor is pressed,
the reward is 0.0. If neither bump sensor is pressed, if both motors are going forward, the
base reward is 1.0; otherwise, it is 0.5. If the sonar distance is greater than 20 cm, the
base reward is used; otherwise, it is scaled down depending on how close the sonar value
is to zero cm. This reward function is designed to teach the robot to drive forward while
avoiding obstacles in its path.

We used four different Q-learning implementations with a SOM. We followed each
of Smith [2] (designated QSOM) and Touzet [3] (designated QT), and for each of these
implementations, we implemented both with (a) and without (b) encoding the motor
speeds as part of the state. In all four implementations, both the sonar and each bump
sensor were part of the input to the SOM. Consequently, QSOMa and QTa had length-5
input vectors, while QSOMb and QTb had length-3 input vectors for each SOM. As
with our control implementations, the Q-learning tables each had 36 input states; hence,
each SOM had 36 output nodes.

When creating the input vectors from the sensor values, we normalized their ranges
as follows. Let the scale factor be 100 / (maxSensorValue – minSensorValue). We
multiply the scale factor by the sensor reading to produce a scaled input to the SOM. As
the sonar range is 0 to 255, while the motor speeds range from -900 to 900, the intention
is to normalize the inputs so that the raw sensor range does not distort their impact on the
SOM.

For all experiments, the discount (γ) term for updating the Q-table values was 0.5.
For Qa, Qb, QSOMa, and QSOMb, the learning rate is calculated using the formula 1/(1
+ (t/100)), where t is the current iteration of the algorithm. The neighborhood radius is
the learning rate multiplied by 3. For QTa and QTb, the learning rate is fixed at 0.9. In
both cases, the learning rate for Q-learning and the SOM is identical.

The exploration/exploitation trade-off is handled by setting an epsilon value of the
learning rate divided by four. If a randomly generated value between 0 and 1 is below

CCSC: Mid-South Conference

137

epsilon, the next action is selected randomly, with a distribution proportionate to the
expected rewards. Otherwise, the action with the highest expected reward is selected.

At startup, the ideal input vectors for each SOM are all set to zero, and all of the Q-
values are initialized to 0.5.

RESULTS
We ran at least three experiments for each of the six implementations. We ran seven

experiments for Qa and four experiments for QSOMa. We employ the total reward
earned over 800 iterations as our primary quantitative performance metric. Our results
are in the table below.

Qa Qb QSOMa QSOMb QTa QTb
Mean 607.97 578.91 468.86 534.49 456.19 545.61
Std. Dev. 81.92 76.95 39.39 160.41 85.07 57.98
Median 608.75 667.5 485.11 587.64 442.62 560.77
Minimum 506.47 528.67 410.2 354.25 378.72 481.55
Maximum 723 540.55 495 661.59 547.22 594.5
Mean/Iter. 0.76 0.72 0.59 0.67 0.57 0.68
StdDv/Iter
.

0.1 0.1 0.05 0.2 0.11 0.07

In terms of the quantitative data, the SOM-based solutions perform somewhat worse
than the traditional Q-learning implementations. The creation of the “b” implementations
was inspired by the particularly poor performance of QSOMa and QTa relative to Qa.
When we examined the ideal inputs of a SOM created by a run of QSOMa, we observed
that the encoded motor speeds ranged from 2% to 50%, while the encoded sonar value
was stuck between 90% and 94%. In other words, the SOM learned a state encoding for
the sonar that paid no heed whatsoever to any significant variance in sonar input. In the
case of QTa, a much larger range of sonar values (10% to 100%) is present in the ideal
inputs; nevertheless, performance was about equally bad.

We realized that for this task it was not necessary to encode the motor speeds as part
of the state. Since the expected reward is conditioned both on the current state and the
selected action, it seemed that including the action in the state was redundant. While this
change made no significant difference to the performance of our control implementation,
it did have a very positive effect on the performance of our SOM-based implementations.
In fact, two of the three experiments with QSOMb produced obstacle-avoiding behaviors
that were arguably superior to those of our control implementations.

For these two experiments, an inspection of the ideal inputs for the SOM is helpful
in understanding their behavior. In both cases, the ideal inputs assumed that the bumpers
were not pressed at all; for those state elements, there was no variation. However, the
sonar value varied from approximately 40% to 95% in both cases. When the sonar
readings were at the low end of this range, it was clear from observing the robot's
behavior that the high-reward action was to turn. Otherwise, it drove forward. Once the
learning algorithm had stabilized, these experiments produced extremely reliable
obstacle-avoiding robots that never hit anything.

JCSC 25, 5 (May 2010)

138

For QTb, successful runs learned to rely more on the bump sensors once the
learning algorithm converged. The rewards tended to remain high because in spite of
relying upon the bump sensors, the robot still spent very little time within 20 cm of an
obstacle. An inspection of the ideal inputs for the SOM for QTb provides a clear
rationale for this behavior. There were several output nodes whose ideal inputs included
high values for the bump sensors, and it was for those states that Q-learning predicted a
high reward for a turn. We believe that the different patterns of SOM learning between
the QT and QSOM runs is explained by the high, non-decreasing learning rate employed
by QT.

For Qa and Qb, reliance on the sonar vs. the bump sensors varied significantly
between runs. The higher-scoring runs tended to rely more on the sonar; the lower-
scoring runs relied more on the bump sensors.

In all cases, poorly-performing controllers exhibited one of two behaviors: They
either learned to avoid obstacles by perpetually turning, or they alternated between each
of the three actions in turn. In both cases, the robots avoided hitting things largely by
going nowhere. Since the reward for non-forward driving when not near an obstacle is
0.5, it is to this reward value per iteration that the poor performers tended to converge.
So after a fashion, even the unsuccessful runs learned to avoid obstacles; they failed to
learn to actually go anywhere while doing so, however.

CONCLUSION
We have described an empirical comparison between traditional Q-learning and two

different formulations of Q-learning with the Self-Organizing Map. Our implementation
employs the Lego Mindstorms NXT robot, a common platform used in undergraduate
education. We have shown that the successful results from the research literature for
combining these approaches can be replicated using the NXT platform as long as the
motor speeds are not included as part of the input vector for the SOM.

Our results leave open a number of questions. It remains puzzling as to why the
inclusion of the motor speeds in the input vector pollutes the SOM so badly in the case
of QSOMa, as well as why QTa performs so badly in spite of avoiding this problem.
This also raises the question of the scalability of the approach with increasing numbers
of sensor inputs. We plan to experiment with multiple sonar inputs to investigate the
possibility of scaling in further depth.

Another potential direction for future work would be to replicate Touzet's attempt
to improve robot learning by disregarding reinforcement learning entirely [4]. In this new
approach, instead of a reward function, a goal state is specified, and the robot uses the
ideal inputs of the SOM to guide its actions. A second SOM encodes a relationship
between actions and transitions. In light of our problems with motor speed encoding, it
will be an interesting challenge to try to replicate this result on the NXT as well.

We will mention in closing that we have used QSOM as an assignment in an upper-
level undergraduate Artificial Intelligence course. Our students (who, in previous
assignments, had already implemented both the SOM and Q-learning separately from

CCSC: Mid-South Conference

139

each other) were very successful in implementing this combination for several tasks,
including obstacle avoidance, pursuit, and light-finding.

REFERENCES

[1] Kohonen, T. Self-Organizing Maps, 3rd Edition. Springer, 2001.

[2] A.J. Smith. “Applications of the Self-Organizing Map to Reinforcement
Learning”. Neural Networks 15:1107-1124, 2002.

[3] C. Touzet. “Neural Reinforcement Learning for Behavior Synthesis”. Robotics
and Autonomous Systems 22(3-4):251-281, December 1997.

[4] C. Touzet. “Modeling and Simulation of Elementary Robot Behaviors using
Associative Memories”. International Journal of Advanced Robotic Systems
3(2):165-170, June 2006.

[5] C.J. Watkins and P. Dayan. “Q-Learning”. Machine Learning 8(3-4):279-292,
1992.

[6] S. Mahadevan and J. Connell. “Automatic Programming of Behaviour-Based
Robots Using Reinforcement Learning”. In Proceedings of the National
Conference on Artificial Intelligence, 768-773, 1991.

[7] F. Mondada, E. Franzi & P. Ienne, "Mobile Robot Miniaturisation: A Tool for
Investigation in Control Algorithms," Third International Symposium on
Experimental Robotics, Kyoto, Japan, October 1993.

[8] Lego Education. “Lego Mindstorms Education Base Set”.
http://www.legoeducation.us/store/detail.aspx?ID=1263&bhcp=1, retrieved
December 11, 2009.

[9] LeJOS, Java for Lego Mindstorms. http://lejos.sourceforge.net/, retrieved
December 11, 2009.

[10] Ferrer, G. Introduction to Robotics using Lego Mindstorms NXT. Lulu.com,
2009.

The research in this paper was supported in part by the US Air Force Research Laboratory
Sensors Laboratory and Human Effectiveness Directorates. Some of the research activities were
carried out with the technical support of Tec^Edge Discovery Laboratory at the Wright Brothers
Institute in Dayton, OH.

* Copyright © 2010 by the Consortium for Computing Sciences in Colleges. Permission to copy
without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the CCSC copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires a
fee and/or specific permission.

140

BAYESIAN DATA FUSION FOR SMART ENVIRONMENTS

with HETEROGENOUS SENSORS*

Soukaina Messaoudi, Kamilia Messaoudi and Serhan Dagtas
Department of Information Science

University of Arkansas at Little Rock
2801 S. University Avenue

Little Rock AR 72204
sxmessaoudi@ualr.edu, kxmessaoudi@ualr.edu, sxdagtas@ualr.edu

(501)683-7267

ABSTRACT
Smart environments refer to buildings or locations equipped with a multitude
of sensors and processing mechanisms for improved security, efficiency or
functionality. Often, these sensors serve distinct purposes and their data may
be processed separately by entirely separate systems. We argue that integrated
processing of data available from multiple types of sensors can benefit a
variety of decision making processes. For example, smart building sensors
such as occupancy or temperature sensors used for lighting or heating
efficiency can benefit the security system, or vice versa. Recent industry
standards in sensor networks such as ZigBee make it possible to collect and
aggregate data from multiple, heterogeneous sensors efficiently. However,
integrated information processing with a diverse set of sensor data is still a
challenge. We provide an information processing scheme that offers data
fusion for multiple sensors such as temperature sensors or motion detectors
and visual sensors such as security cameras. The broader goal of multi-sensor
data fusion in this context is to enhance security systems, improve energy
efficiency by supporting the decision making process based on relevant and

CCSC: Mid-South Conference

141

accurate information gathered from different sensors. In particular, we
investigate a major data fusion technique, Bayesian network, and present a
simulation tool for a "smart environment". In addition, we discuss the potential
impact of data fusion on the processes of decision or detection, estimation,
association, and uncertainty management.
Key Words: Data and information fusion, Bayesian, Dempster-Shafer, Fuzzy
logic, Neural Networks, Visual sensors, Non-visual sensors, Sensor networks,
Motion segmentation, OpenCV.[1]

INTRODUCTION
One of the outcomes of data fusion is the improved information quality that assists

various decision making processes in a "smart environment". Our focus here is the
integration of sensors information into the real-time decision making process in a
surveillance context. We use data fusion in a fashion where different types of information
are collected from a heterogeneous set of visual and non-visual sensors. The process of
integrating data from different sources requires designing an appropriate data fusion
model that would take the sensor data, integrate them following a certain model, and
transform it to a set of useful and relevant decisions. The anticipation is for the resulting
decisions to be more accurate and efficient than those resulting from a single source. In
a broader sense, we expect data fusion to lead to a virtual collaboration between the
different collected information.

Towards this goal, we first investigate the usefulness of data fusion in a smart
environment equipped with visual and non-visual sensors and design a convenient data
fusion model. Then, we provide an overview of data fusion methods, present our data
fusion algorithm and discuss our data fusion engine. This is followed by a description of
our smart environment simulation tool which is used to test some of the hypotheses,
visualize the environment with the sensors and their spatial relationships and to allow us
to build some of the case scenarios which is discussed last. In the last section, we
summarize our findings and conclusions with a set of ideas for ongoing work.

TECHNIQUES FOR DATA FUSION
Data fusion is "the theory, techniques and tools which are used for combining sensor

data, or data derived from sensory data, into a common representational format." Fusing
data from different sources can improve the quality and the utility of information and help
improve efficiency, security and functionality. The critical problem in multi-sensor data
fusion is to determine the best procedure for combining information from different
sensors in the system.

Most of the reported work in data fusion uses a statistical approach in order to
describe different relationships between sensors taking into account the underlying
uncertainties [4]. Edward Waltz and James Llinas summarize the methods to implement
data fusion as follows: decision or detection, estimation, association, and uncertainty
management theories. In decision or detection theory "measurements are compared with
alternative hypotheses to decide which ones best describe the measurement." Basically,

JCSC 25, 5 (May 2010)

142

the decision theory assumes "the probability descriptions of the measurement values and
prior knowledge to compute a probability value for each hypothesis." [2].

Fuzzy logic, neural networks, Bayesian, and Dempster-Shafer theories are the most
commonly used methods in multi-sensor data fusion. However, our approach will focus
on Bayesian model for integrated information processing using data from multiple,
heterogeneous sensors. The main reasons for this election were the appropriateness of the
input and output types in Bayesian model and its wide-spread use for similar problems
in the literature. We plan to expand our work into the alternative fusion techniques as part
of our ongoing research.

The basic principle of Bayesian theory is that all the unknowns are treated as
random variables and that the knowledge of these quantities can be represented by a
probability distribution. In addition, Bayesian methodology claims that the probability
of a certain event represents the degree of belief that such an event will happen. The
degree of belief is associated with a probability measure that can be updated by additional
observed data. All the new observations are added to update the prior probability and
therefore obtain a posterior probability distribution [3].

BAYESIAN DATA FUSION

The Bayesian model integrates data, independently, from r correlated sensors' inputs
in the following pattern:

p D X X X
p D X p D X X X

p D X
Kr

j r
j

r

j
j

r(/)
(/) * (/)

(/)
*1

1
1
2

1

1 0
1

0
2

01

01

K
K

=
=

=

∏
∏

where K is the Bayesian normalization and is equivalent to

 and is the probability of
p x X

p x x x X X X

j j
j

r

r r

(/)

(/)
1 01

1
1

1
2

1 0
1

0
2

0

=∏
K K

p D X X X r(/)1
1

1
2

1K

event D given .X X X r
1
1

1
2

1, , ,K

: Current measurement/observation from correlated sensors j where j = 1, 2, …,r.x j
1

 Prior information or old data set from correlated sensors j where j = 1, 2, …,r. X j
0 :

 Posterior information or new data set from correlated sensors j where j = 1, 2, …,r.X j
1 :

D : Event in question (one of the decisions labeled on figure1).
The fusion engine in this project is the model we use to integrate information from

both visual and non-visual sensors. The engine we design receives inputs from both visual
and non-visual sensors and provides a set of relevant decisions (outputs).

As the diagram in Figure 1 shows, s1, s2, s3 … sn are inputs from different non-visual
sensors. These inputs first go through a correlation model (raw data processing on
figure1) that determinates the correlations among the sensors' inputs and transmits

CCSC: Mid-South Conference

143

independent m outputs that are fed to the fusion engine as inputs. These outputs (fusion
engine inputs) are labeled as x1, x2, x3 , … xm.

The fusion engine inputs x1, x2, x3 , … xm can be matched to notations such as
 which represent the posterior information, described in theX X X X r

1
1

1
2

1
3

1, , , ,K
algorithm section, from correlated sensors. However, this matching does not restrict
matching to to … etc as the data fusion model we use considerx1 X1

1 , x2 X1
2 ,

integrating posterior information from both non-visual and visual sensors. As it is
explained below, data from visual sensors is pre-processed before it can be fed to the
fusion engine. This pre-processing results in a convenient format of information to be
passed to the fusion engine.

For visual sensors, we use optical and infrared cameras to record raw videos. The
acquired videos are then processed to extract meta-data information to be used in the
fusion algorithm described above. The processing of images from such visual sensors
requires a preliminary processing where some intermediary image features such as
moving objects and their boundaries are extracted for further processing [5]. The final
extracted visual information forms metadata that can be fed to the designed fusion engine
that integrates it with other sensor data from other heterogeneous sensors.

The extraction of visual information can be a real challenge because of "the lack of
proper low-level algorithms for robust feature extraction" [7]. Here, we use a motion
detection algorithm to extract relevant visual information about the moving objects in the
recorded video. The algorithm chosen for this purpose is the implementation in OpenCV,
which is an open-source computer vision library, originally developed by Intel. We have
performed a few modifications at the input level that resulted in movement detection. The
metadata in this context includes the kind of information such as the number of moving

JCSC 25, 5 (May 2010)

144

objects, the nature of movement, the type of the moving objects (human or animal), the
actions performed by the moving objects, the area they occupy, and the time they stay in
the room of question.

In the fusion engine design on Figure1, v1, v2, v3 , … vn’ represent the information
collected (metadata) from the every visual sensor (n' visual sensors). These inputs are
processed (metadata processing in Figure 1) to create appropriate input format. The
resulting outputs of the metadata processing are also in the form of correlated
information. In other words, some visual sensors can be correlated in the sense that only
one output can be retrieved from them. This correlation of visual sensors results in
independent inputs labeled as y1, y2, y3 , … ym’ in Figure 1.

After tracking moving objects on a given video, more work is done on detecting the
different features of these moving objects. Features such as the number of moving
objects, the nature of the moving objects (human, animal…), and the nature of
movements (fast, slow…) the objects perform are examples of information we want to
feed to the fusion engine. After extracting such important information (metadata), we
perform another processing on the metadata to come up with an input format compatible
with the data fusion model we are using (Bayesian model).

In data fusion context, the outputs of such a model are in the form of decisions that
should be performed to better serve the environment where the different types of sensors
are used. As Figure 1 shows, the set of decisions D1, D2,…, Dk are the independent fusion
engine outputs (or decisions). These decisions can help in saving energy, restricting
security, launching rescue operations and many more. Depending on what type of sensors
we use, a set of relevant and efficient decisions can be formed.

SIMULATION TOOL & EXPERIMENTS
In our study of multi-sensor data fusion, we implement a simulation tool that helps

us construct a virtual smart environment. The smart environment has basically different
types of sensors such as: motion detector, smoke detector, daylight sensor, and other
types of sensors. In addition to sensors, there are objects that can be moving around to
generate case scenarios where motion is a factor to be considered. Emergency cases such
as fire or flood can be studied using the implemented simulation tool. This tool is
implemented using JAVA and it facilitates the study of multiple scenarios because the
user can chose any type of sensors implemented in the tool as well as manage the
environment's state such as increasing the temperature (fire case) or adding moving
objects or water (flood scenario). Visual sensors are placed on the simulation grid at
specific grid locations. A specific set of attributes must be defined for each sensor. These
may include range, angle, sensitivity, and direction. Every sensor has a detection area and
detection occurs when the coverage area and attributes of a given object overlap with the
detection range and sensitivities of a given sensor. The simulation tool is our main data
generator where sensors' flags and data are fed to the fusion engine where decision
making process takes place.

CCSC: Mid-South Conference

145

In order to develop a reasonable method for finding a likelihood function at a given
moment, we have carefully studied the behavior of the moving objects. We have
conducted ten experiments where we tracked one object in every video and recorded the
corresponding data. Because of space limitations, we present only the conclusions we
have deived from the analysis of data. Through analyzing the graphs from the
experiments, we take into consideration the factor of persistence, which merely means for
how long the object(s) is moving. In order to do this, we choose a time instance from the
plot and study the behavior of the moving object in previous time instants.

The probability value that will be used by the fusion engine at time is computed
as follows:

 where is 's equivalent area percentage.y X t
i

i ii

m
=

−⎡
⎣⎢

⎤
⎦⎥=

−∑ ().
0

1 1
10

X ti() ti

In order to find the reasonable number of previous time instants that should be
included in the computation of a given likelihood function at a given instant, we further
analyze the data collected from the ten experiments. We apply the formula above at t9

for every experiment and find the equivalent likelihood function taking into()y9
consideration m=10, 8, 6, and 4 previous time instants. The table below summarizes the
analysis:

JCSC 25, 5 (May 2010)

146

From the table above, we conclude that looking back at eight or six time instants
usually result in a reasonable value that gives us an idea about how intense the motion is
in a given room and can safely be fed to the fusion engine. Also, the computation of a
likelihood function for m=8 or 6 is easy and quicker than m=10 or more; it also doesn't
take into consideration the percentage value at where usually no motion is recorded.

CONCLUSIONS
We have demonstrated ways to use Bayesian data fusion technique in a smart

environment with a heterogeneous, inter-dependent set of sensors. This was done by
generating statistically independent inputs for the Bayesian fusion model and demonstrate
the effect through a simulation tool. The Dempster-Shafer theory is considered to be a
generalization of the Bayesian theory of subjective probability. Dempster-Shafer allows
us to "base degrees of belief for one question on probabilities for a related question" [6].
One of the most important advantages of the Dempster-Shafer theory is that it does not
associate probabilities to questions of interest as Bayesian methods do. Instead, the belief
for one question is based on probabilities for a related question; therefore, the
Dempster-Shafer theory can effectively model uncertainty. As a next step, we plan to
build a Dempster-Shafer model and draw comparisons with the Bayesian model.
Additionally, further experimentation is underway using a testbed created by
ZigBee-based sensors that implement the smart environment and by optical and infra-red
cameras.

REFERENCES:

[1] Challa, S., Koks, D., An Introduction to Bayesian and Dempster-Shafer Data
Fusion,
http://robotics.caltech.edu/~jerma/research_papers/BayesChapmanKolmogorov.p
df, retrieved October 28, 2009.

[2] Waltz, Edward, James, L. ,Multisensor Data Fusion. Norwood: Artech House,
Inc, 1990.

[3] Fisher C., Eitel L., Richard W., and Shobha C., Introduction to Information
Quality. Cambridge : MITIQ, 2006.

[4] H.B, Mitchell, Multi-Sensor Data Fusion. Berlin: Springer, 2007.

[5] Snidaro, L., Claudio, P., Christian, M.,Gian, F., Visual Sensor Technology for
Advanced Surveillance Systems: Historical View, Technological Aspects and
Research Activities in Italy, http://www.mdpi.com/1424-8220/9/4/2252/pdf,
retrieved November 12, 2009.

[6] Shafer, G., Dempster-Shafer Theory, http://ww

* Copyright © 2010 by the Consortium for Computing Sciences in Colleges. Permission to copy
without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the CCSC copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires a
fee and/or specific permission.

147

ANOMALY DETECTION OF MASQUERDERS BASED UPON

TYPING BIOMETRICS AND PROBABILISTIC NEURAL

NETWORK*

Yingbing Yu
Computer Science & Information Technology Department

Austin Peay State University
Clarksville, TN 37044

931 221-7826
yuy@apsu.edu

ABSTRACT
This paper investigates a new method to more effectively detect anomaly
intrusions from masqueraders. Typing biometrics of keystroke patterns from
users are collected and used as the normal behavior profiles. The supervised
learning probabilistic neural network (PNN) is used for the classification of
data as from a normal user or from a masquerader. Experimental show the
good results with a high rate of successful detection of masqueraders and a low
false alarm rate.

I. INTRODUCTION

IDSs attempt to perform the process of monitoring computer networks and systems
for violations of security policy (a set of laws, rules, and practices that define the system
boundaries) [1-2]. IDSs can be categorized into misuse two classes based on different
detection approaches. Misuse (knowledge or signature-based) IDSs look for specific
patterns that define a known attack. The information about known attacks and
vulnerabilities of a system is encoded into “signatures”. Any actions that trigger the
matches will be reported as “attempts” of intrusions. Anomaly (behavior-based) IDSs
assume the deviation of normal activities under attacks and perform abnormal detection
compared with predefined system or user behavior profiles.

JCSC 25, 5 (May 2010)

148

Anomaly IDSs can be used to detect inside attacks from masqueraders, defined as
internal or external intruders who exploit legitimate users identification and password
obtained illegally to perform malicious attacks. Inside abuse of computer system was
reported as the second most cited forms of attacks which contributed to a large portion
of financial loss [3]. To prevent a system from attacks due to identity theft, the effective
approach is to deploy effective anomaly IDS to monitor user behavior and report any
suspicious activities. Alarms are reported when an acclaimed user (masquerader) behaves
out of characters and a large deviation with the genuine user’s behavior profile is
detected. To distinguish a masquerader from genuine users is a challenging task due to
the problem of concept drift, where the observed user behavior may change with different
tasks, time, general knowledge level and such other uncertain elements [4].

In this paper, we introduce a model to detect masqueraders using the typing
biometrics of keystroke patterns. The rest of this paper is organized as follows. Section
II is the literature review that discusses masquerader detection using command sequences
and typing biometrics. Section III presents the user typing biometrics template and the
classification of patterns using probabilistic neural network (PNN). Section IV presents
the experimental results as the detection rate of masquerader and false alarms of incorrect
classification. The paper concludes with section V, which discusses the future research
work.

II. LITERATURE REVIEW

Access control and authentication are not sufficient to prevent potential intrusions
from masquerader which already got the authorization to access system resources by
obtaining an authorized user identity illegally. User behavior profiling can be used for the
purpose of classification, future behavior prediction and masquerader detection.
Traditionally user behavior in a system is characterized by parameters such as login
frequency, location frequency, last login, session elapsed time, password fails, location
fails, amount of network traffic, resources used by user in a session and so on [5].

De Ru etc. developed a software methodology that improves security by using
typing biometrics to reinforce password authentication mechanisms [12]. Typing
biometrics is the analysis of a user's keystroke patterns. Each user has a unique way of
using the keyboard to enter a password. For example, each user types the characters that
constitute the password at different speeds. The methodology employs fuzzy logic to
measure the user's typing biometrics.

Machine learning and statistical methods have been widely used for the behavior
profiling from the analysis of command sequences. Davison and Hirsh developed a model
called IPAM (incremental probabilistic action modeling) to predict sequences of user
actions [6]. Single-step command transition probability is estimated from training data.
Balajinath introduced a Genetic Based Intrusion Detector (GBID) to model individual
user behavior with a 3-tuple vector which is learnt later via a genetic algorithm [11]. Ryan
used a back propagation neural network NNID (Neural Network Intrusion Detector) to
identify users simply by what commands and how often they use, called the ‘print’ of a
user [7].

CCSC: Mid-South Conference

149

Lane and Brodley [8] chose a machine learning algorithm IBL (instance based
learning) to measure the similarity between the most recent 10 commands of a user and
the profile extracted from the past. The similarity measure is the count of matches of a
new sequence with the sequences from a user’s command history, with a greater weight
assigned to adjacent matches. Schonlau selected several statistics-based methods to detect
masqueraders, including uniqueness, Bayes one-step Markov, Compression, Multi-step
Markov chain etc [9]. Maxion and Townsend applied Naïve Bayer classification
algorithm to user profiling with command-line data [10], which shows improvement over
the best approach of Schonlau.

III. MASQUERDER DETECTIN FROM TYPING BIOMETRICS

Each user types the characters that constitute a command at different speeds. Typing
biometrics can be used for the analysis of a user’s keystroke patterns. Our method is to
build a biometrics template served as the behavior profiling to be used for the anomaly
detection. In this approach, when an authorized user is accessing a system and typing
commands, the interval time in CPU cycles between two successive characters in a
unique command is recorded. For example, if the user types a command “dir”, the time
intervals between the characters “d” and “i”, “i” and “r”, “r” and the “ENTER” key will
be stored as the biometric characteristic.

If the command contains parameters, the time between the space and a regular
character is also recorded. For example, if a user types the command “dir –p”, we will
also calculate the time interval between the characters of “r” and the “BLANK” key. A
user may type capital letters instead of lower case ones, and this will involve a larger time
interval since the user needs to press the “CapsLock” key at the same time. We have not
considered this scenario and also experiments show that most users prefer to always type
commands in lower case. In addition, we only consider those frequently typed commands
by a user. One reason is that later a neural network is used for the classification and a
relatively large training data set is required.

The user typing biometrics in the form of time interval of successive characters is
used as the typing template for the user. On subsequence access to the system, each of the
user command typing will go through a neural network system for the classification as
normal from the genuine user or abnormal from a masquerader. We have chosen the
supervised probabilistic neural network (PNN) for the classification purpose. In the
following section, we give a brief overview of PNN and how it can be applied for the user
type biometrics to do the classification as a genuine user or masquerader.

Probabilistic Neural Network for Classification
Probabilistic neural network, which was first proposed by D. F. Specht [13], is a

kind of supervised neural network that has been widely used in the area of pattern
recognition, nonlinear mapping, and classification. It consists of three feed-forward
layers: input layer, pattern layer, and summation layer. An input layer contains as many
elements as there are separable parameters needed to describe the objects to be classified.
It computes distances from the input vector to the training input vectors and produces a
vector whose elements indicate how close the input is to a training input. The pattern

JCSC 25, 5 (May 2010)

150

layer sums these contributions for each class of inputs to produce a vector of probabilities
as its net output. The summation layer (output layer) has as many processing elements as
there are classes to be recognized. A compete transfer function on the output of the
second layer picks the maximum of these probabilities, and produces a “1” for that class
and a “0” for the other classes.

The pattern layer represents a neural implementation of a version of Bayes classifier,
where the class nonparametric probability density functions are approximated using a
Parzen estimator [14]. This approach provides an optimum pattern classifier to minimize
the expected risk of wrongly classifying an object. It gets closer to the true underlying
class density functions as the number of training samples increases if the training set is
an adequate representation of the class distinctions. PNN has the learning and
generalization ability of back-propagation multi-layer neural networks. It can capture the
relationships between the training examples and given classification. PNN training
scheme is simpler and faster than back-propagation networks and has the following
advantages: rapid training speed; guaranteed convergence to a Bayes classifier if enough
training examples are provided; enables incremental training which is fast; robustness to
noisy examples [15].

In our model of the classification after the user behavior profile as the typing
biometrics template is built, we pick up a block size of 10 commands for the testing. The
reason is that a user session usually involved the execution of multiple commands which
is reasonable to make a judgment after a certain block size of commands is executed in
the system. It also prevents the possible high false alarm rate which is a major issue for
anomaly intrusion detection systems. In the testing, to determine if the whole block of
commands is from the genuine user or a masquerader, we have chosen a threshold value
of 4 mismatched commands to classify a block as normal or abnormal. If 4 or more
commands in a block are classified as abnormal, the whole block is labeled as abnormal
and accordingly the user is regarded as the possible masqueraders for further
investigation to issue security alerts.

IV. EXPERIMENTAL RESULTS
We have tested the model based on typing biometrics and probabilistic neural

network to detect masqueraders by using the data generated in a computer networking
system. Ten authorized users have participated in the experiment to collect the data
during the training period to build the behavior profile separately. All the data was
generated when they logged on the computer system using the assigned user id and
password. In addition, to generate the masquerader data, another 5 different users from
the outside participated to generate the test data when they work on the same computer
system.

For each of the 10 normal users, the generated training data is 1200 commands in
which the first 1000 commands are used for the training and the other 200 for the testing
purpose. For each of the other 5 outside users, each also generated a data set of 200
commands. All the data from the 5 outside users is used as the masquerader data against
each of the normal users. As discussed in the last section, all the testing data of user
commands is divided into blocks of 10 in each. For each of 10 normal users, the 20 blocks

CCSC: Mid-South Conference

151

of normal testing is to check whether the model can correctly label it as “normal” and
otherwise it triggers a false alarm. The data of 100 blocks in total from the 5 outside users
is to test if the model can correctly identify anomaly cases.

Table 1 shows the results of successful masquerader detection rate and false alarm
rate when the normal cases from the genuine user are classified incorrectly as
“abnormal”. For most users, the model can achieve a high masquerader detection rate.
The average detection rate for the 10 users is about 89.4% (894/1000) and the missing
percentage is 10.6% (106/1000). If a normal one is classified incorrectly as abnormal, a
false alarm is generated. In the experiment, only 16 of 200 normal cases are incorrectly
identified as “abnormal” and the false alarm rate is 8.0%.

Table 1. Anomaly detection and false alarm rate
Detection Rate False Alarm Rate

User 1 91.0% (91/100) 5.0% (1/20)
User 2 85.0% (85/100) 0.0% (0/20)
User 3 95.0% (95/100) 10.0% (2/20)
User 4 91.0% (91/100) 15.0% (3/20)
User 5 86.0% (86/100) 5.0% (1/20)
User 6 87.0% (87/100) 0.0% (0/20)
User 7 88.0% (88/100) 10.0% (2/20)
User 8 93.0% (93/100) 10.0% (2/20)
User 9 91.0% (91/100) 15.0% (3/20)
User 10 87.0% (87/100) 10.0% (2/20)
Average 89.4% (894/1000) 8.0% (16/200)

We further conducted experiments with different block sizes to compare the
performance of detection and false positive alarm rate. The results in Table 2 show the
comparison results of different block sizes. For example, if the block size is 5 commands,
the testing cases are doubled with 2000 blocks from masqueraders and 400 normal testing
blocks in total. For the block size of 5, the detection rate is 85.6% and false alarm rate is
10.3% (400 anomaly test cases). If a block size of 15 commands is chosen, the detection
rate is 90.5% and false alarm rate is 10.0%. A block size of 20 and 25 commands is also
chosen and the results is listed in the table.

Table 2. Anomaly detection and false alarm rate of different block sizes
Block Size (# of

commands)
Detection Rate False Alarm Rate

5 85.6% (1712/2000) 10.3% (41/400)
10 89.4% (894/1000) 8.0% (16/200)
15 90.5% (588/650) 10.0% (13/130)
20 89.2% (446/500) 12.0% (12/100)
25 86.0%(344/400) 16.3% (13/80)

JCSC 25, 5 (May 2010)

152

For a real intrusion detection system, it is the ultimate goal to detect masqueraders
within a short time interval and alert the system earlier to prevent further loss. Based on
the experimental results, the interval of 10 commands execution achieves both a high
detection rate and a low false alarm rate. If a larger test block size is selected, the model
can still achieve a high detection rate but in the same time it introduces a higher false
alarm rate. If the block size is large above a threshold value (25 commands in the
experiment), the performance of the model decreases steadily with a low detection rate
and high false alarm. One reason is that the probability of overlapping behavior patterns
increases rapidly when the target size is above a certain threshold. In practice, an
appropriate size can be selected based upon specific security policies for an organization.
In general, it is fairly reasonable and effective for an anomaly IDS to detect potential
masqueraders after just about 10 or 15 commands execution.

V. CONCLUSIONS
In this paper, we introduce the neural network to detect masquerades based on user

behavior profiling in anomaly intrusion detection systems. Typing biometrics of
keystroke patterns from users can be collected in the training phase as the biometric
templates. To do the classification of a typing pattern, the supervised learning neural
network PNN is used considering its effectiveness in the areas of pattern recognition,
nonlinear mapping, and classification. PNN has the learning and generalization ability of
back-propagation multi-layer neural networks (BPNN) and is simpler and faster. It can
identify the commonalities in the training examples and then perform classification of
unseen examples from the predefined classes. Experiments conduced in a real computer
environment show promising results.

We want to extend the current research of masquerader detection. As we have
notices that in the last decade GUI and Internet-based applications have been deployed
in both UNIX and Windows systems. A large of part of user activities associated with
these applications may not involve individual commands directly entered into the system,
but instead consist of mouse clicks on icons. The behavior modes from this kind of
activity will differ significantly from those discussed in this paper. Future work would
address these questions.

REFERENCES

 [1] Anderson, James P., “Computer Security Threat Monitoring and Surveillance,”
Technical Report, James P. Anderson Co., Fort Washington, Pa., 1980.

[2] Bace, R., “Intrusion Detection,” Macmillan Technical Publishing, 2nd Edition,
Indiana, 2000.

[3] Computer Security Institute and Federal Bureau of Investigation, “2006 CSI/FBI
Computer Crime and Security Survey,” Computer Security Institute publication.

[4] Lane, Terran, “Machine Learning Techniques for the Computer Security Domain
of Anomaly Detection”, PhD thesis, Purdue University, W. Lafayette, IN, August
2000.

CCSC: Mid-South Conference

153

[5] Denning, Dorothy E., “An Intrusion Detection Model”, IEEE Transactions on
Software Engineering, 13(2): 222–232, February 1987.

[6] Davison, B. and Hirsh, H., “Predicting sequences of user actions,” Predicting the
Future: AI Approaches to Time-Series Problems, 1998 AAAI Workshop, July
1998, Madison, Wisconsin, pp. 5–12.

[7] Ryan, J., Lin, M., Miikkulainen, R., “Intrusion Detection with Neural Networks”,
Advances in Neural Information Processing Systems 10, M. Jordan et al., Eds.,
Cambridge, MA: MIT Press, 1998, pp. 943-949.

[8] Lane, T. and Brodley, C. E., “Temporal Sequence Learning and Data Reduction
for Anomaly Detection”, ACM Transactions on Information and System Security,
2(3). Pp. 295—331, 1999.

[9] Schonlau, M., DuMouchel, W., Ju, W., Karr, A., Theus, M., Vardi, Y.,
“Computer Intrusion: Detecting Masquerades”, Statistical Science, 16(1): 58-74,
2001.

[10] Maxion, Roy and Townsend, Tahlia. “Masquerade Detection Using Truncated
Command Lines”, International Conf. on Dependable Systems&Networks:
Washington, DC, 23-26 June 2002: 219-228.

[11] Balajinath, B., Raghavan, S. V., “Intrusion detection through learning behavior
model”, Computer Communication 24(2001) 1202-1212.

[12] De Ru, Willem G., Eloff, Jan H.P., “Enhanced Password Authentication through
Fuzzy Logic,” IEEE Expert, Volume 12, Issue 6, Nov.-Dec. 1997 Page(s):38 –
45.

[13] Specht, D.F., “Probabilistic Neural Networks”, Neural Networks, vol. 3, pp.109-
118, 1990.

[14] Parzen, E., "On estimation of a probability density function and mode", Ann.
Math. Statist., vol. 33, pp. 1065-1076, 1962.

[15] Wasserman, P.D., “Advanced Methods in Neural Networks”, Van Nostrand
Reinhold, New York, pp.35-55, 1993.

* Copyright is held by the author/owner.

154

DJANGO, A WEB FRAMEWORK USING PYTHON*

TUTORIAL PRESENTATION

Carl Burch
Hendrix College, 1600 Washington Ave, Conway AR 72032

(501) 450-1377
cburch@cburch.com

OVERVIEW
Web developers often use a Web application framework for building applications

that interface with Web and database servers. Some of the more popular frameworks and
their associated languages include Rails (Ruby), Spring MVC (Java), Struts (Java), and
Pylons (Python). Yet despite their importance in industry, such frameworks are often
omitted from the undergraduate computer science curriculum.

This tutorial will explore a particularly popular Web application framework for
Python called Django [1,2]. Like most Web application frameworks, Django provides
much more support for Web applications than older CGI libraries. Through a templating
system, developers can separate application logic from the user interface implemented in
HTML. Django also provides a Python-based API for defining and accessing a database,
automating the creation of SQL statements and conversion of data for simpler queries
(though still allowing SQL to be used for more complex queries). Similarly, it includes
an API for generating HTML forms and retrieving data from them. And it includes logic
for common Web application features, such as session management, cookie access, and
user logins.

The tutorial will describe the more prominent features of Django, and it will include
reflection on the presenter’s experience with using Django when teaching it to upper-
division computer science students.

PRESENTER
Carl Burch is an Associate Professor of Computer Science at Hendrix College. He

regularly teaches an upper-division course on databases, which includes a heavy emphasis
on Web development – and on Django in particular during the most recent iteration.

CCSC: Mid-South Conference

155

REFERENCES

[1] Django home page, http://www.djangoproject.com/, retrieved November 24,
2009.

[2] Holovaty, A., Kaplan-Moss, J., The Definitive Guide to Django: Web
Development Done Right, Berkeley, CA: Apress, 2009.

JCSC 25, 5 (May 2010)

156

Papers of the Sixteenth
Annual
CCSC

Central Plains
Conference

April 9-10, 2010
Park University

Parkville, Missouri

158

WELCOME — 2010 CCSC: CENTRAL PLAINS CONFERENCE

Park University is pleased to host the Sixteenth Annual Consortium for Computing
Sciences in Colleges Central Plains Conference in 2010. The conference this year
presents an interesting and varied program, including software engineering, database,
networking, security, computer architecture, discrete mathematics, active learning,
capstone experiences, and features a keynote address by the founder of Notable Software,
Inc. The tutorial program includes a stimulating variety of topics including distributed
system, version control, and automatic grading system. The program also offers sessions
for “nifty” assignments and a pre-conference workshop entitled “JGrasp: An integrated
development environment with intuitive visualizations for teaching hard concepts in
Java.” The conference also continues to host student activities. This year we have a
student web site contest, a student programming contest and a student poster contest.
Cash prizes are available for all student contests.

Published materials for this conference were selected using a double-blind
refereeing process, with reviewers solicited from the ACM SIGCSE paper submission
web site. Our thanks go to Phil Heeler and Henry Walker for configuring this system and
supporting its use. Over 100 reviews were completed by the reviewers during the paper
selection process. In 2010, 65% of the regular papers submitted were accepted for
publication in this volume of The Journal of Computing Sciences in Colleges and for
presentation at the conference.

On behalf of the Regional Board and the Conference Steering Committee, I wish to
thank all those who have contributed to the success of this conference: the authors for
their submissions, the reviewers, the session chairs and all those who took leadership
roles on the steering committee. I would also like to thank Park University, especially the
administrative staff, and my colleagues in the Information and Computer Science
Department who helped make the conference a success. Finally, thanks to the many
individuals, vendors, and organizations whose support, either financially or through
volunteering time and other resources, helped make the conference possible.

If you have questions or comments during or after the conference, please contact any
Central Plains Regional Board or Conference Steering Committee member. We hope you
enjoy the 2010 CCSC Central Plains Conference and the time you spend at Park
University in the small and beautiful town of Parkville.

Wen-Jung Hsin
Park University

Conference Chair

159

2010 CENTRAL PLAINS CCSC REGIONAL BOARD

MEMBERS

Scott Sigman, Regional Representative and Board Chair (2011)
. Drury University, Springfield, MO
Gary Schmidt, Registrar and Membership Chair (2011) .
. Washburn University, Topeka, KS
Judy Mullins, Treasurer (2012) University of Missouri Kansas City, Kansas City, MO
Dean Sanders, Editor (2012) . . Northwest Missouri State University, Maryville, MO
Cecil Schmidt, Secretary (2010) Washburn University, Topeka, KS
Chuck Pheatt, Webmaster (2010) Emporia State University, Emporia, KS
Tim DeClue, Past Conference Chair (2010) .
. Southwest Baptist University, Bolivar, MO
Wen Hsin, Current Conference Chair (2010) Park University, Parkville, MO
Mahmoud Yousef, Next Conference Chair (2011) .
. University of Central Missouri, Warrensburg, MO

2010 CENTRAL PLAINS CCSC CONFERENCE STEERING

COMMITTEE

Wen Hsin, Conference Chair Park University, Parkville, MO
Phil Heeler, Papers Northwest Missouri State University, Maryville, MO
Dean Sanders, Regional Editor Northwest Missouri State University, Maryville, MO
Ron McCleary, Panels, Tutorials and Workshops Avila University, Kansas City, MO
John Cigas, Student Programming Competition Park University, Parkville, MO
Jim Cain, Student Programming Competition .
. Southwest Baptist University, Bolivar, MO
Scott Bell, Student Programming Competition .
. Northwest Missouri State University, Maryville, MO
Brian Hare, Student Programming Competition .
. University of Missouri-Kansas City, MO
Carol Spradling (CoChair), Student Web Page Contest .
. Northwest Missouri State University, Maryville, MO
Scott Sigman (CoChair), Student Web Page Contest .
. Drury University, Springfield, MO
Ed Mirielli, Student Web Page Contest Westminster College, Fulton, MO
Rick Barker, Student Posters Washburn University, Topeka, KS
Mike Beneke, Student Posters Westminster College, Fulton, MO

160

Mahmoud Yousef, Nifty Course Assignments .
. University of Central Missouri, Warrensburg, MO
George Gibeau, Nifty Course Assignments .
. Ozarks Technical Community College, Springfield, MO
Rad Alrifai, Nifty Course Assignments Northeastern State University
Gary Ury, Lightning Talks Northwest Missouri State University, Maryville, MO
Carol Browning, Vendors - Grad School Liaison . Drury University, Springfield, MO
Gary Schmidt, Registrar - Regional Washburn University, Topeka, KS
Wen Hsin, Registrar - Local Park University, Parkville, MO
Scott Sigman, National Representative Drury University, Springfield, MO
Cecil Schmidt, Secretary . Washburn University, Topeka, KS
Judy Mullins, Regional Treasurer University of Missouri - Kansas City, MO
Wen Hsin Park, Local Arrangements, Publicity Park University, Parkville, MO
Chuck Pheatt, Webmaster Emporia State University, Emporia, KS

REVIEWERS — 2010 CCSC CENTRAL PLAINS

CONFERENCE

Mohammad Alanazi . Imam University, Riyadh, Saudi Arabia
Rad Alrifai . Northeastern State University, Tahlequah, OK
Khaled Alshare . Emporia State University, Emporia, KS
Pavel Azalov . Penn State University, Hazelton, PA
Beverly Bohn . Park University, Parkville, MO
Nick Breems . Dordt College, Sioux Center, IA
Carol Browning . Drury University, Springfield, MO
Chia-Chu Chiang University of Arkansas at Little Rock, Little Rock, AR
Monica Costa Polytechnic Institute of Castelo Branco, Castelo Branco, Portugal
Tim DeClue . Southwest Baptist University, Bolivar, MO
George Dlmitoglou . Hood College, Portland, OR
Jeffrey Edgington . University of Denver, Denver, CO
Emanuel Emanouilidis . Kean University, Union, NJ
Ernest Ferguson Northwest Missouri State University, Maryville, MO
Charles Frank Northern Kentucky University, Highland Heights, KY
Ernie Giangrande Jr. Wingate University, Wingate, NC
Nadeem Hamid . Berry College, Mount Berry, GA
James Harris . Pittsburg State Univ, Pittsburg, KS
Phillip Heeler Northwest Missouri State University, Maryville, MO
Dennis Herr Missouri Southern State University, Joplin, MO
Wen-Jung Hsin . Park University, Parkville, MO
Myungsook Klassen California Lutheran University, Thousand Oaks, CA
Janet Kourik . Webster University, St. Louis, MO
Srinivasarao Krishnaprasad Jacksonville State University, Jacksonville, AL

CCSC: Central Plains Conference

161

Noel LeJeune Metropolitan State College of Denver, Denver, CO
Hong Lin . University of Houston-Downtown, Houston, TX
Hui Liu . Missouri State University, Springfield, MO
Ron McCleary . Avila University, Kansas City, MO
Robert McCloud . Sacred Heart University, Fairfield, CT
Jim McKeown . Dakota State University, Madison, SD
Bruce Mechtly . Washburn University, Topeka, KS
Jose Carlos Metrolho Instituto Politenico de Castelo Branco, Portugal
Larry Morell . Arkansas Tech University, Russellville, AR
Judy Mullins University of Missouri – Kansas City, Kansas City, MO
David Naugler Southeast Missouri State University, Cape Girardeau, MO
Robert Neufeld . McPherson College, McPherson, KS
Chuck Pheatt . Emporia State University, Emporia, KS
David Pope . Ozarks Technical Community College
Hassan Pournaghshband Southern Polytechnic State University, Marietta, GA
Dean Sanders Northwest Missouri State University, Maryville, MO
Jamil Saquer . Missouri State University, West Plains, MO
Cecil Schmidt . Washburn University, Topeka, KS
Terry Scott . University of Northern Colorado, Greeley, CO
Onkar Sharma . Marist College, Poughkeepsie, NY
Ching-Kuang Shene Michigan Technological University, Houghton, MI
Scott Sigman . Drury University, Springfield, MO
Carol Spradling Northwest Missouri State University, Maryville, MO
Keith Tookey . Eureka College, Eureka, IL
Gary Ury Northwest Missouri State Universiy, Maryville, MO
Ian van der Linde . . . Anglia Ruskin University, Cambridge & Chelmsford, England
Ken Vollmar . Missouri State University, Springfield, MO
Henry Walker . Grinnell College, Grinnell, IA
George Whitson The University of Texas at Tyler, Tyler, TX
Paul Wiedemeier The University of Louisiana at Monroe, Monroe, LA
Mahmoud Yousef University of Central Missouri, Warrensburg, MO

* Copyright is held by the author/owner.

162

KEYNOTE ADDRESS

Friday, April 9, 2010

FORENSICS IN THE COMPSCI CLASSROOM *

Rebecca Mercuri, Ph.D.
Notable Software, Inc.

Although forensics is a well-established discipline in biology, medicine, physics,
materials and other sciences, its applications to computing are still relatively new. The
television shows, NUMB3RS and CSI, have helped popularize the field by providing
insight into algorithmic methods used to solve crimes. As it happens, forensic techniques
are also useful in the exploration of a broad range of computational topics within a
learning experience that emphasizes creativity in problem-solving. For example, simple,
public-domain tools can be used to recover deleted data on USB thumbdrives, a process
that demonstrates how different operating systems may deal with files, directories and
storage media. This talk will overview the fundamentals of computer forensics, while
providing a slew of examples (along with software references) that can be easily adapted
to the study of Computer Science and Information systems.

Rebecca Mercuri is the lead forensic expert at Notable Software, Inc.
<www.notablesoftware.com>, the company she founded in 1981. Her caseload has
included matters involving contraband, child endangerment, murder, computer viruses
and malware, wrongful work termination, class-action suits, copyright and patent
infringement, and election recounts (most notably Bush vs. Gore). Dr. Mercuri has
provided formal testimony and comment to the House Science Committee, the U.S.
Commission on Civil Rights, the Election Assistance Commission, the National Institute
of Standards and Technologies, the U.K. Cabinet, and numerous state legislatures and
municipal bodies. She is a senior life member of the Association for Computing
Machinery, where she has authored the Security Watch feature and numerous guest
columns of Inside Risks for Communications magazine, and is a co-founder and past
chair of the professional joint chapter of the Princeton ACM/IEEE Computer Society.
Rebecca is also an adjunct member of the Computer Engineering faculty at The College
of New Jersey, where she teaches a broad range of topics, including a senior engineering
lecture/laboratory elective on Digital Forensics.

* Copyright is held by the author/owner.

163

BANQUET ADDRESS

Friday, April 9, 2010

PLANETARY ADVENTURES: MY LIFE AS A NASA
SOFTWARE ENGINEER *

Carol Browning
Drury University

Springfield , Missouri
cbrowning@drury.edu

There are a number of stories from experiences working at NASA that make good
classroom anecdotes. These come from working in different roles on a variety of
missions and pre-missions. The Telerobot Project was prototype work for a remote
controlled robot, which led to applications for the robot arm on the space shuttle and the
rovers on Mars. During the Voyager Neptune Encounter, a natural language processor
was coupled with a database which was constantly being updated with information, such
as the number of known moons of Neptune. This system was available in the press room
during the encounter. The Sequence Automation Research Group applied state-of-the-art
technologies to automating the sequence planning process for missions, including the
Galileo Mission to Jupiter. On its way to study the polar regions of the sun, the Ulysses
mission flew close to Jupiter for a gravity assist. Some of these experiences refer to
planning the science activities on the Ulysses spacecraft during the Jupiter fly-by and to
negotiating for Deep Space Network time for the mission. The SIR-C shuttle-based Earth
imaging RADAR mission had software system engineering challenges for the mission
operations system. This system involved four internal software systems and four external
systems, including the flight software and the RADAR system equations software. For
the Cassini mission to Saturn, these experiences include testing the flight software for the
RADAR instrument, developing the instrument operations system, and completing the
preliminary planning for the operations of the RADAR instrument.

* Copyright is held by the author/owner.

164

jGRASP: AN INTEGRATED DEVELOPMENT ENVIRONMENT

WITH INTUITIVE VISUALIZATIONS FOR TEACHING HARD

CONCEPTS IN JAVA*

PRE-CONFERENCE WORKSHOP

James H. Cross II
Department of Computer Science and Software Engineering

Auburn University, Auburn, AL 36849
334-844-6315, crossjh@auburn.edu

jGRASP is a lightweight IDE that provides automatic generation of visualizations
that directly support the teaching of major concepts in CS1 and CS2. These concepts
include control structures, classes, interfaces, objects, inheritance, polymorphism,
composition, and data structures. The integrated visualizations are intended to overcome
the mismatch between what we want to teach and what most IDEs provide in the way of
support for learning. The workshop will include tutorials with example programs to
demonstrate how instructors can improve the learning and programming experience of
their students with jGRASP. Participants are encouraged to bring programs from their
own courses. jGRASP is freely available (http://www.jgrasp.org/).

All educators who teach Java will benefit from this workshop. However, it will be
especially suitable for instructors who teach CS1 (introduction to programming) and CS2
(introduction to data structures and algorithms), as well as instructors for AP courses in
high school. The overall objective of the workshop is to introduce faculty to the
advanced pedagogical features provided by jGRASP for teaching and learning Java,
including the workbench and new interactions pane. The tutorial will provide educators
with an opportunity to see how each of the automatically generated software
visualizations (CSD, UML, and dynamic Object Views) can be used to make learning to
program a more enjoyable experience. For example, students should find the presentation
(or “textbook”) object views for traditional data structures (e.g., stacks, queues, lists,
binary trees, etc.) particularly useful for understanding their programs. As they step
through their programs in debug mode or as they invoke methods on an object that has
been placed on the workbench, each presentation view is dynamically updated.

* Copyright © 2010 by the Consortium for Computing Sciences in Colleges. Permission to copy
without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the CCSC copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires a
fee and/or specific permission.

165

THE ACTIVE-LEARNING TRANSFORMATION: A CASE

STUDY IN SOFTWARE DEVELOPMENT AND SYSTEMS

SOFTWARE COURSES*

Ross Sowell, Christopher Gill, Roger D. Chamberlain, Cindy Grimm, Kenneth J.
Goldman

Department of Computer Science and Engineering
Campus Box 1045

Washington University
One Brookings Drive
St. Louis, MO 63130

314 935-6160
{rsowell, cdgill, roger, cmg, kjg}@cse.wustl.edu

Mark Tranel
Public Policy Research Center

University of Missouri - St. Louis
One University Blvd. 362 SSB

St. Louis, MO 63121
mtranel@umsl.edu

ABSTRACT
We present our experience in transforming a software development course and
a systems software course from a traditional, lecture-based style to an
active-learning format. We outline the common changes that were made in
both courses, and provide a summary of the active-learning techniques that
were successfully employed. We provide quantitative and qualitative evidence
that this transformation was a success. In both courses, student grades and
overall satisfaction with the course were increased with the transformation to
active learning, despite teaching essentially the same curriculum.

JCSC 25, 5 (May 2010)

166

INTRODUCTION
In the last decade, research in the learning sciences has repeatedly demonstrated the

benefits of active learning, when teams of students are engaged in an ongoing process of
inquiry and design, centered on real-world problems structured as an extended project [8,
9, 13, 19, 20, 21]. These research findings apply to all content areas, but they are
particularly compelling with regard to science, math, and engineering design [5, 10, 11].
Over and over, researchers have demonstrated that the learning environments that result
in maximum retention and increased ability to transfer learning to real-world settings are
very different from the lecture-plus-problem-set paradigm traditionally followed in
engineering programs [2]. However, this traditional, lecture-based style persists as the
dominant form of instruction in computer science.

One barrier that inhibits the widespread adoption of the active-learning style in
computer science is a lack of sufficient evidence that the techniques are effective in a
wide variety of computer science courses. While there have been several papers in the
literature with an emphasis on active-learning, the majority of these describe general
active-learning techniques [4, 14, 15, 16, 17, 18, 22] or are focused on CS 1 and CS 2 [1,
3, 6, 7, 12]. This focus is justified, as those introductory courses are taught at most
institutions, but there are also many common upper-level courses that to this point have
been largely ignored in the literature. Another inhibitor to adoption of the active-learning
style in more courses is the time and effort that it takes for an instructor to transform his
or her course. In this paper, we present further evidence that active-learning can be
successful in upper-level computer science courses and provide guidelines for performing
the transformation.

We present a case study of two upper-level computer science courses (one systems
software course and one software development course), taught by two different
instructors, that underwent a similar transformation from a traditional, lecture-based style
to the active-learning format. These two courses provide an interesting comparison
because both are lab-based courses in which the concepts taught are relatively
straightforward and the emphasis is placed on learning how to apply them. We present
quantitative evidence that this transformation was successful in the form of student
grades, exam scores, and course assessments, as well as qualitative data from student
interviews. We also give a summary of the key techniques employed by the instructors
during the active-learning sessions to serve as a model for others that desire to transform
their own course.

THE ACTIVE-LEARNING TRANSFORMATION
The Courses Pre-Transformation

"Object-oriented Software Development Laboratory" (OOSDL) focuses on practical
aspects of designing, implementing and debugging object-oriented software. It is a
required course for all computer science majors, and serves as a technical elective for
computer engineering majors. Topics covered by this course include developing,
documenting, and testing representative applications using object-oriented frameworks
and C++. Design and implementation are central themes to enable the construction of
reusable, extensible, efficient, and maintainable software. Prior to the spring of 2009, this

CCSC: Central Plains Conference

167

course was taught in a traditional, lecture-based style, even though all of the assignments
were laboratory assignments.

"Introduction to Systems Software" (ISS) examines the process whereby computer
systems manage, interpret, and execute applications. It is a required course for all
computer engineering majors and serves as a technical elective for computer science
majors. This course covers fundamental algorithms for numerical computation, memory
organization and access, storage allocation, and the sequencing and control of peripheral
devices. Prior to the fall of 2008, this course was always taught in the traditional style.
The scheduled contact time was devoted to lectures, and all assignments were to be
completed outside of class. These consisted of both pencil and paper exercises as well
as laboratory assignments that were hands-on with the machines.

Implementation of Active-Learning
OOSDL and ISS underwent the transformation to the active-learning format in the

fall of 2008 and the spring of 2009, respectively. The primary changes that were common
to both courses are as follows:
 • Formal comprehensive in-class lectures were largely eliminated. Instead, short,

informal lecturing and reviews are now done as needed during or interspersed with
the active-learning sessions.

 • The traditional lectures were recorded and made available to students online for
preparation prior to class, or for review afterward.

 • In-class time is now spent mainly solving problems or working on programming
assignments in teams, and the instructors and teaching assistants make themselves
available to provide help and guidance as needed.
There are minor differences between the two courses, including how groups are

formed, how in-class work is graded, and the types of work that are assigned. These are
detailed below.

The OOSDL class periods are now predominantly studio sessions, in which students
work in teams on assigned programming exercises that explore different programming
issues and C++ language features related to each course module. The professor and
teaching assistants circulate throughout the studios to answer students' questions, offer
suggestions, point out issues and nuances of the exercises on which the students are
working, and otherwise serve as resources for the students as they work through the
exercises. The studios are largely graded for participation. Students who submit a
reasonably complete set of answers earn full credit.

During the ISS class periods, students are instructed to work on the currently
pending written assignment or lab assignment in small groups of their choosing. The
class meets either in the regular classroom or in a computer lab as appropriate for the task
that class period. The professor and teaching assistant circulate and make themselves
available during the class period to help out with the work the students are doing.
Whatever they do not finish in class, they are expected to finish outside of class.
Assignments are typically due one week after the in-class session that they are first
presented. As a result of the above, students are being graded on the active work they are

JCSC 25, 5 (May 2010)

168

doing in class. However, since it is not due immediately, they do have the opportunity to
improve it outside of class.

Examples of the exercises used for active-learning in both courses are available
online:
http://www.cse.wustl.edu/~rsowell/ActiveLearningExercisesOOSDL.html
http://www.cse.wustl.edu/~rsowell/ActiveLearningExercisesISS.html

RESULTS
Exam and Project Scores

In both courses, the midterm and final exams given after the active-learning
transformation were based largely on the exams from the previous semester in an attempt
to measure the same things. In ISS, the same large-scale final project was assigned both
semesters. In OOSDL, the project score consisted of five or six lab assignments. One
less lab assignment was made after the active-learning transformation, but as a whole, the
laboratory assignments covered similar material during both semesters. The median,
mean, and standard deviation of these scores are provided in Table 1.

The exam scores were significantly improved with the implementation of
active-learning in all the exams, except for the OOSDL final exam. In this case the scores
decreased, but this decrease was not significant. We also observed a decrease in the
variability of all exam scores with the implementation of active-learning. We observed
a similar increase in the project scores for ISS.

Midterm Final Project
Course Style n Med Avg Dev Med Avg Dev Med Avg Dev

ISS S2006 L 24 84.8 80.8 10.8 82.0 82.4 12.5 71.0 60.5 25.8
F2008 A 26 90.0 88.3 8.9 93.0 91.0 6.2 82.0 79.8 17.5

OOSDL F2008 L 29 79.0 76.3 16.8 90.0 85.6 11.3 97.0 95.4 7.6
S2009 A 30 86.0 84.1 8.7 86.0 83.8 9.4 94.0 86.9 21.4

Table 1. Exam and project scores from the courses both before and after the
active-learning transformation. "L" and "A" indicate whether the course was taught in
the "Lecture" or "Active-learning" style, respectively. Exam scores increased in all cases
except the OOSDL final, in which no significant difference was observed, while the
variability of the exam scores decreased across the board. The project scores also
increased with the implementation of active-learning in ISS.

The project scores for OOSDL decreased in the spring of 2009, but this decrease
was partially influenced by the scores of one student that, for personal reasons, decided
to take an Incomplete in the course. If we ignore the lab scores (many of which were
zeros) for this student in the computation, then the mean becomes 89.19 with a standard
deviation of 16.78.

CCSC: Central Plains Conference

169

Course Evaluations
Scores from the end of semester student evaluations are shown in Table 2. Among

other things, the students were asked to give a score for the following three topics:
 • Overall rating of course content.
 • Overall rating for teaching quality.
 • Overall satisfaction with the course.

Evaluations
Course Term Style content teaching satisfaction

ISS S2006 L 0.81 0.85 0.80
F2008 A 0.83 0.88 0.84

OOSDL F2008 L 0.77 0.83 0.74
S2009 A 0.76 0.76 0.76

Table 2. Evaluation scores from the courses both before and after the active-learning
transformation. "L" and "A" indicate whether the course was taught in the "Lecture" or
"Active-learning" style, respectively. Overall student satisfaction with the course
increased in both cases.

These scores were on a Likert scale from 1 to 7, with 1 being "poor" and 7 being
"excellent". The questionnaire was changed in the fall of 2008, so that the scores were
on a Likert scale from 1 to 9, with 1 being "poor" and 9 being "excellent". Therefore, we
have normalized the scores in Table 2.

For ISS, the mean evaluation scores increased in every category with the
implementation of active-learning. For OOSDL, the scores were slightly lower for course
content and teaching quality, but the overall satisfaction with the course was still higher.

One student review of OOSDL was highly negative but the others were positive, and
the reviews overall indicate that while not all students viewed the approach as positive,
a significant majority of the responding students viewed it highly so.

Student Interviews
An external evaluator conducted student focus groups, one each of students from the

fall 2008 session of OOSDL and ISS. A total of 17 students participated in the focus
groups. The focus group protocol included three topics:
Topic 1: online lectures -- strength and weaknesses
Topic 2: use of classroom time -- how different
Topic 3: use of lab time -- strengths and weaknesses of working in groups

Key themes identified in the focus groups:
 • Some students commented on the lack of real-time feedback from online lectures;

cannot ask questions in the course of the lecture.
 • Many students found it to be advantageous that they determined when to access the

lecture material and that the lecture material was available for review. They found
it to be an impediment to efficient use of the on-line material not having an index
to the recorded lecture. If there was some specific information that they wish to go

JCSC 25, 5 (May 2010)

170

to for review, it was just a random process of starting and stopping the lecture to
find it.

 • A number of students cited technical problems with accessing the online lecture
material.

 • An issue frequently mentioned was the new teaching approach required more hours
to complete the coursework.

Instructor Reflections
The instructor for OOSDL reported that the students worked well in groups, and

though initial concerns were expressed by some students, overall their level of
engagement with the material appeared high and the studio discussions were active and
effective. One key suggestion made to the teams was that during a studio, the students
should rotate roles so that everyone had a chance to write code, debug code, and
document answers for at least some of the exercises. An unexpected but welcome
development was that one of the students often did parallel development of her own
solution even when she was responsible for other things, just to have the experience of
solving each exercise herself.

For future offerings of the course, the instructor for ISS is considering incorporating
class work that is specifically not graded in any way other than participation. This might
afford students the opportunity to try more creative approaches to a problem without the
fear of being penalized for something that might not work.

CONCLUSION AND FUTURE WORK
We have presented our experience in transforming a software development course

and a systems software course from a traditional, lecture-based style to the active-learning
format. With this transformation, student grades and overall satisfaction with the courses
were increased, despite teaching the same curriculum. Finally, we presented a summary
of the key active-learning techniques employed by the instructors that made the
transformation a success.

While the initial active-learning transformation was certainly successful, we see
several opportunities based on our evaluation for further improvement of our approach:
 • The recorded lectures should be indexed and enhanced with online notes.
 • Eliminate even more of the formal lecture, and replace with short, informal lecturing

when necessary during or just prior to the active-learning session.
 • Effectively integrate peer review into the courses.

ACKNOWLEDGMENTS
This work is supported by the National Science Foundation under CPATH Grant

No. CNS-0722328. Any opinions, findings, and conclusions expressed are those of the
authors and do not necessarily reflect the views of the National Science Foundation.

CCSC: Central Plains Conference

171

REFERENCES

[1] Beck, L. L., Chizhik, A. W., and McElroy, A. C., Cooperative learning
techniques in CS 1: design and experimental evaluation, SIGCSE Bull., 37, (1),
470-474, 2005.

[2] Bransford, J. D., Brown, A. L., and Cocking, R. R., editors, How people learn:
brain, mind, experience, and school, Washington, D.C.: National Academy
Press, 2000.

[3] Briggs, T., Techniques for active learning in CS courses, J. Comput. Small Coll.,
21, (2), 156-165, 2005.

[4] Chinn, D., Martin, K., and Spencer, C, Treisman workshops and student
performance in CS. SIGCSE Bull., 39, (1), 203-207, 2007.

[5] Edelson, D. and Reiser, B., Making authentic practices accessible to learners:
design challenges and strategies, In Sawyer, R. K., editor, Cambridge handbook
of the learning sciences, New York, NY: Cambridge University Press, 2006.

[6] Gehringer, E. F. and Miller, C. S., Student-generated active-learning exercises,
SIGCSE Bull., 41, (1), 81-85, 2009.

[7] Gonzalez, G., A systematic approach to active and cooperative learning in CS 1
and its effects on CS 2, In SIGCSE '06: Proceedings of the 37th SIGCSE
technical symposium on Computer science education, 133-137, 2006.

[8] Hake, R., Interactive-engagement versus traditional methods: a
six-thousand-student survey of mechanics test data for introductory physics
courses, Am. J. Phys., 66, (1), 64-74, 1998.

[9] Johnson, D. R. and Smith, K., Cooperative learning returns to college: What
evidence is there that it works? Change, (July/Aug), 26-35, 1998.

[10] Kolodner, J. L., Case-based reasoning, In Sawyer, R. K., editor, Cambridge
handbook of the learning sciences, New York, NY: Cambridge University Press,
2006.

[11] Krajcik J. S., and Blumenfeld, P., Project-based learning, In Sawyer, R. K.,
editor, Cambridge handbook of the learning sciences, New York, NY:
Cambridge University Press, 2006.

[12] Lau, K.-K., Active learning sheets for a beginner's course on reasoning about
imperative programs, SIGCSE Bull., 39, (1), 198-202, 2007.

[13] Laws, P., Sokoloff, D., and Thornton, R., Promoting active learning using the
results of physics education research, UniServe Science News, 1999.

[14] McConnell, J. J., Active and cooperative learning: tips and tricks (part I),
SIGCSE Bull., 37, (2), 27-30, 2005.

[15] McConnell, J. J., Active and cooperative learning: more tips and tricks (part II),
SIGCSE Bull., 37, (4), 34-38, 2005.

JCSC 25, 5 (May 2010)

172

[16] McConnell, J. J., Active and cooperative learning: further tips and tricks (part
III), SIGCSE Bull., 38, (2), 24-28, 2006.

[17] J McConnell, J. J., Active and cooperative learning: final tips and tricks (part
IV), SIGCSE Bull., 38, (4), 25-28, 2006.

[18] Pollard, S. and Duvall, R. C., Everything I needed to know about teaching I
learned in kindergarten: bringing elementary education techniques to
undergraduate computer science classes, SIGCSE Bull., 38, (1), 224-228, 2006.

[19] Prince, M., Does active learning work? a review of the research, Journal of
Engineering Education, 93, (2), 223-231, 2004.

[20] Redish, E., Saul, J., and Steinberg, R., On the effectiveness of active-engagement
microcomputer-based laboratories, American Journal of Physics, 45-54, 1997.

[21] Sawyer, R. K., editor, The Cambridge Handbook of the Learning Sciences, New
York, NY: Cambridge University Press, 2006.

[22] Schweitzer, D. and Brown, W., Interactive visualization for the active learning
classroom, SIGCSE Bull., 39, (1), 208-212, 2007.

* Copyright © 2010 by the Consortium for Computing Sciences in Colleges. Permission to copy
without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the CCSC copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires a
fee and/or specific permission.

173

EXPERIENCES WITH ACTIVE LEARNING IN CS 3*

Ross Sowell, Yixin Chen, Jeremy Buhler, Sally A. Goldman, Cindy Grimm, Kenneth J.
Goldman

Department of Computer Science and Engineering
Campus Box 1045

Washington University
One Brookings Drive
St. Louis, MO 63130

314 935-6160
{rsowell, chen, jbuhler, sg, cmg, kjg}@cse.wustl.edu

ABSTRACT
We report on our experiences with transforming CS 3 to an active-learning
format. We have now had three separate instructors at our institution begin to
integrate active learning into the course. Their approaches to integrating active
learning and their experiences with it were quite different. We describe the
various approaches of the instructors to the transition, provide synopses of the
most effective active-learning exercises that were used, and summarize the
lessons learned from these experiences. We expect that this information will
be useful to anyone that desires to incorporate active learning into his or her
CS 3 or similar course.

INTRODUCTION
Educational research provides strong evidence that active and collaborative learning

result in a deeper and more integrated understanding of concepts, as well as significant
improvement in student retention in degree programs [2, 7, 10, 16, 17, 18]. Engaged
students remember concepts longer, enjoy the learning process more, and are more likely
to continue. Collaborative learning builds important communication, teamwork, and
leadership skills [8]. In addition, active learning in the classroom provides an opportunity
to teach the creative design process through discussion and critique of student work.

In the last decade, many studies in the computer science education community have
emphasized active learning. The majority of these describe general techniques [4, 11, 12,

JCSC 25, 5 (May 2010)

174

13, 14, 15, 19] or focus on active-learning in CS 1 and CS 2 [1, 3, 5, 6, 9], while CS 3 has
to this point received relatively little attention. Barriers to the widespread adoption of
active-learning in CS 3 include a lack of sufficient evidence that such a transition is
beneficial and for concerns of the need to cover a lot of material. Also, it takes
significant time for an instructor to design and implement appropriate active-learning
exercises for this type of course.

In this paper, we present our experience in transforming our CS 3 course to an
active-learning format. The CS 3 course at our institution is entitled "Algorithms and
Data Structures". Students study fundamental algorithms, data structures, and their
effective use in a variety of applications. The course emphasizes the importance of data
structure choice and implementation for obtaining the most efficient algorithm for solving
a given problem. The topics covered generally include: divide-and-conquer algorithms,
worst-case asymptotic analysis, sorting algorithms, decision tree lower bound technique,
hashing, binary heaps, skip lists, B-trees, and basic graph algorithms. Enrollment
numbers are typically between 30 and 45 students for any given session. Prior to the
Spring 2008 semester, this course was always taught in the traditional lecture format.

In the past three years, we have had three different instructors teach the CS 3 course
both in the traditional style and with active learning. Each instructor had a slightly
different approach to the active-learning transformation and experienced varying degrees
of success. We describe the various approaches, supply a collection of sample
active-learning exercises that were successful, provide instructor reflections on their
experiences, and summarize our lessons learned.

APPROACHES TO THE ACTIVE-LEARNING TRANSFORMATION
In the Fall 2008, Spring 2008, and Spring 2009 semesters, three different instructors

that had previously taught CS 3 in the traditional, lecture-based style, taught the course
again, this time incorporating active learning. Each instructor took a different approach
and experienced varying degrees of success. These approaches differed in terms of the
frequency and length of the active-learning sessions, whether or not lectures were
recorded and assigned before class, whether or not the work was graded, and how the
work was presented and discussed. The different approaches are detailed below:
 • Instructor A, Spring 2008. In preparation for the transition to active learning, the

lectures that the instructor gave in a previous offering of the course were recorded.
These videos were made available to the students online, in addition to lecture notes
recorded on a Tablet PC, and the textbook. In preparation for active-learning
classes, the students were assigned to either watch a 15-20 minute video or complete
the corresponding reading in the text. The instructor gave a short and easy quiz
about the material assigned for preparation in order to learn which students had
prepared. Sometimes the questions were "What is something you learned?" or
"What is something that you are not clear about?" and sometimes very simple
factual questions were asked. Roughly half of all the classes included some
active-learning exercise. Students would divide into groups of their own choosing
to work on the exercise. The instructor would circulate and help groups as questions
arose. Generally, the sessions would last 30-40 minutes, with an additional 10-15

CCSC: Central Plains Conference

175

minutes of discussion afterwards. For this discussion, the instructor would ask for
volunteers to share their solutions with the class, and alternate solutions were
compared. Each group was asked to submit one sheet of paper with their names on
it from their class work. This was graded solely on participation, which accounted
for 5% of the course grade.

 • Instructor B, Fall 2008. All class notes were recorded on a tablet PC and were
posted online one or two days after class. Once every three or four classes, roughly
half of the class would be devoted to an active learning session. Students were
asked to divide into groups of 3-4 to work on the exercise. The instructor would
circulate during the session and provide guidance and answer questions as needed.
In some cases, the instructor would ask for volunteers or call on a specific group to
put their solution on the board for class discussion. The work done was not graded
in any way.

 • Instructor C, Spring 2009. Half of nearly every class was devoted to an
active-learning exercise. To accommodate this, students were expected to do
additional reading outside of class. Roughly 15 minutes would be spent in the
student-selected groups of 3-4 students each, working on the exercise. Then, two
or three groups would be asked to present their solutions to the class. These would
be discussed and critiqued by the other classmates as well as the instructor. The
presenters would be chosen on a volunteer basis, but everyone was encouraged to
present at least once during the semester. The instructor would record the names
of the presenters and this would factor into a participation score that accounted for
10% of the course grade.

SAMPLE EXERCISES
There are many factors to consider when choosing an exercise for an active-learning

session. If a classical problem can be presented in such a way that the students discover
the algorithm or data structure on their own, then they are more likely to remember it and
apply it in appropriate situations. Also, problems that have multiple solutions lend
themselves well to active learning, as the presentation of alternate solutions makes
students think critically about which solution they feel is preferable. Problems with
multiple layers of difficulty allow for students with varying levels of understanding to
make progress at their own speed and continue to be challenged.

We include a selection of successful active-learning exercises that we have used
below. A complete list of exercises is available online at
http://www.cse.wustl.edu/~rsowell/ActiveLearningExercisesCS3.html.

Adversary Lower Bound Technique
n Coins Problem. In this problem there are 10 coins one of which is lighter than the

other 9 coins but looks the same. There is a balance scale that the algorithm is to use to
determine the fake coin. The algorithm wants to minimize the number of times the scale
must be used. The students are divided into groups of four. Two students in each group
are to define an algorithm for the 10 coin problem. The other two students define an

JCSC 25, 5 (May 2010)

176

adversary strategy. The two algorithm designers exchange strategies. The students are
asked to prove how many weighings are optimal for 10 coins and then to try to generalize
to n coins, and when you do not know if the fake coin is heavy or light. Based on this,
it is much easier to introduce the lower bound for comparison based sorting. A benefit
of this approach is it helps students learn how to write an algorithm and adversary
strategy in a way that is clear and easy to understand without necessarily going to the
level of code or pseudocode.

Trees and Hashing
B-Trees. After talking about secondary storage and its organization into pages, the

students are asked to think about how to group the nodes in a balanced binary search tree
into pages to minimize the worst case number of disk pages required in a search. This
does a good job of motivating B-Trees as a generalization of binary search trees. Then,
in later lectures we show how B-Tree insertion can allow you to keep the trees balanced.
This also helps make it easy for the students to see the relationship between 2-3-4 trees
and red-black trees.

Open Addressing Game. Students are asked to form two groups. They all leave
their seats and then try to find a seat assignment using an open addressing scheme. One
group uses a simple hashing function, while the other group uses a double hashing
function. Each student must record how many conflicts they resolve before he or she
finds a seat in which to sit. The students are then asked to discuss why one group (double
hashing group) saw much fewer conflicts. This discussion went very well. Most students
understood open addressing much better, and figured out the explanations for the
efficiency difference between the two hashing functions, both analytically and intuitively.

Graphs
Robots. You are given a maze (an n x n grid with some edges between grid squares

marked as walls that the robot cannot pass through). You are given a start location S and
a goal G for the robot and asked to find the fewest steps the robot can make to get from
S to G. After solving this problem the students were given the harder problem where you
have two robots that start at S1 and S2. The robot starting at S1 has goal location G1 and
the robot starting at S2 has goal location G2. In each time step both robots can move,
however, they cannot share the same location. Find the minimum time steps needed for
both robots to reach their goals (and also find the corresponding solution). This second
version is much harder since it requires them to change the state space so that each vertex
in the graph corresponds to a pair of robot locations. This worked out very well. Even
the students who did not figure out how to solve the second version benefited when we
went over the solution at the beginning of the next class.

Savage and Human Game. Students were asked to play a river-crossing flash game
"savage and human". Then they were asked to formulate it into a graph theory problem.
It went very well as most students found it very interesting and figured out that it amounts
to finding a shortest path in the state space graph. They can start to see that many
real-world planning and scheduling problems can be translated into a graph theory
problem.

CCSC: Central Plains Conference

177

Dijkstra's Algorithm. After we discussed breadth-first search (BFS) and proved that
it can find the shortest path for graphs where each edge has a unit weight, the students
were asked to generalize the idea to graphs with positive weights. After being given the
hint of breaking each edge with weight k to k edges with unit costs, some students were
able to derive Dijkstra's algorithm and easily prove its correctness, using the BFS result
as a lemma. It was a satisfying experience for students who can figure it out, and it helps
students gain a deeper understanding of Dijkstra's algorithm.

INSTRUCTOR REFLECTIONS
 • Instructor A, Spring 2008. The instructor had a generally positive experience with

the active-learning transformation. Many students appreciated being able to
re-watch portions of the lecture at their own convenience. One item that she felt
was particularly important was to try to incorporate different levels of difficulty into
each exercise. For slower groups, they at least have the satisfaction of
understanding the first level or two, while more advanced groups are still challenged
with the later levels. When circulating the class, she thought it was important to
visit the groups that did not seem to be doing anything first. Sometimes they needed
a little help to get started. She also noted that it was important to carefully consider
what material to include for active learning. For example, anything that the student
has seen previously, is far less interesting for active learning. Finally, she felt that
collecting sheets of paper from each group was helpful, as browsing through them
gave her some idea of the thought process of some of the groups that she did not get
to visit.

 • Instructor B, Fall 2008. The instructor had a largely negative initial experience with
the active-learning transition. Whether it was the content or difficulty or
organization, his students did not seem to get a lot out of it, even though they would
do the work. Some students did not seem to have an opinion one way or the other,
but others actually resented it. They did not understand why they were doing more
exercises similar to their homework in class. The instructor is not sure if he chose
the best exercises to try active learning with, and intends to make another attempt
at active learning in the future.

 • Instructor C, Spring 2009. The instructor observed that students were more
engaged, more interested, and generally got more out of the class when they
participated in the discussion. The students also exercise independent, creative
thinking, rather than just learning what is in the text. It also serves as an advantage
for the instructor, since he gets the opportunity to better know the students. The
drawbacks include that sometimes the discussion veers off topic or a group presents
a very strange algorithm. In these cases, it is the instructor's responsibility to steer
the discussion back on track. He also noted that he is unable to cover the same
amount of material in class, so some things have to be left to the reading. Students
must do more reading to cover the same material. He feels that the students who
participate learn more, but not everyone wants to participate. The main issue is how
to adapt to all types of students.

JCSC 25, 5 (May 2010)

178

CONCLUSION AND FUTURE WORK
We have presented the experiences of three instructors that each incorporated active

learning into CS 3. We have described the various approaches and techniques used,
provided a set of exercises that were successful, and presented the reflections of the
instructors on their experiences. Our experiences with active learning in CS 3 have
yielded successful techniques that are now recommended to others as well as posed
challenges for future investigation.

Successful techniques include:
 • Recording the traditional lectures. Students appreciate being able to watch the

lecture or read the text to prepare for class. Having the lectures indexed allows the
student to watch only the portions that he or she needs. Being able to re-watch
difficult portions of the lecture is another asset.

 • Brief, easy quizzes at the beginning of class can help encourage student preparation
for active learning and alert the instructor to students that are not prepared.

 • Exercises with multiple solutions and multiple levels of depth work best for
active-learning sessions.
Challenges include:

 • How to select the student groups? Letting students choose their own groups or
assigning them based on seating may not be the best option. Students have different
levels of experience, and it may be best to group them according to their level of
experience and ability.

 • How to effectively integrate peer review? So far, most of the critique has come
from the instructor or from other students in a class discussion. It would be nice to
have one group critique the algorithm, data structure, or proof of another group.

 • Most of the lecturing is done at the beginning of class, followed by the
active-learning session. It may be more effective to lecture briefly, and then begin
the active-learning session. The session could then be interspersed with brief,
informal lectures throughout.

ACKNOWLEDGMENTS
This work is supported by the National Science Foundation under CPATH Grant

No. CNS-0722328. Any opinions, findings, and conclusions expressed are those of the
authors and do not necessarily reflect the views of the National Science Foundation.

REFERENCES

[1] Beck, L. L., Chizhik, A. W., and McElroy, A. C., Cooperative learning
techniques in CS 1: design and experimental evaluation, SIGCSE Bull., 37, (1),
470-474, 2005.

[2] Bransford, J. D., Brown, A. L., and Cocking, R. R., editors, How people learn:
brain, mind, experience, and school, Washington, D.C.: National Academy
Press, 2000.

CCSC: Central Plains Conference

179

[3] Briggs, T., Techniques for active learning in CS courses, J. Comput. Small Coll.,
21, (2), 156-165, 2005.

[4] Chinn, D., Martin, K., and Spencer, C, Treisman workshops and student
performance in CS. SIGCSE Bull., 39, (1), 203-207, 2007.

 [5] Gehringer, E. F. and Miller, C. S., Student-generated active-learning exercises,
SIGCSE Bull., 41, (1), 81-85, 2009.

[6] Gonzalez, G., A systematic approach to active and cooperative learning in CS 1
and its effects on CS 2, In SIGCSE '06: Proceedings of the 37th SIGCSE
technical symposium on Computer science education, 133-137, 2006.

[7] Hake, R., Interactive-engagement versus traditional methods: a
six-thousand-student survey of mechanics test data for introductory physics
courses, Am. J. Phys., 66, (1), 64-74, 1998.

[8] Johnson, D. R. and Smith, K., Cooperative learning returns to college: What
evidence is there that it works? Change, (July/Aug), 26-35, 1998.

 [9] Lau, K.-K., Active learning sheets for a beginner's course on reasoning about
imperative programs, SIGCSE Bull., 39, (1), 198-202, 2007.

[10] Laws, P., Sokoloff, D., and Thornton, R., Promoting active learning using the
results of physics education research, UniServe Science News, 1999.

[11] McConnell, J. J., Active and cooperative learning: tips and tricks (part I),
SIGCSE Bull., 37, (2), 27-30, 2005.

[12] McConnell, J. J., Active and cooperative learning: more tips and tricks (part II),
SIGCSE Bull., 37, (4), 34-38, 2005.

[13] McConnell, J. J., Active and cooperative learning: further tips and tricks (part
III), SIGCSE Bull., 38, (2), 24-28, 2006.

[14] J McConnell, J. J., Active and cooperative learning: final tips and tricks (part
IV), SIGCSE Bull., 38, (4), 25-28, 2006.

[15] Pollard, S. and Duvall, R. C., Everything I needed to know about teaching I
learned in kindergarten: bringing elementary education techniques to
undergraduate computer science classes, SIGCSE Bull., 38, (1), 224-228, 2006.

[16] Prince, M., Does active learning work? a review of the research, Journal of
Engineering Education, 93, (2), 223-231, 2004.

[17] Redish, E., Saul, J., and Steinberg, R., On the effectiveness of active-engagement
microcomputer-based laboratories, American Journal of Physics, 45-54, 1997.

[18] Sawyer, R. K., editor, The Cambridge Handbook of the Learning Sciences, New
York, NY: Cambridge University Press, 2006.

[19] Schweitzer, D. and Brown, W., Interactive visualization for the active learning
classroom, SIGCSE Bull., 39, (1), 208-212, 2007.

* Copyright © 2010 by the Consortium for Computing Sciences in Colleges. Permission to copy
without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the CCSC copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires a
fee and/or specific permission.

180

SOMETIMES STYLE REALLY DOES MATTER*

David Reed
Department of Computer Science

Creighton University
davereed@creighton.edu

ABSTRACT
Programming, like any creative endeavor, involves some personal style
choices on the part of the programmer. Within the computer science education
community, there are some programming style conventions that have been
widely agreed upon, because following them unequivocally leads to programs
that are easier to read and maintain. In other cases, a programmer might
reasonably choose between competing styles, each of which provides similar
advantages. This paper describes three instances where programming style is
more than just aesthetics - following these conventions can actually help a
beginning programmer to avoid mistakes and better understand the underlying
programming concepts that they are utilizing.

1 INTRODUCTION
Programming is a fascinating blend of engineering and art. While software

engineering provides tools and methodologies for building reliable and cost-effective
software systems, the creative aspect of programming and the opportunities for personal
expression in the programming process cannot be denied. In his 1974 Turing Award
acceptance speech [1], Donald Knuth wrote:

"When I speak about computer programming as an art, I am thinking
primarily of it as an art form, in an aesthetic sense. The chief goal of my work
as an educator and author is to help people learn how to write beautiful
programs. ... Programmers who subconsciously view themselves as artists will
enjoy what they do and will do it better. "
In both art and programming, style is not a purely subjective matter. For example,

there are some foundational elements of painting (i.e., brush techniques, effective use of
color) that must be mastered by the budding artist and integrated into his or her aesthetic.

CCSC: Central Plains Conference

181

Similarly, within the computer science education community there are some
programming style conventions that have been widely agreed upon. For example, any
introductory text on programming will mention the importance of selecting meaningful
names for variables, since names that suggest their purpose make code easier to read and
maintain.

In addition to universally accepted conventions, there are some instances where
different programming style aesthetics compete, but without a clear advantage. For
example, some programmers still argue religiously over where to put the opening
curly-brace on an if statement or loop: some advocate placing the curly-brace at the end
of the opening line for that statement/loop, while others advocate placing it alone on the
next line. The debate persists because there is no clear advantage to either style. Proper
indentation ensures that the code is easy to read, regardless of where the opening
curly-brace to placed.

The following sections describe three style conventions whose benefits go beyond
aesthetics. Each convention can assist the beginning programmer in avoiding errors and
in developing a stronger understanding of the underlying programming concepts
involved. These three conventions are specific to the Java language, although the general
concepts can be applied to other object-oriented languages.

CATEGORY NAMING CONVENTION
classes
interfaces

Should be nouns, in mixed case, with the first letter
uppercase, e.g., CustomerDatabase.

methods Should be verbs, in mixed case, with the first letter
lowercase, e.g., getCustomerID.

instance/class variables
parameters
local variables

Should be nouns, in mixed case, with the first letter
lowercase, e.g., numberOfEntries. Variable names
should not start with '_' or '$' characters, even though
both are technically allowed.

class constants Should be all uppercase with words separated by
underscores, e.g., DEFAULT_SIZE.

Figure 1. Java naming conventions (from http://java.sun.com/docs/codeconv/).

2 JAVA NAMING CONVENTIONS
The first style convention that can be beneficial to beginning programmers is a

non-controversial one: following consistent naming conventions. Naming conventions,
guidelines for choosing the names of program elements, have been used extensively
within the software industry to develop uniform code that is easier to read, maintain, and
integrate across projects. Even in the smaller-scale programs typically encountered by
beginning programmers, naming conventions can clarify the roles of different program
elements and can provide guidance when making design choices. For example, if a
student knows that constants are represented using all-uppercase names, then he can more
easily identify them when scanning code. Similarly, following the convention that object
and class names are nouns whereas method names are verbs provides design guidance to
beginners, making name choices less arbitrary and leading to code that reads more

JCSC 25, 5 (May 2010)

182

naturally. Interestingly, research described in [2] suggests that poorly chosen identifier
names can not only hinder comprehension, but may also indicate confusion on the part
of the programmer and potential bugs in the code.

While all programming languages support various naming conventions, Java is
noteworthy for its use of a central, well-established set of naming conventions that is
published by Sun along with other references (Figure 1). Since all official Java code,
including the standard libraries, follows these conventions, a student reviewing code can
rely upon the conventions to help her understand the code. For example, the following
Java expressions, although similar syntactically, suggest very different meanings:

Foo.bar() foo.bar()

By knowing the Java naming conventions, it is possible to distinguish between these
at first glance: the first represents a call to the static method bar in the Foo class, while
the second represents an instance method call on an object named foo. A beginning
programmer who learns these naming conventions and follows them in his own code will
similarly experience the benefits of readability and will be able to seamlessly integrate
his code with existing programs.

The value of following the Java coding standards is demonstrated by a survey of
introductory Java texts. Some texts (e.g., [3,5,7]) explicitly refer to the Java standards
when describing the naming conventions used in the text. And while others (e.g., [4,8])
may not explicitly refer to the Java standards, the conventions used throughout the texts
match the Sun coding conventions. Despite the clear message being sent by textbook
authors, however, it is clear that many students are not being taught the importance of
following the Java naming conventions. A search of online introductory Java courses
turns up numerous violations, most notably nouns for method names and inconsistent
capitalization.

3 CONSISTENT USE OF "this."
The next style convention, the consistent use of the "this." prefix for internal method

calls and instance variable references, is more controversial but has great potential for
assisting beginning programmers. Recall that, in Java, a dot is used to denote object
ownership when calling a method or accessing an instance variable of an external object.
For example, die6.roll() specifies calling the roll method that belongs to (and is
being applied to) an object named die6. Similarly, Math.PI references the public class
variable PI that belongs to the predefined Math class. In cases such as these, the prefix
before the method call or variable reference is required in order to identify the particular
object being acted upon. In contrast, internal method calls and instance/class variable
references do not require prefixes, as the current object is the implicit target of any
actions/references. For example, another method within die6's class definition could call
the roll method as simply roll(). Likewise, a method of the Math class can access the
PI class variable as simply PI.

In my 10+ years of teaching intro Java programming, I have found that students are
often confused by the inconsistent structure of external and internal method calls and
variable references. As soon as they begin to appreciate that the dot notation denotes
ownership and the application of a method to a particular object, they encounter internal

CCSC: Central Plains Conference

183

method calls where the object is not explicit. Similar confusion arises when
distinguishing between local variables and instance variables within a class. Since there
is no dot prefix to identify instance variables as belonging to the object, references to
instance variables within methods have the exact same form as accesses to local variables.

While Java does not require explicit prefixes on internal method calls and internal
references to instance/class variables, it does allow for them using the "this." prefix. The
Java keyword "this" denotes the current object, so adding it to the prefix of internal
method calls and instance/class variable references does not change their meanings. It
does, however, make the format of internal calls and references consistent with their
external counterparts. For example, consider the implementation of the Die class shown
in Figure 2. The class has a single instance variable, numSides, which stores the number
of die sides (six by default). Whenever, that instance variable is referenced in the class,
it is referenced as this.numSides, highlighting the fact that it belongs to the current
object. Similarly, the internal method call this.getNumberOfSides() uses the "this."
prefix to highlight that the method is being applied to the current object.

The cost of making "this." an explicit prefix on instance variables and method calls
is a minor one - the additional length of the references. The benefits, however, are major.
First, the consistent use of "this." makes object ownership explicit and consistent. Every
method call, whether it be internal (applied to the same object) or external (applied to
another object) has the same format: OBJECT.METHOD(). Similarly, every reference to an
instance variable explicitly lists the object: OBJECT.VARIABLE. This consistent syntax
makes object ownership more transparent to a beginning programmer and reinforces an
object-oriented mindset. Second, the consistent use of the "this." prefix makes the
distinction between instance variables and parameters/locals clear. When the student
reviews a class definition and sees the "this." prefix on a variable, he knows that this is
an instance variable that belongs to the object (and persists between method calls). A
variable without the prefix is a parameter or local variable that belongs to a method and
exists only while that method is executing. This explicit distinction makes it easier for
a beginner to understand object state and variable scope. Third, the use of the "this."
prefix for instance variables avoids naming conflicts that might otherwise arise. For
example, in the Die class (Figure 2) there is an instance variable named numSides and a
constructor parameter with the same name. Without the "this." prefix, different names
would have to be chosen for one of the variables, which usually leads to an abbreviated
and less meaningful name such as sides.

Despite the advantages of the explicit "this." prefix, no introductory texts
consistently use this style. Most refer to "this" in a more limited context, especially with
respect to avoiding naming conflicts (e.g., [8,9,10]). The strongest support for this
convention comes in [5], where Horstmann encourages programmers to try out the style
of explicitly listing the "this." prefix. In personal conversations, Horstmann has expressed
a personal preference for this style, but admits to not including it in his text because it is
not widely used. Anecdotally, I have observed less confusion and a deeper understanding
of object concepts among my introductory-level students since I began emphasizing
"this."

JCSC 25, 5 (May 2010)

184

public class Die {
 private int numSides;

 /** Constructs a 6-sided die. */
public Die() {

this.numSides = 6;
}

 /** Constructs an arbitrary die.
 * @param numSides the number of die sides */

public Die(int numSides) {
this.numSides = numSides;

}

 /** Accessor method for the number of die side.
 * @return the number of sides */

public int getNumberOfSides() {
return this.numSides;

}

 /** Simulates a roll of the die.
 * @return a random int between 1 and the number of sides */

public int roll() {
 int currentRoll = (int)(Math.random() *

 this.getNumberOfSides()) + 1;
 return currentRoll;
}

}

Figure 2. A class for modeling dice (and demonstrating the use of "this.").

4 MAIN METHOD FOR CLASS TESTING
Over the past decade, studies have shown that integrating unit testing into

introductory computer science courses can help students learn the process of designing
and testing software (see [11,12], for example). While many Java IDEs, integrate unit
testing functionality, unit testing has still not achieved widespread use at the introductory
level in colleges. A justification commonly given by instructors is that introductory
programming courses are already too full of syntactic and technical details - adding
another programming tool and set of techniques is just not feasible.

Some of the benefits of unit testing can be achieved using pedagogically inspired
IDEs such as BlueJ and Dr. Java. Using BlueJ, a student can call any method on an
object by right-clicking on the object icon, selecting the method, and entering parameter
values in text boxes. This direct manipulation of objects is very intuitive for beginning
students, allowing them to test each method individually (and alleviating the need for
"public static void main" altogether). BlueJ and Dr. Java also have interaction panes,
where the student can enter snippets of code and test class methods without the overhead
of a separate driver class (or unit test). While these features are handy, they do not
replace the full functionality of unit testing. The student must manually test each method
of each class, and there is no automatic process for retesting code after making
modifications.

CCSC: Central Plains Conference

185

public class Die {
 private int numSides;

 /** Constructs a 6-sided die. */
public Die() {

this.numSides = 6;
}

 /** Constructs an arbitrary die.
 * @param numSides the number of die sides */

public Die(int numSides) {
this.numSides = numSides;

}

 /** Accessor method for the number of die side.
 * @return the number of sides */

public int getNumberOfSides() {
return this.numSides;

}

 /** Simulates a roll of the die.
 * @return a random int between 1 and the number of sides */

public int roll() {
 int currentRoll =

(int)(Math.random()*this.getNumberOfSides()) + 1;
 return currentRoll;
}

 /** Main driver method for testing Die objects.
 * Constructs a 6-sided die and displays 20 rolls, then
 * constructs a 4-sided die and displays 20 rolls. */

public static void main(String[] args) {
 Die d6 = new Die();
 System.out.print(d6.getNumberOfSides() + "-sided die: ");
 for (int i = 0; i < 20; i++) {
 System.out.print(d6.roll() + " ");
 }
 System.out.println();

 Die d4 = new Die(4);
 System.out.print(d4.getNumberOfSides() + "-sided die: ");
 for (int i = 0; i < 20; i++) {
 System.out.print(d4.roll() + " ");
 }
 System.out.println();
}

}

Figure 3. Die class with a main method for testing.

In most programming texts, classes are tested using a separate "driver" class. The
driver contains a main method for creating an object of the class and calling methods on
that object. Thus, to test the class, the programmer must add the driver to the project and
separately compile and execute that driver. Unfortunately, requiring one or more drivers
for every class in a project can lead to a very cluttered project space. An alternative style
that avoids project clutter while achieving some of the advantages of unit testing involves
integrating the driver's main method directly into the class itself. For example, Figure 3

JCSC 25, 5 (May 2010)

186

shows the Die class with a main method added. This method creates two different die
objects and displays the results of method calls on those objects.

By embedding the main method in the class itself, the programmer obtains the
advantages of the driver class without the clutter of additional classes in the project.
Popular IDEs such as netBeans and Eclipse allow the programmer to separately compile
files in the project and execute any file that has a main method. Thus, by embedding the
testing code inside a main method in the class, the programmer achieves some of the
benefits of unit testing without requiring any additional tools. Each class can be tested
independently (by executing its main method), and it is straightforward to retest a class
if any related code is updated.

While this style of class design/testing does avoid cluttering the project with driver
classes, one drawback is that it clutters individual classes with main methods. For
example, the Die class from Figure 2 models a real-world die object, capturing its state
and behavior. Adding a main method for testing purposes (Figure 3) is not part of the
software model, and seeing it in the class definition or accompanying javadoc
documentation for the class might confuse some beginning programmers.

5 CONCLUSION
Sometimes, programming style is more than just aesthetics. The consistent use of

pedagogically sound conventions can actually help the beginning programmer to avoid
mistakes and better understand underlying concepts. For example, following the Java
naming conventions can lead to code that is easier to read and maintain. Consistently
using the "this." prefix for instance/class variables and internal method calls can help a
student understand object-oriented concepts and more easily differentiate between
variable types. Adding a main method to every class in a project can achieve some of
the benefits of unit testing without introducing any new concepts or tools. Conventions
such as these can not only assist the budding programmer in writing "beautiful" programs
(as Knuth would put it), but can also help them to understand difficult object-oriented and
software engineering concepts.

REFERENCES

[1] Knuth, Donald. Computer Programming as an Art, Communications of the ACM,
17(12), 1974.

[2] Butler, Simon. The Effect of Identifier Naming on Source Code Readability and
Quality. In Proceedings of the Doctoral Symposium for ESEC/FSE
(Amsterdam), ACM, 2009.

[3] Dale, Nell and Weems, Chip. Programming and Problem Solving using Java,
2nd edition, Jones and Bartlett, 2007.

[4] Lewis, John and Loftus, William. Java Software Solutions, 6th edition,
Addison-Wesley, 2009.

[5] Horstmann, Cay. Big Java, 3rd edition, John Wiley and Sons, 2008.

CCSC: Central Plains Conference

187

[6] Sun Developer Network. Code Conventions for the Java Programming
Language, 1999. Accessed online at http://java.sun.com/docs/codeconv/.

[7] Morelli, Ralph and Walde, Ralph. Java, Java, Java, Object -Oriented Problem
Solving, 3rd edition, Prentice Hall, 2006.

[8] Liang, Daniel Y. Introduction to Java Programming - Comprehensive Version,
6th edition, Prentice Hall, 2007.

[9] Deitel, Harvey and Deitel, Paul. Java How to Program, 7th edition, Prentice
Hall, 2007.

[10] Wu, C. Thomas. A Comprehensive Introduction to Object-Oriented
Programming with Java, McGraw-Hill, 2008.

[11] Olan, Michael. Unit Testing: Test Early, Test Often, Journal of Computing
Sciences in Colleges, 19(2), 2003.

[12] Desai, Chetal, Janzen, David S. and Clements, John. Implications of Integrating
Test-driven Development into CS1/CS2 Curricula. In Proceedings of the 40th
ACM Technical Symposium on Computer Science Education, ACM SIGCSE
Bulletin, 41(1), 2009.

* Copyright © 2010 by the Consortium for Computing Sciences in Colleges. Permission to copy
without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the CCSC copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires a
fee and/or specific permission.

188

ONLINE COMMUNITIES IN THE ERA OF THE INFORMATION

REVOLUTION*

Igor Balsim, Elie Feder , and Sarwar Jahangir
Department of Mathematics and Computer Science

Department of biology
Kingsborough Community College of the City University of New York

2001 Oriental Blvd, Brooklyn, NY 11235
(917)521-1675

ibalsim@gmail.com

ABSTRACT
This paper expounds upon the innovative use of social software to build and
organize an environment for healthy and thriving online communities that are
focused on interdisciplinary research and education. The exposition focuses on
a community engagement model that focuses on peer-to-peer support, learning,
sharing, and networking, to allow users to help each other in solving problems.
Examples of online tools and successful online communities are provided to
illustrate the various possibilities.

1. INTRODUCTION: THE INDUSTRIAL REVOLUTION AND THE
INFORMATION REVOLUTION

When studying the history of the Industrial Revolution and comparing it with the
Information Revolution, one finds many parallels. The onset of the Industrial Revolution
marked a major turning point in human history. Major changes in agriculture,
manufacturing, mining, and transport had a profound effect on the socioeconomic and
cultural conditions of the world. This revolution was one of the most important events in
history because almost every aspect of daily life was eventually influenced in some
manner. The period of the revolution is associated with innovations that helped energize
the new socioeconomic changes [8, 10]. Knowledge of the innovations was transferred
through various means including: (i) networks of informal philosophical societies whose
members met to discuss science and its application to manufacturing; (ii) publications,

CCSC: Central Plains Conference

189

such as encyclopedias that contained vast amounts of information regarding the science
and technology of the first half of the Industrial Revolution; (iii) study tours [1, 4]. The
Industrial Revolution can be characterized by the systematic application of science and
empirical knowledge to the production process [3].

The Information Revolution constitutes a historical epoch on a par with the
Industrial Revolution. In the second half of the twentieth century, the world has evolved
as a result of the Information Revolution and its influence on current socio-economic and
technological trends [7]. The development of technologies such as computers, digital
communications, and microchips, has led to dramatic reduction in the cost of obtaining,
processing, storing, and transmitting information. The massive explosion of information
has been facilitated by the technological revolution in computer applications and
telecommunication networks. The increase in the development of Information and
Communication Technologies has revolutionized various sectors, including
manufacturing, business, science and technology, schools and homes [15]. The current
age marks a new age of transformations and profound economic, social, and political
possibilities. Fukuyama argued that the wealth of information at consumers'
fingertips-combined with the ability to seek out and shop for exactly what they want
without regard to borders and other restrictions-would lead to a market-led
democratization [5]. At the base of any information system of any scale is a
communications system. With the rise of the Internet, we now have the means to meet the
most demanding communications requirements [2].

2. THE USE OF WEB 2.0 AND ONLINE COMMUNITIES IN THE
INFORMATION REVOLUTION

We are presently entering yet another, more progressive phase of the Information
Revolution due to the development of Web 2.0, an interactive collaboration of online
social communities. This new juncture is distinguished by the forces of sharing, peering,
and networking that directly link more than a billion people and create a real world
interface. It represents the most robust platform of new networks of people, knowledge,
objects, devices, and intelligent agents, where innovations and social trends spread with
viral intensity. Social software can be used to create an environment that provides a
sustainable architecture of participation. The Web 2.0 provides an opportunity to support
multiple conversations at varying levels of engagement, reaching both a target audience
and their extended social network [17]. This suggests the innovative use of social
software to build and organize an environment for healthy and thriving online
communities that are focused on interdisciplinary research and education. We recommend
communities which focus on peer-to-peer support, learning, sharing, and networking, to
allow users to help each other in solving problems. Some of the objectives of such
learning communities are to provide education and expertise for their members, to
establish a reputation as a successful tool of education, and to give visitors a place to
inquire and learn to improve their educational and research careers.

Communities of students and faculty can be used to create and support a platform
for improvement of communication, collaboration, and innovation in the development of
ideas. These communities can foster a wealth in learning and scientific discovery by
creating goals that are focused on the people in the community [17]. The greatest support

JCSC 25, 5 (May 2010)

190

for the development and growth of online learning communities is an environment where
collaboration, knowledge, and innovations thrive via support and security.

Peer collaboration of online communities is built through volunteers that are
enthusiastic and motivated to offer their time, knowledge, and skills to help support the
communities. Such volunteers gain experience, exposure, and connections. They earn
respect and status within the community that is highly valuable in their future careers.
The necessary conditions for the success of the online communities are that each
community is based on the development and transfer of information that can be bifurcated
into small parts, with low integration costs. The community demands a leader who can
help guide and manage its social interactions by setting up a protocol for cooperation, and
motivating and coordinating collective actions over long periods of time. The rationale
for the success of such communities is that new economics via technology have low costs
and higher benefits of producing information. The online communities are often more
efficient than firms or markets at properly allocating time and attention. This is made
possible through attracting a more diverse talent pool of participants that enjoy the
experience of peer production [17].

The wide accessibility, adaptability and expeditious utilization of information from
online communities promote the innovation power of a community by tapping into good
ideas that would otherwise be hard to find. Open source makes the inner workings of
technology apparent, allowing others to build upon and improve novel innovations [20].
An additional benefit of online communities is that the software technology it makes use
of can also provide the ability to measure and quantify the success of the participants of
the network.

3. VARIOUS TECHNOLOGIES AND TOOLS
We describe some of the various technologies that are used to build the social

communities [9].
Blogs are written expressions of ideas that encourage commentary regarding the

ideas presented. They combine text, images, links to other blogs, web pages, and other
media related to its topic. Large networks of blogs create a blogosphere that consists of
relationships between blogs and their authors [9].

Microblogs are a form of multimedia blog that allows users to write brief messages,
text updates or micromedia and to publish them. These messages can be made public or
restricted to a group which is chosen by the user. They can be submitted by a variety of
means, including text messaging, instant messaging, E-mail, digital-audio, or the web
[19].

Podcasts are an audio and video expression of ideas that encourage comments [9].
Social Networks such as LinkedIn, MySpace, or Facebook allow members to

maintain profiles, connect with each other, and interact [9].
Wikis are an informational tool which allows for shared contribution and

responsibility for maintaining information. The community screens all possible changes
based on its rules and regulations. Wikis are useful as a tool for collaboration in group
projects [9].

CCSC: Central Plains Conference

191

RSS (Really Simple Syndication) is a tool that brings updates from blogs, news, and
various websites [9].

Twitter is a free social networking and micro-blogging service where users have up
to 140 characters to communicate to others. Users can link to posts that can be made
public or kept private. Twitter is utilized in various settings as an invaluable tool towards
meeting difficult objectives [11, 18, and 19]. Many libraries use Twitter as an educational
and professional development tool, as well as an advertising tool. Teachers use Twitter
to both network and tweet with more experienced teachers and coaches. Twitter provides
a direct source of professional support and an online learning community for new
teachers who lack mentoring support and coaching in their school districts. Additionally,
Twitter can be a very useful resource for supporting research communities. It provides
users instant access to experts in each field of interest [16].

4. EXAMPLES OF ONLINE COMMUNITIES
In this section, we give examples of successful online communities which can be

subdivided into the following four categories: Social, Business, Education, and Research.
These examples serve to illustrate the applicability and usefulness of online communities
in all walks of life.

4.1 Social
CarePages is an online communication system designed to help patients cope with

their illnesses and stay in touch with family and friends. It is a specialized blogging
system designed for patients to post updates for family and friends who can, in turn, send
support messages for the patients. Some benefits of this community are that it can lessen
the burden on patients and their families, and that it allows well-wishers (both friends and
strangers) to post friendly messages [9].

American Cancer Society Cancer Survivors Network is a vibrant source of support
for cancer victims. The network lets patients help each other by sharing personal stories
and life experiences. Such networks can be used as referral systems for recommending
high quality physicians based upon personal experiences [17].

4.2 Business
InnoCentive consists of 90,000 registered scientists from 175 countries to provide

solutions to companies in science and technology. It links experts to unsolved research
and development problems by tapping the talents of a global science community without
having to employ all of its workers on a full time basis. Werner Mueller is a chemist who
was able to solve a given problem on InnoCentive. A pharmaceutical company required
a cost effective method of producing an early stage raw material. Mueller recognized this
product from decades of experience as a chemist, submitted a solution and received
$25,000 [17].

Linus Torvalds created a simple version of the Unix operating system and shared it
with other programmers via an online bulletin board. This creation eventually led to the

JCSC 25, 5 (May 2010)

192

creation of Linux, a multibillion dollar ecosystem operating system that is useful for
hosting Web servers, databases, and supercomputers. Linux is under general public
license, i.e., anyone could use it for free, provided that they make changes that are
available to others. An informal organization emerged to manage the ongoing
development that gets input from thousands of volunteer programmers. Many companies
consider Linux to be keystone software. IBM donated large volumes of proprietary
software code and established teams to build Linux open source communities [17].

4.3 Education
One important facilitator of education is the ability to access relevant information

in an efficient and accurate manner. In past generations, multivolume encyclopedias
served this purpose. These are often difficult to access and utilize to find desired
information. Today, Wikipedia is the largest encyclopedia in the world. It is created by
volunteers who are passionate about their work, runs on an open platform and builds on
the Web software wiki. It contains four million articles in 200 languages and provides
free access to the sum of all human knowledge. Collaboration among users improves its
content over time. Due to its extreme openness and its allowance of anybody to be an
editor to most articles, it is vulnerable to inaccuracies and false statements. Despite this
weakness, it still has a high accuracy evaluation report. Nature magazine performed a
comparative analysis between Wikipedia and Britannica. Wikipedia contained four
inaccuracies for every three from Britannica [6]. It is a dynamic and evolving body of
knowledge that is adaptable to fix its mistakes. It is continuously growing, adding new
entries, reviewing, and updating new facts. As a result, it taps an infinite wealth of talent,
energy, and insight that far exceeds Britannica [17].

Wikipedia has started wiki sister projects such as Wikiversity, a project that is
devoted to creating learning resources, learning projects, and research for use in all levels,
types, and styles of education from pre-school to university, including professional
training and informal learning. This is in line with the Web 2.0 philosophy of advancing
knowledge and education via new technology. Similarly, by November 2007, MIT
completed the initial publication of virtually the entire curriculum, over 1,800 courses in
33 academic disciplines, in there online project known as Open Course Ware (OCW)
[17]. The MIT faculties are passionate about their teaching and are keen to see their work
benefit global society [12].

The educational process can be greatly enhanced through the development of online
learning communities. A learning community is a network of people who care about a
specific issue, problem, or debate. This notion can be expanded to include a wide range
of experts in many different fields via the interactive learning process that develops as the
community works together. The members of each learning community can pose
challenging questions to one another, point to valuable resources, and provide instant
responses to questions posed. The use of online learning communities can support
students' learning process with collaborative assignments, facilitation of active discussion,
and promotion of the development of critical thinking and research skills. Learning with
technology allows participants to explore issues with wide applications at there fingertips.
Students participating regularly in an online course will improve their ability to use
technology with confidence. The students play a much more active role in their learning,

CCSC: Central Plains Conference

193

while the teacher becomes a mentor and a guide. In such an environment, collaboration
between student-student and teacher-student are essential to success. The outcomes and
benefits of an online learning community are due to a great wealth of knowledge
acquisition. Students learn about the technology through its use. They learn about
themselves and their own learning styles, and about how to collaborate with others in the
problem solving process. They become increasingly confident in their abilities, feel
empowered to work in a manner that best suits them, and seek out the information they
need for a given task [13]. They are forced to learn how to think quickly, to adapt to
changing conditions, to build alliances to address large-scale challenges, and to work
comfortably in a global information environment. These skills are the keys for the
creation and communication of ideas. They provide a way to develop an educational
system that can help students learn to work in a world culture [14].

We give some examples of the learning projects that have been used in various
learning communities. Electronic field trips are used to help students join teams of
researchers, scientists, and technicians exploring distant regions, such as a rain forest,
Antarctica, or Mars. Telerobotics tools combine research and communication, making it
possible for students to direct a telescope to look out into space from their classroom. In
globe projects, students from around the world collect, compare, analyze data on air
temperature, air pressure, and wind speed. With the use of online science centers,
visualization tools make it possible for students to display whatever data they collect and
wish to share. These are but some examples of how online communities can be a
powerful tool in the educational experience [14].

4.4 Research
The Human Genome (HG) Project is the key to eliminating dreadful diseases such

as diabetes and cancer. Its applications in agriculture and ecology could help end hunger.
Pharmaceutical firms abandoned proprietary HG projects to support open collaborations
that will cut costs, accelerate innovation, create more wealth, and help society reap
benefits of HG research more quickly. A robust scientific commons is the best way to
ensure the full potential of the genomic revolution [17].

Open Wet Ware is an MIT online research community designed to promote the
sharing of information, know-how, and wisdom among researchers and groups who are
working in biology and biological engineering. It has twenty labs at different institutions
around the world that use its website to swap data, standardize research protocols, share
materials and equipment. It provides more dynamic ways for publishing and evaluating
scientific work. It is built on the MediaWiki software that provides blogs, protocols-share
techniques, and discussion groups [17].

The Google enterprise has grown to be a leader in both computer hardware and
software due to social networks and relations, without any media or promotions. People
feel emotionally engaged to its search engine. Its founders, Sergey Brin and Larry Page,
provide strong leadership with grand ambitions that are the key factors of Google's
success. They motivate a variety of scientists, mathematicians, and engineers by engaging
them with challenging problems and creating an environment that solicits new ideas and
constant growth and progress. Thus, the Google Company is constantly introducing new

JCSC 25, 5 (May 2010)

194

features and services at a very rapid pace. It is working on research projects, such as
molecular biology and genetics, by creating search engines for massive scientific data
using data bases and computing power. Such projects may lead to significant
breakthroughs in science, medicine, and health. Google is also in the process of digitizing
millions of books from various libraries with the objective of using search engines on all
the acquired information. Thus, it promises to create a far reaching educational, scientific
research, and social impact [21].

5. CONCLUSION
This paper described the force of collaboration through the online Web 2.0

environment. It is a new way for social communities to learn, innovate, discover and
interact by providing motivation, support, and experience. The key factor for success in
such communities is harnessing external knowledge, resources and capabilities [17]. We
illustrated with examples successful communities from the various fields of social,
business, education and research. The availability of free access to the massive
information due to such communities is unprecedented throughout the history of the
world.

REFERENCES

[1] Beck B.R., World History: Patterns of Interaction. Evanston, Illinois: McDougal
Littell, 1999.

[2] Buddenberg, R.A., The Fragmented and Incomplete Revolution in Military
Affairs, http://web.nps.navy.mil/~budden/lecture.notes/ind_rev.html, retrieved
December 13, 2009.

[3] Deane, P., The Industrial Revolution, Cambridge, UK: Cambridge University
Press, 1965.

[4] http://encyclopedia.stateuniversity.com/pages/10562/Industrial-Revolution.html#
ixzz0Zb7mFJQF

[5] Fukuyama, F., The Great Disruption, The Atlantic Monthly 283 (5), 55-80, May
1999.

[6] Giles, J. "Internet Encyclopedias go Head to Head," Nature, 438 (531)
www.nature.com/news2005/051212/full/438900a.html (Retrieved Dec. 13,
2009)

[7] Information Revolution Vs. Industrial Revolution - Locating Revolutions,
Technology, Economics, Social Relations, Work, And Demographics,
Continuing Debates, http://ecommerce.hostip.info/pages/578
/Information-Revolution-Vs-Industrial-Revolution.html, retrieved December 13,
2009.

[8] Landes, D. S. The Unbound Prometheus : Technical Change and Industrial
Development in Western Europe from 1750 to the Present. 2nd ed.. New York :
Cambridge University Press, 2003.

CCSC: Central Plains Conference

195

[9] Li, C., Bernoff, J., Groundswell: Winning in a World Transformed by Social
Technologies. Boston, Ma.: Harvard Business Press, Forrester Research Inc.,
2008.

[10] Mantoux, P. The Industrial Revolution in the Eighteenth Century, First English
translation 1928, revised and reset edition 1961

[11] Micek, D.C., Micek, J.P., Whitlock, W., Twitter Revolution: How Social Media
and Mobile Marketing is Changing the Way we do Business & Marketing. Las
Vegas, NV: Xeno Press, 2008.

[12] MIT Open Course Ware,
http://ocw.mit.edu/OcwWeb/web/home/home/index.htm, retrieved December 13,
2009.

[13] Palloff, R.M., Pratt, K., Building Online Learning Communities: Effective
Strategies for the Virtual Classroom. San Francisco, CA: John Wiley & Sons
Inc., 2007.

[14] Riel, M., Fulton, K., The Role of Technology in Supporting Learning
Communities, The Phi Delta Kappan, 82 (7), 518-523, March 2001.

[15] Robertson, D.S., The Information Revolution, Communications Research, 17 (2),
235-254, April 1990.

[16] Sasson, D., New Teachers Use Twitter to Get Help and Advice, Suite101
http://newteachersupport.suite101.com/article.cfm/new_teachers_use_twitter_to_
get_help_and_advice, retrieved December 13, 2009.

[17] Tapscott, D., Williams, A.D., Wikinomics, expanded ed., Penguin Group: New
York, NY, 2008.

[18] Twitter, http://twitter.com, retrieved December 13, 2009.

[19] "Twitter" Wikipedia

[20] Varian, H. R., Farel, J., Shapiro, C., The Economics of Information Technology.
Cambridge, UK: Cambridge University Press, 2004.

[21] Vise, D. A., Malseed, M., The Google Story, New York, NY: Random House,
2005.

* Copyright © 2010 by the Consortium for Computing Sciences in Colleges. Permission to copy
without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the CCSC copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires a
fee and/or specific permission.

196

THE SIGCSE SUBMISSION AND REVIEW SOFTWARE:

10(HEXADECIMAL) LESSONS*

Henry M. Walker
Grinnell College

Grinnell, Iowa USA
641-269-4208

walker@cs.grinnell.edu

John F. Dooley
Knox College

Galesburg, Illinois USA
309-341-7748

jdooley@knox.edu

ABSTRACT
In 1999, SIGCSE 2000 Conference Co-Chairs, Boots Cassel and Nell Dale,
asked Program Chair, Henry Walker, to develop the first iteration of a
Web-based paper submissions and reviewing system. Due to the efforts of
Ernie Ferguson, CCSC-CP was the first non-SIGCSE conference to use this
system, and the system was used by CCSC-CP for 2006, 2007, 2008, and
2009. The current system for CCSC-CP 2010 utilizes the 11th version of this
software. Each version has implemented refinements, new capabilities, and
adjustments. Reflections on the evolution of this system yield numerous
lessons for software and Web-based systems. This paper discusses 10
(hexadecimal) observations that can help in the design of future software
applications.

1. INTRODUCTION
For SIGCSE 1999 and prior symposia, authors submitted several copies of their

papers through the mail, and the Program Chair mailed copies to reviewers. By SIGCSE
1999, Program Chair, Robert Noonan, allowed reviewers to email their reviews, both
papers and reviewers were entered into a database, and a series of scripts helped in the
computation of ratings and tabulation of reviewer comments.

For SIGCSE 2000, Symposium Co-Chairs, Boots Cassel and Nell Dale, envisioned
a Web-based system to give authors a choice of either hard copy or electronic submission

CCSC: Central Plains Conference

197

of their papers. Further, they hoped the submission of all reviews could be done over the
Web. In response, Program Chair, Henry Walker, led a team that initiated an online
system for the submission and review of papers. Since 2004, John Dooley has joined
Henry Walker in developing and maintaining the software.

Since SIGCSE 2000, the software development has involved three major revisions
and numerous refinements, and the system now exceeds 40,000 lines of code.
Refactoring has become a way of life for this project, and much attention is paid to a
clean design and structure when considering the refinement and expansion of new
capabilities. Over the years, the system has experienced reasonable success, and in recent
years it has been used by eight conferences (including SIGCSE symposia, ITiCSE
conferences, SIGITE conferences, several CCSC conferences, and ACM-Southeast).

This paper reflects upon what the developers have learned from this process.
Although some elements of the system are specific to individual conferences, the process
also illustrates several general principles. In particular, this paper describes 10
(hexadecimal) lessons that may apply to a wide range of projects and system designs.

 2. 10 (HEXADECIMAL) LESSONS
For convenience in exposition, the lessons are divided into four categories: diversity,

streamlining routine requests for system-administration, maintainability and flexibility,
and details and mechanics.

2.1 Diversity
From its beginning, the submission and review system was intended to serve the

international computing-education community. Thus, the software needed to display
material in a reasonable way, with good functionality, on a variety of computer systems
(e.g., operating systems and browsers) internationally. Development of the system then
facilitated broad involvement by both authors and reviewers around the world.

0. Expect browsers to render Web pages differently
Various browsers render html differently. Further, many browsers provide enhanced

capabilities for the display of data. However, special functions that work beautifully on
one browser may create awkward displays on other browsers; sometimes pages may
appear blank on alternative browsers. To address this situation, we have made an
on-going effort to follow the standards of the World Wide Web Consortium (W3C).
When pages conform to W3C standards, browsers may differ on specifics of display but
pages generally appear in some reasonable way.

Pragmatically, in the early years, getting software to work at all in the time required
was a major challenge; for better or worse, we did not have time to consistently check
W3C standards. In recent years, we have used the W3C validator at
http://validator.w3.org to check various system pages.

Even with W3C standards, however, we periodically encounter bugs in specific
versions of browsers. For example, the online program utilizes a range of formatting

JCSC 25, 5 (May 2010)

198

techniques and is regularly verified for conformance to standards. However, a recent
release of a common browser did not render one part of the standard properly, and the
online program appeared blank on those browsers. In such cases, it has been necessary
to rethink the submission and review scripts to determine a workaround for the problem
- the pages must work reasonably, even if a common browser has errors.

1. Utilize a submission format that will look the same in all browsers
Beginning with SIGCSE 2001, the submission and review system has accepted only

pdf format. For SIGCSE 2000, we accepted both html and pdf, but reviewers found that
papers in html appeared in a wide variety of formats; authors could not be assured that
reviewers would see a paper in a form related to what they thought they submitted. Some
CCSC conferences have asked that the system utilize other formats, but numerous reports
indicate versions of Word and other word processing packages appear differently in
various computing environments. Thus, the current system does not accept these
problematic formats.

2. Avoid JavaScript, or duplicate JavaScript at the server
The SIGCSE 2000 software relied upon JavaScript for error checking. The goal was

minimize network traffic and to keep the load on the server low by doing checking at the
browser. After a user completed a form, JavaScript running on the browser reviewed the
data for completeness and obvious errors. Thus, at the server, we believed that we could
assume submitted data was correct. However, during the reviewing process, we received
numerous complains that review submissions yielded an error message.

Subsequent investigation suggests that many SIGCSE members, perhaps 30%-40%,
turn off JavaScript on their browsers for security. Thus, if review form data contained
errors or omissions, the browser would not detect problems, and the server did not work
properly. We speculate that as many as a couple hundred reviews were lost for SIGCSE
2000.

In response, error checking now occurs at both the browser and the server. Users
with JavaScript enabled will get quick error messages and warnings, as appropriate; and
this remote processing can be done without network traffic and with no load on the
server. However, since 2001, the same checks are repeated at the server, so errors are
identified whether JavaScript is enabled or not.

3. Using Web-based system encourages international submissions and enables
international reviewing

One great benefit of a Web-based system is that the submission and review of
materials does not depend upon traditional mails. In particular, before SIGCSE 2000,
reviewing was limited to North America - it simply took too long for papers to be mailed
to Europe, South America, and Asia.

In addition, as part of an effort to increase membership participation within
SIGCSE, the organization encouraged SIGCSE members to become reviewers for the

CCSC: Central Plains Conference

199

symposium (and later for the ITiCSE conferences). As a result, reviewing has become
an extremely popular activity. For example, of the 1079 reviewers in the SIGCSE
database in September 2009, 825 (about 76%) were from North America, and 254 (about
24%) were from outside North America. Reviewers could sign up to review for the
symposium, the ITiCSE conference, both, or neither. Of the 845 available for the
symposium, 680 (about 80%) were from North American and 165 (about 20%) were from
outside. Also, of 686 available reviewers for ITiCSE conferences, 490 (about 71%) were
from North American and 196 (about 29%) from outside. Also, since circumstances can
cause a reviewer to be unavailable temporarily, 177 reviewers (127 - about 71% from
North America) were inactive in September 2009.

This number of reviewers has allowed both recent SIGCSE symposia and ITiCSE
conferences to send each submission to 6 reviewers to obtain a range of perspectives.
Anecdotal evidence suggests the involvement of SIGCSE members with reviewing also
has helped increase both conference attendance and SIGCSE membership.

Specific attendance figures are not available to compare CCSC reviewers and
attendees, but on-line reviewing and on-line conference programs may encourage
attendance at CCSC conferences as well.

4. A Web-based system enables both submitters and reviewers to wait until the last
minute before sending in materials

Authors submitting papers before SIGCSE 2000 relied upon the postal system to
deliver their materials; typically materials had to be postmarked by a deadline. However,
variability of mail delivery encouraged early submissions, so authors were confident their
submissions would arrive in time.

With Web-based systems, authors can take advantage of available time to review
their work (or to write up articles at the last minute). In contrast to the early years, most
submissions now come in very close to the deadline. For example, SIGCSE 2009 had
Friday, August 29, 2008, as its submission deadline. Of the 305 papers submitted, 9 (3%)
were submitted before August; 41 (13%) (including the earlier 9) were submitted over 1
week before the deadline; 264 (86%)were submitted during the last week; 51 (17%) were
submitted the day before the deadline; 164 (54%) were submitted on the last day.
Patterns for CCSC and other conferences seem similar.

2.2 Streamlining Routine Requests for System Administration
Day-to-day tasks of system administration are often straight forward. However,

processing of numerous requests can take considerable time. To control the
administrative work load, tools should be developed to allow users or conference leaders
to handle many routine tasks.

5. Use a Permissions table to handle deadlines
The submission and review system includes a table within the database that specifies

permissions. The table is divided into numerous fields corresponding to various

JCSC 25, 5 (May 2010)

200

activities, and the table has just one record. If the record's field indicates "Yes" for a task,
users are allowed to perform that activity. If the field indicates "No", users are not. For
example, one field specifies whether submissions are allowed for papers, and the
submission scripts reference this field. Before the submission deadline, the field is "Yes"
and papers can be submitted or updated. When the deadline has passed, the conference
leadership changes the field to "No", and submissions are cut off. With this approach
system administrators need not be involved regarding decisions of deadlines, and policies
can be set by the conference leadership.

To further enable leadership to take control, a Web-based administrative script
allows conference and program chairs to change database fields. Thus, with a simple
browser interface, any leader with Internet access can edit the Permissions table to change
a field to "No" after a deadline passes.

6. Expect users to maintain their own data, and send confirmation notes for database
updates

For SIGCSE 2000, authors either submitted their papers entirely online or submitted
author/title data online, backed up by hard copy. However, the system had not advanced
to allow them to change their data. Thus, after acceptances were mailed, authors were
instructed to contact the administrator to revise fields (e.g., co-author names, paper titles,
etc.) In all, 78 papers were accepted for SIGCSE 2000, and the Program Chair received
in excess of 80 requests for changes; some papers required no changes in author/title data,
but multiple requests were received for other papers.

Thus, for SIGCSE 2001 and for subsequent CCSC and other conferences, the
submission and review system allowed both authors and reviewers to update their own
data. Further, to verify changes, the update scripts send email to individuals when data
are changed, so adjustments can be reviewed and refined further if necessary. From time
to time, leaders still may need to make special changes, but the vast majority of the work
of updates now can be done by the users themselves.

7. Assume submitters and reviewers will forget their ID numbers and passwords
In most years, the most common question asked to system administrators involves

forgotten numbers and passwords. Authors misplace email with their paper numbers,
reviewers forget their reviewer numbers, and many users forget their passwords.

To resolve such difficulties, at least two solutions are possible. In the early years,
an administrative script was developed to look up author and reviewer data, based on
either last name or possible ID. With this script, many email requests could be answered,
although in practice information would only be sent if the email in a user's record
matched the email request.

More recently, reviewers are able to get their password information by identifying
themselves in a special form. Email information is sent to the email address on record
in the database. Of course, if email addresses are misspelled, the administrator still may
receive email requests for ID/password information from users.

CCSC: Central Plains Conference

201

With either approach, it is vital for administrators to be able to respond quickly and easily
to requests for forgotten IDs and passwords.

2.3 Maintainability and Flexibility
A software system is useful only if it addresses actual needs. However, hardware

and software sometimes go down, the user community changes over time, and
expectations evolve.

8. Use symbolic links for early, regular, late, system-down pages
For a typical conference, work on the submission and review Web site involves

several stages. First, scripts are ported to a new directory, the database is cleaned from
any past conference(s), and style sheets and details are adjusted to reflect the new event's
look and feel. Next, the site is tested, to be sure it works as envisioned by conference
leaders. Then, the site is open for active use. Finally, deadlines pass, and submissions
and reviews are no longer accepted.

With this process, it is helpful to have a general "site under development" page at
the start, live scripts for database processing in the middle, and a "submissions are closed"
site at the end.

In addition, users need to be notified in the case that a database server is down.
Although each of these capabilities involves different pages, submissions and

reviewer registration should be accessible through a single Web URL. For example, the
general conference pages should list submission.shtml, and this reference should not
change over the duration of the conference.

Symbolic links are particularly useful in this context. Conference pages specify
links for submissions and reviewer registration, submission.shtml and
reviewerRegistration.shtml. In practice, both of these files are symbolic links. During site
development, submission.shtml refers to an "under construction" page,
submissionEarly.shtml. This link is changed to active submission scripts when papers
are accepted. The link is changed a third time to submissionLate.shtml when all
submissions are closed. In addition, submissionDown.shtml notifies users if the database
software or platform is malfunctioning.

9. Expect numerous suggestions, many of which will be contradictory
As the system has evolved, conference leaders have changed, and users have

expanded their expectations. Thus, over the years, we have received a steady stream of
suggestions, and this feedback is greatly appreciated! As a practical matter, however,
users have different perspectives, and ideas may not be consistent. Further, the system
depends upon some philosophical and policy decisions. With such diverse viewpoints,
it would be easy for tinkering with the system to yield chaotic code over time.
Adjustments in one place could easily undermine the database or script processing
elsewhere.

JCSC 25, 5 (May 2010)

202

With so many suggestions, therefore, it has been essential to maintain a clear,
conceptual view for both the design and implementation of the system. If one is not
careful, a simple technical fix has the potential to solve one problem, but create many
more. To allow long-term reliability and maintainability, it has been essential to assess
each potential refinement within the overall structure.

Altogether, we have been delighted to accommodate ideas and refinements, when
these viewpoints seem consistent with the overall framework of the system. However,
brainstorming is needed to find alternatives, when philosophies collide.

A. Don't underestimate the value of documentation!
Conference leaders must tackle dozens of tasks in their planning, and much of this

work involves handling submissions, reviews, acceptances/rejections, and the final
program. Although we have tried to support these tasks with the submission and review
system, tasks for the leadership are often detailed. Further, leaders rotate in their
responsibilities, and new leaders are involved on a regular basis.

To help leaders, particularly new leaders, work through their numerous activities,
documentation is essential. Leaders must know what tasks they need to do, and they need
guidance in how that work might be done. Current documentation, therefore, provides
considerable detail for numerous tasks - now extending to about 50 pages. Of course,
keeping the documentation in synchronization with system refinements is a constant
challenge. However, most day-to-day questions received from conference leaders relate
to incomplete or outdated documentation. When documentation is current, clear, and
complete, conference activities seem to go rather smoothly (at least from the standpoint
of electronic submissions and reviews). Interested readers can find documentation for
CCSC CP-2010 at http://www.cs.grinnell.edu/~ccsc/ccsc-cp2010/documentation.shtml.

2.4 Details and Mechanics
The submission and review system has evolved remarkably over its 11+ years of

existence. Several low-level details and capabilities have made a significant difference
in the systems evolution and use.

B. Organize database tables conceptually rather than by common data
For historical reasons, the SIGCSE 2000 system contained one table for people; the

same table was used for both authors and reviewers. Likely, this common table saved
much manual data entry.

However, early experience with the Web-based system indicated that different
information was needed for submitters and for reviewers. A careful review of fields
indicated that some data were needed for both groups, some only for submitters, some
only for reviewers, and some stored data were never used.

In addition, over time, people might use multiple email addresses, and people might
change institutional affiliations. Also, in moving from one conference to the next,
reviewers should continue in the database, but not authors (until they write another

CCSC: Central Plains Conference

203

paper). Altogether, it was extremely difficult, perhaps not even possible, to match a
reviewer with an author; and data from one year might or might not relate to data the next
year.

With these observations, the database was redesigned for SIGCSE 2001. Authors
and reviewers were conceptually different, even though they had some common fields,
and their data were used differently. In retrospect, this adjustment simplified many later
refinements of the system. When database tables match a clean, conceptual model, the
design of scripts can proceed reasonably smoothly.

C. Use include files/style sheets/table-driven options
In writing the SIGCSE 2000 scripts, the design team was thrilled to develop working

scripts within a tight time frame. Also, with limited experience, it was difficult to
anticipate how a system might evolve in the future. As a result, elements of the
look-and-feel of the conference were hard coded into the scripts, as were conference dates
and leaders' names.

Of course, for SIGCSE 2001, these details had changed. Thus, at an early stage,
header files were used to specify conference logos. Further, a separate file was developed
with variables to handle numerous conference details (e.g., conference name, year,
location, dates). These pieces allowed administrators to change just a couple of files
when moving from one conference to the next.

Within a few years, conference Web sites had become more sophisticated, with style
sheets specifying a consistent look and feel; and style sheets too became part of the
submission and review system.

Within another few years, leaders wanted to add panels and special sessions to
online submissions, in addition to papers. Leaders for CCSC and other conferences
identified still more submission categories. For new categories, scripts could use much
of the capabilities developed for papers, but wording required adjustment. For awhile,
duplicating paper scripts with edits provided a solution. However, with the addition of
workshops, birds-of-a-feather, and other categories, the approach of separate software for
new categories was clearly unrealistic.

A nicer solution has involved the creation of a new table to handle submission types
and form options. Fields in this table provide extensive data on numerous choices and
options for each category of submissions. For example, one field involves submission
deadlines, another the name of the table used to store submitter information, and another
the type of review form to be used. Once established, scripts can tailor the display of
forms, gathering of data, and processing of information according to the parameters
specified for each category of submission. As a side effect, the online program can adjust
the presentation of sessions, according to additional category parameters.

D. Have common script for submitter or reviewer or administrative login
Much processing requires authentication. For example, only an author, designated

reviewer, or conference leader should be able to access a paper. General conference

JCSC 25, 5 (May 2010)

204

leaders should have access to any part of a system, but panels' or workshops' chairs can
only access submissions in their purview.

To simplify authentication for much processing, a common script handles this work.
The authentication script checks passwords and sets underlying variables as needed.
Other scripts simply include this function for protection. This approach requires
moderate care in writing the basic script for authentication. However, including this
script elsewhere provides a reliable mechanism for enforcing security through much of
the system.

As an additional feature, once an administrator, conference leader, or user logs in
successfully, the authentication script can set environment variables to remember this
success - at least for a short time. Thus, processing can go from one task to the next
without the need for constant logins - until the time limit expires.

E. Sending email requires flexibility and options for testing
Conference leaders must send periodic communications to both submitters and

reviewers. Submitters need to know about acceptance or rejection; and authors of
accepted papers must know about forthcoming deadlines and procedures. Reviewers
need to know their reviewing assignments, and they need reminders and status reports as
reviewing deadlines approach.

Each email will likely draw information from the database within the context of
other text. The submission and review system accomplishes this task by allowing leaders
to upload a template for a letter. Within the template, scripts insert designated variables
from database records. For example, when the variable $rev-assign appears in a template
for reviewers, a script includes a list of submission assignments for each reviewer before
sending email.

Once a template is prepared, leaders need to review sample letters before they are
sent. Thus, the email scripts operate in two modes. Testing mode (the default) composes
full letters, but sends them to the leader (for checking) rather than the submitter or
reviewer. "For real" mode uses the actual email addresses of users.

In addition in sending email, some letters go to specific categories of recipients. For
example, authors of accepted papers should receive different letters than authors of
rejected papers. For both submitters and reviewers, leaders can choose distribution
among several groups; and over the years, the range of distribution groups has expanded
greatly.

In the actual sending of email, the system relies on a departmental email server.
Although this normally works well, the server occasionally becomes overwhelmed or
otherwise shuts down. To resolve any difficulties in this sending of email, the scripts
allow leaders to send email to authors or reviewers with IDs in a specific range, and a list
of each recipient is send to the Web interface as an email is sent. By default, email goes
to all people with any ID. However, if a leader wants to send a test message to just a few
people, the leader can specify just a few people (e.g., ID 1 to 10). Also, if email starts,
but the server stops for any reason, the Web list shows how far the process went, and the
next batch of email can be restarted where the last left off.

CCSC: Central Plains Conference

205

F. Refactoring not only aids maintenance, but also helps standardization of elements
of forms (e.g., subject display, country display)

Common software practice suggests that developers should constantly review their
code to find common activities. These tasks then can be abstracted into a library of
common functions that can be used throughout the application. Such refactoring can aid
reliability and maintenance.

For Web-based applications, refactoring also can provide substantial assistance in
standardizing forms and user interfaces. For example, forms for both submissions and
reviewer registration ask for an individual's country. By placing this part of a form within
a function, all forms are guaranteed to utilize the same codes and have the same
appearance.

Similar results apply to the display of subjects identified by submitters or by
reviewers. In this case, however, the abstracted design requires considerable care. In
particular, subject areas, such as "not appropriate for this conference", are not relevant
for authors, but reviewers might find this designation appropriate. Similarly, some
subject areas might apply to authors, but not reviewers. Finally, some subject areas might
apply to some submission categories (e.g., videos), but not others. All these combinations
can be organized into a nicely refactored function, but considerable care is needed in
finding a clean and elegant design.

3. CONCLUSIONS
The current submission and review system has helped facilitate the transition from

a paper-based system to a Web-based interface for several categories of conference
submissions. Reflection on the evolution of this system may inform the design of other
systems.

The system for SIGCSE 1999 began when Web-based applications were just
emerging, and the authors hope that subsequent systems have been helpful to the
community. In recent years, more general submission and review systems have begun
to emerge, and it is possible that these may supersede the current
SIGCSE/CCSC/SIGITE/ACMSE system. Regardless of the nature of future software,
the last decade of experience provides lessons for software development that may be
useful in a range of applications.

 4. ACKNOWLEDGMENTS
The authors express their sincere thanks to the many people who have contributed

to the development of this system over the past 12 years. SIGCSE 2000 Co-Chairs Boots
Cassel and Nell Dale provided the initial motivation for the project, and students Dorene
Mboya and Weichao Ma worked with Henry Walker on the first version, with extensive
guidance and technical support of Wayne Twitchell and Theresa Walker and funding
from Grinnell College.

In the subsequent 11 years, Grinnell College has continued to support the servers
and programming environment. Through their collaboration, the authors also gratefully

JCSC 25, 5 (May 2010)

206

acknowledge the many suggestions from Symposium chairs, the SIGCSE community, and
leaders from CCSC and other conferences.

* Copyright © 2010 by the Consortium for Computing Sciences in Colleges. Permission to copy
without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the CCSC copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires a
fee and/or specific permission.

207

A CAPSTONE EXERCISE FOR A CYBERSECURITY COURSE*

J. R. Aman, Ph.D.
Saint Xavier University

Chicago, IL 60655
aman@sxu.edu

James E. Conway, CISSP
State of Ohio

Columbus, OH
james.e.conway@gmail.com

Christopher Harr, MACS
Saint Xavier University

Chicago, IL 60655
harr@sxu.edu

ABSTRACT
The design and execution of the capstone project in a computer security course
is described in this paper. The course followed a 'black hat/white hat'
philosophy, teaching both offensive and defensive techniques and tools. The
project required students working in small teams to apply awareness of
common system weaknesses and knowledge about available tools for attack
and defense to locate several "flags" within a network in a limited time frame.
The target network was accessed through a virtual private network (VPN),
which provided a measure of security to the university and secured the
connection between the students and the target.

BACKGROUND
At the 2005 SIGCSE Symposium, the session on computer security sparked a lively

exchange between two presenters and actively engaged the large audience. John
Aycock's and Ken Barker's (University of Calgary) paper offered the rationale for a
course on computer viruses and malware. The course had caused some controversy
because students were taught both how to create viruses and how to defend against them,
a so-called "red team" approach. Patricia Logan (Marshall University) followed with a
paper [2] (co-authored by Allen Clarkson) which, while also supporting the teaching of

JCSC 25, 5 (May 2010)

208

attack-based techniques, emphasized the need for other issues to also be covered. First
among these was ethics. Others included appropriateness of course content, university
security concerns, and security lab design. What made the session stand out was the
eloquent and well-reasoned opposition Dr. Logan took to the Calgary approach and the
interaction which developed between the two presenters. The discussion was
enlightening, energetic, and collegial. Audience reaction visibly swayed between the two
with no clear consensus for either position.

After considering what had been heard at that presentation, an attack-based -- or
'black hat/white hat' -- approach became the format of a graduate cybersecurity course at
Saint Xavier University. The Department of Computer Science places an obvious
emphasis on ethics in every course in its curricula at both graduate and undergraduate
levels. That met one of the concerns Logan had expressed. Questions of lab design and
the security of the campus networks were answered through close consultation with the
university's Systems Group. Thus, the course has blended the best reasoning of both
presenters in the SIGCSE session.

The course has now been taught three times in this attack-based format. Students
and faculty refer to the course jokingly as "the Dark Arts course." Details of the course
curriculum have been previously described [3]. The culminating project, however, was
changed significantly for the third course offering and is described in this paper. That
project would be equally applicable to an undergraduate course.

The time invested in creating and implementing a computer security course and the
projects in it is not trivial, as anyone who has done so will undoubtedly testify.
Hardware, software, logistical, and institutional security considerations abound. Tikekar
and Bacon [4] described these challenges and offered their perspective on handling them
in an excellent 2003 paper. Yu [5] adds additional practical details, such as rules for
avoiding potential illegal activities. The ACM Journal of Educational Resources in
Computing devoted an entire special issue in 2006 to resources for such courses [6]. The
lead editorial laid out the case and highlighted many of the issues Tikekar/Bacon and Yu
also identified.

In the following sections, the exercise is described, then details of the hardware and
software setup are outlined. Responses of students and staff are noted and plans for
further development are identified.

THE CAPSTONE EXERCISE
The capstone exercise -- called "ByteMe! 2008" -- was designed primarily by a

CISSP-certified security specialist who served as consultant to the instructor and the
students. The final six weeks of the course were devoted to this effort.

Week(s) Content
1 Meet with consultant

2-5 Locate the 5 flags
6 Submit written & oral reports

CCSC: Central Plains Conference

209

The initial meeting with the consultant involved a comprehensive presentation about
the cybersecurity field as a profession, the challenges faced by security specialists, the
need for corporate planning for prevention and response, and the importance of ethical
practices. Then the project itself was introduced, teams were identified, the "rules of the
game" were discussed, and specific technical details were distributed. At the end of the
presentation, the clue to the first flag was released.

The rules were simple and straightforward:
 1. Never use any tool outside the VPN connection!
 2. Maintain a log of all activities to be submitted at the end of the exercise. Include all

pertinent data (date, time, person conducting test, tool/activity, arguments applied,
results obtained, intended goal, etc.)

 3. Log details of all vulnerabilities found along with suggestions for hardening
 4. Goal: Locate and record the textual contents of five (5) "flag" files located at various

depths in the Acme Widget network
 5. Last chance to complete the exercise: <date inserted here>
 6. Report and submission of logs: <date inserted here>

Although it was possible to work outside the department's lab, most students
confined their work to that facility to avoid possible problems with external ISPs. There
were spirited attempts to socially engineer information among the groups, and sometimes
they were successful. Overall, however, the groups maintained a level of privacy which
surprised the instructor. Not until the final week was there any apparent move toward a
concern for the group as a whole. In the closing hours, some people from successful
groups did mentor struggling groups.

DETAILS: HARDWARE/CONNECTIVITY
The department's lab workstations were dual-boot Windows XP Professional and

SuSE Linux. A virtual private network (VPN) connection was established with the
consultant's hardware using Checkpoint's VPN-1 SecureClient. SecureClient is
Windows-based so the Linux tools were not available. This was taken into consideration
in the placement of the flags. Using a VPN client allowed the students to securely
connect to Acme Widgets without interference to the university's network. Checkpoint's
client was an easy, small install that required administrator privileges on the workstation.
Students were given a copy of the installer program for use on their personal computers.
This allowed them to work from outside the lab, although most did not, as previously
mentioned.

Checkpoint's client is supposed to route all traffic through the common TCP port 80,
however there were problems with the campus's Cisco firewall. The university's Systems
group was unable to pinpoint which port the SecureClient was trying to use but they were
able to add a rule to the Cisco firewall to allow all traffic to and from Acme Widgets.
Most students were not running an equivalent Cisco firewall outside the lab and did not
have connection problems. Another problem which surfaced was that Checkpoint's VPN
server was software based; students would regularly crash the Microsoft operating system
running Checkpoint's VPN, dropping all VPN connections until the server was reset. The
consultant was busy on class nights 300+ miles away!

JCSC 25, 5 (May 2010)

210

DETAILS: COMPANY/FLAG SETUP
Details of the Acme Widgets domain are much too long to include completely in this

paper. The consultant created the system in its entirety. Some details will be given here.
For a full listing, contact the primary author. A complete list of Acme's users, their
passwords and privileges, their corporate responsibilities, and the domain groups are
available.

Acme Widgets ran five virtual LANs, one each for management, DMZ servers,
production workstations, production servers, and a test lab. There was one firewall, a
Cisco 5000 switch, and a Cisco 1900 switch. The DMZ held a Windows 2000 server
(Foghorn) running IIS with Apache and a Suse Linux server running Apache. Flag #3
(Oracle.hlp) was on Foghorn.

The production workstations were a virtual host server (WorkMaster), a Windows
XP machine with no service packs in place, and a Windows 2000 workstation. The latter
held Flag #1 (WhiteRabbit.flg).

The production server farm held two Windows 2003 servers (Wiley and Nosce), a
Windows 2000 server (RoadRunner). Three of the flags were in this farm: #4
(Hello.neo) on Wiley, #5 (KnowThyself.txt) on Nosce and #2 (Trinity.db) on
RoadRunner. Details of the flags are appended to this paper.

RESPONSE
Students echoed the concerns about SecureClient noted already. Their comments

about the course, including ByteMe! 2008, were along the lines of these representative
examples:
 • "It demanded that we continue to try every tool, even if it took more than 10 times."
 • "Forces student to rely on persistence to be effective"
 • "Allows us to use different software tools which are useful and can be handy"

The instructor, consultant, and lab director have reviewed the course and the project
at length in preparation for the next scheduled offering in spring, 2010. We are pleased
with the enthusiasm generated by the exercise but are also keenly aware that a defensive
component is needed. Students wanted more hands-on work with the tools prior to the
capstone exercise so very targeted exercises are being written to address this from both
the black hat and white hat perspectives.

SUMMARY
Although a live penetration audit had been used in prior years, this directed

penetration was received with much more enthusiasm. To be sure, trying to compromise
a firewall and workstations within a LAN are interesting and can be exciting. However,
students preferred the more game-like environment of the flag hunt. Anecdotally, this
had much to do with knowing the flags existed. In the previous exercise, there was no
assurance anything would be found at all. Also, the clues and the nature of the pathways
to the 'flag' files constituted a puzzle which students seemed to enjoy.

CCSC: Central Plains Conference

211

The flags were all placed to emphasize configuration errors by a network or system
administrator. There was no attempt to be particularly devious. Nonetheless, students
initially over-thought the possibilities instead of looking for obvious faults. Once they
realized what was happening, they moved steadily through the flag sequence. That is
why several hints were needed to guide teams to the first flag (WhiteRabbit).

Overall, the results were very encouraging. Clearly, students enjoyed the
challenges. Because they had known a difficult task lay before them in the closing
weeks, they had been diligent in learning to use the tools.

From the instructor's perspective, students had to combine their understanding of
networks, servers, and common system administration errors with working knowledge
of the penetration tools and exploits available to them. Finding the flags required a great
deal of knowledge synthesis as well as technical application. This project in this course
served as a focal point for knowledge acquired through other courses in the curriculum.
As the course and the project are revised and, hopefully, strengthened over the next year,
even greater emphasis will be placed on these related areas and on critical thinking
processes.

What was missing in this exercise was any experience hardening systems. This
could be accomplished with a more traditional "red team/blue team" or "capture the flag"
exercise. However, this was a very good exercise. We are working now to add a "white
hat" component to ByteMe! 2010.

The VPN server was subject to frequent crashes. This was the major problem
during the in-class sessions of the exercise weeks. Occasionally, several students
working on their own had managed to crash the VPN server. This was more problematic,
because the consultant could not reboot until reaching home again. In the future, the
VPN server will either be separated or a hardware-based VPN server will be used.

APPENDIX: THE FLAGS AND HINTS
#1: WhiteRabbit.flg
 Trinity hacked the IRS database through RoadRunner. The answer is out there, and

it's looking for you, and it will find you if you want it to.
Hints given as guidance to the first flag:

Hint 1: Flag is found in the 172.18.50.0 network (the production segment)
Hint 2: Don't be shy to be a guest in this network
Hint 3: Some passwords are non-existent
Also remember to use the ENUM program (or something else of your

choosing) to get listings of directory contents!

#2: Trinity.db
 You have to let it all go. Fear, doubt, and disbelief. Free your mind. When the fog

clears, the oracle will be revealed. Remember, there is no spoon.

JCSC 25, 5 (May 2010)

212

#3: Oracle.hlp
 Oh, what's really going to bake your noodle later on is, would you still have found

it if I hadn't said anything? You must be cunning and wily to finish your journey.
#4: Hello.Neo

Do you know what "Nosce te ipsum" means? It means know thyself.
You have to trust me. You've been living in a dream world.
Go to room 303. The answer is available if you look beyond the physical.

#5: KnowThyself.txt
You've done it. You've found it. Welcome to the real world.

 Additional hint for Flag #5: There are alternate homes for data in obscure streams
of presence hidden from all but those who research carefully.

REFERENCES

[1] Aycock, J, and Barker, K. Viruses 101. ACM SIGCSE Bulletin, 37 (1), 2005.

[2] Logan, P., and Clarkson, A. Teaching Students to Hack: Curriculum Issues in
Information Security. ACM SIGCSE Bulletin, 37 (1), 2005.

[3] Aman, J. Black Hat/White Hat: An Aggressive Approach to a Graduate Security
Course. Journal of Computing Sciences in Colleges, 22 (2), 2006.

[4] Tikekar, R., and Bacon, T. The Challenges of Designing Lab Exercises for a
Curriculum in Computer Security. Journal of Computing Sciences in Colleges,
18 (5), 2003.

[5] Yu, Y. Designing Hands-On Lab Exercises in the Network Security Course.
Journal of Computing Sciences in Colleges, 22 (5), 2007.

[6] Frincke, D., Oudekirk, S, and Popovsky, B. Editorial: Special Issue on
Resources for the Computer Security and Information Assurance Curriculum:
Issue 1. ACM Journal of Educational Resources in Computing, 6 (3), 2006.

* Copyright is held by the author/owner.

213

AN INTRODUCTION TO VERSION CONTROL WITH

SUBVERSION*

TUTORIAL PRESENTATION

John Cigas
Department of Computer Science, Information Systems, and Mathematics

Park University
Parkville, MO 64152

cigas@acm.org

This workshop introduces participants to Subversion, a version control system.
Participants will work with an established repository (containing a web site) so they can
focus on key, daily-use concepts, such and committing, updating, resolving conflicts,
branching and merging. Using a web site model is familiar and allows viewing of all
changes during the workshop exercises. Additionally, we will demonstrate installation
of a Subversion server and creating a repository as time allows. This workshop is for
people completely new to using a version control system or for those new to using one
in a group environment where conflicts will occur. A laptop is required. Linux, Mac and
Windows will all work. Participants should download a Subversion client before the
workshop so they’ll be ready to hit the ground running.

One of the key headaches with learning a version control system is setting up the
repository. This workshop alleviates that problem by starting with an existing repository.
Once participants have a better understanding of using the entire system, then they can
move on to setting up their own repository. The other piece missing when learning a
system like Subversion is dealing with other people’s changes. Since there will be
multiple people in the workshop, we will have people working independently on the same
files and the exercises will force participants to see how these issues are handled.

* Copyright © 2010 by the Consortium for Computing Sciences in Colleges. Permission to copy
without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the CCSC copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires a
fee and/or specific permission.

214

IMPLEMENTING AN INTERDISCIPLINARY CAPSTONE

EXPERIENCE FOR INTERACTIVE DIGITAL MEDIA MAJORS*

Carol Spradling, Jody Strauch
Computer Science/Information Systems, Mass Communication

Northwest Missouri State University,
Maryville, MO 64468

1-660-562-1588, 1-660-562-1823
c_sprad@nwmissouri.edu, jody@nwmissouri.edu

ABSTRACT
In this paper, we describe an interdisciplinary Interactive Digital Media
Seminar capstone course at Northwest Missouri State University, which is
co-taught by a team of faculty from three departments; Computer
Science/Information Systems, Mass Communication, and Art. The Interactive
Digital Media majors of Computer Science Programming, New Media and
Visual Imaging, take this seminar course during the fall semester. This paper
describes the course structure and the process utilized to develop and teach this
interdisciplinary seminar course and shares the formal assessment process and
observations about working with an interdisciplinary team and teaching
students from the three majors.

1. INTRODUCTION
There is a long tradition to include some type of capstone course for a major. Most

capstone courses require some type of work that is supervised by an instructor and
provides a culminating and integrative education experience for students [3]. While
capstone courses vary from major to major, the capstone experience may include
team-based projects, research papers, field projects, portfolio projects, oral presentations,
group work, multimedia presentations and internships. Some courses work with clients,
while other courses may incorporate individual student work.

CCSC: Central Plains Conference

215

Most capstone courses require that students have completed a set of courses as a
prerequisite for the capstone course. Students are expected to apply previously gained
knowledge from these prerequisite courses, reflect upon this knowledge and prepare some
type of artifact that demonstrates the students are prepared for future challenges in their
field of study.

The majority of capstone courses, however, are mono-disciplinary, that is, they are
capstones of degrees housed within a singular discipline. New challenges and
opportunities can emerge in an interdisciplinary capstone course. In a degree program of
courses taken from a variety of disciplines (a multidisciplinary degree), an
interdisciplinary capstone offers students the opportunity to not only integrate what
they've learned from previous courses but also incorporate the perspectives of other
disciplines involved in the same degree. Woods noted that "socialisation into a discipline
subtly shapes ways of thinking and orientations to learning and that can ultimately lead
to mutual incomprehension when specialists from different subject domains try to
collaborate." [9, p. 854] She noted that an "interdisciplinary communication competency"
requires both knowledge components, i.e. terms, technology, etc., as well as cultural
components, such as "awareness of how perception of other disciplines than one's own
can affect interaction." Woods believes the development of this type of interdisciplinary
communication is as important as the integration and application of discipline-specific
skill sets learned in previous courses.

One might argue that teaching an interdisciplinary capstone course will provide an
opportunity for students to implement Boyer's scholarship of integration and application
[2]. For a multidisciplinary degree program, only a true interdisciplinary capstone course
can provide an opportunity for students to implement Boyer's ideals.

The interdisciplinary capstone course will provide both faculty and students the
opportunity to make connections and gain insights across several disciplines, in this case,
the disciplines of computer science, mass communication and art. Boyer and Scherpereel
suggest that "cross-disciplinary teaching requires faculty who are knowledgeable or at
least comfortably familiar with, the other course disciplines, to provide consistent
guidance for student learning" [1, p. 224].

Interdisciplinary capstone courses place special demands upon instructors and the
students. Our intent is to provide an interdisciplinary studio-based experience that allows
students to apply their diverse knowledge and expertise to a set of class activities, and one
large electronic portfolio project. Additionally, students must have an opportunity to
develop their technology, design and communication skills in the context of their
discipline. The instructors' role in this course is a challenge because student demands vary
from student to student. The instructors are required to mentor students and use their
technical expertise (often gaining new technical expertise) to assist students as they
develop the electronic portfolio and research topics within their particular discipline. This
process can be very time-intensive for both the faculty and student.

This paper will discuss the working issues surrounding our endeavor to develop and
teach an interdisciplinary seminar capstone course for Interactive Digital Media majors
from three disciplines. Section 2 provides background information, Section 3 presents
information about our course structure, Section 4 discusses assessment, and Section 5
shares our lessons learned through course changes, impact of the course and challenges.

JCSC 25, 5 (May 2010)

216

2. BACKGROUND INFORMATION
2.1 Major and Course History

Northwest Missouri State University is a state-assisted four-year, moderately
selective mid-western university with approximately 6,100 full-time equivalent (FTE)
undergraduate students and 1,000 graduate FTE students. The university offers 100
majors, 70 minors and 21 pre-professional programs.

The Bachelor of Science in Interactive Digital Media major was approved by the
state Missouri Coordinating Board of Higher Education in 1999 and the first students
entered the program in the spring of 2000. The major is shared by two colleges, Business
and Professional Studies and Arts and Sciences, and requires 124 hours with 42 hours of
general education courses. In particular, the Interactive Digital Media is a 61-hour
multi-discipline major composed of core courses from the departments of Computer
Science/Information Systems, Mass Communication, and Art. The core consists of 36
hours and the student must choose one of three concentrations with 25 hours in each:
Computer Science Programming (Computer Science/Information Systems), New Media
(Mass Communication), or Visual Imaging (Art) [8].

During the 2000 - 2003 years of the Interactive Digital Media major, students were
required to take a departmental seminar course offered by each of the individual
departments of Computer Science/Information Systems, Mass Communication or Art.
However, since the fall of 2004, a one-hour team-taught interdisciplinary seminar course
has been offered. Students enroll in the Art, Computer Science/Information Systems or
Mass Communication section of the Interactive Digital Media Seminar course. All three
sections of this course meet at the same time and location and meet in either a
conventional classroom or a computer laboratory. Students enrolled in a particular course
have an instructor assigned by the particular department of their concentration; however,
students complete the same assignments and work collaboratively on some assignments.

2.2 Student Profiles
While we projected 45 students between the three concentrations for the first year

and projected 120 students after five years, the popularity of this major exceeded our
expectations. Enrollments reached 130 students in the 2008-2009 academic year. For the
fall 2009, our majors between the three departments are 110 students. Twenty-four
students declared a Computer Science Programming concentration, 47 students declared
a New Media concentration, and 39 students declared a Visual Imaging concentration.
During these past six years, approximately ten students have declared double
concentrations, which we did not anticipate.

3. COURSE STRUCTURE
3.1 Course Information and Prerequisites

The Interactive Digital Media Seminar is a one-hour course which meets weekly.
Although students are enrolled in separate sections within each of the departments,
instructors and students meet for one hour and fifteen minutes each week for the entire

CCSC: Central Plains Conference

217

semester. Occasionally, instructors meet with students from their particular concentration
(Computer Science, New Media or Visual Imaging) for short meetings to discuss topics
of interest to the particular concentration.

The Interactive Digital Media Seminar is usually taken during the senior year. Prior
to taking this course, students are required to take the core courses and will have taken
most of the courses in their concentration. Although we do not have formal prerequisites,
most students have completed the core courses prior to the seminar course and are taking
courses from their concentration during their senior year.

3.2 Course Goals
Students enrolled in this capstone seminar course will seek jobs in interactive digital

media areas which may include: media production, design/layout, web interface systems,
content development, Internet technical programmer, webmaster, or project manager.
Therefore, the goals of our seminar course are (1) to provide a means for students to
integrate their prior knowledge into the development of a large professional electronic
portfolio, (2) to allow students to develop confidence in their ability to work on a
multimedia project, (3) to work in a multidisciplinary team as they will in a professional
setting and learn to build a learning community, (4) to become familiar with and conduct
current literature searches on interdisciplinary industry topics, (5) to develop professional
skills which will be used to search for a job in their industry, and (6) to develop skills that
will allow students to enter the workforce for their discipline. With these goals, we want
to produce a rich and meaningful experience for students that will require a combination
of technical expertise, communication skills, visual aesthetic skills, and creative abilities.

3.3 Pedagogical Methods
Studio-based approaches are well-documented in the arts and architecture fields, but

are relatively new to the field of computing [4]. The studio-based approach includes some
type of design problem, collaborative learning usually with critiques by a master teacher
and the student, and some form of an exit interview. The model allows students to have
a community of learners that interact and solve problems. Because the Art and Mass
Communication faculty use this pedagogy in their design classes and students have
previously been exposed to this learning model, it seemed natural to continue this
pedagogy for the interdisciplinary capstone seminar class.

3.4 Course Information and Assignments
Student assignments during the semester consist of (1) units to allow the students

to develop their "soft skills" by creating a business resume, a list of references and a
cover letter, interviewing for jobs in the student's particular profession with a follow-up
of a required mock interview with an industry professional and a requirement to attend
a career fair, (2) some form of research on a current industry topic, (3) the creation of an
electronic portfolio using either Flash, HTML, CSS, JavaScript or other technologies, and
(4) a job shadow in which students must have their portfolio critiqued.

JCSC 25, 5 (May 2010)

218

We require students to write reflection papers on the mock interview and career fair
experiences. Collaborative team projects and individual project pedagogies have been
utilized over several years for the current research topic assignment. The student job
shadow assignment and portfolio review are two requirements with an industry
professional. Students may complete these requirements simultaneously or with two
separate professionals. Students are required to write a report on this experience.

The individual electronic portfolio includes samples of students' course work and
client work in the three areas of design, programming and project management. The
portfolio project has always involved interdisciplinary, collaborative faculty and
student-based critiques at several stages through the portfolio project. Additionally, over
the years, we have learned to break up the portfolio project into several stages and
established that firm deadlines are required of students. Currently, we include seven
stages in the electronic portfolio project: (1) a portfolio plan that describes how students
will approach their portfolios, including the focus of their portfolios, (2) a list of all the
project files that will be included in the portfolios, (3) the portfolio design including the
"look and feel" for their portfolios and some storyboarding, (4) a portfolio prototype that
includes two working sections, (5) interdisciplinary team critiques of the portfolios, (6)
a critique by members of their particular discipline, and (7) a final oral presentation of
their portfolios to the entire class.

3.5 Instructor Collaboration
Faculty collaboration has taken on many forms from determining the goals and

content of the course to the development of assignments and assessment to the expertise
of faculty on a particular topic. The faculty collaboration has increased our ability to
develop a variety of materials for the course, our motivation to try risky topics, and
encouraged creative approaches to technology, pedagogy and assignments. Because of
the interdisciplinary faculty backgrounds, each instructor contributes a vision of what we
want our students to experience in the capstone seminar course, distributes his/her faculty
expertise and then operates as a mentor or facilitator to the students. The faculty
collaborative role is certainly more demanding than that of a traditional course.

Our process has been to brainstorm and then settle on an approach for a technology,
assignment or pedagogy. Over the past four years, we have experimented with team
projects, industry speakers from the various disciplines, instructor and student critiques,
researching industry topics, and electronic portfolios with built-in critiques from students,
faculty and industry experts. Each semester, we refine the course assignments and
content.

3.6 Student Collaboration
Most students have been exposed to educational systems that stress individualized

learning which is provided by the instructor. Student assessment is then measured on the
individual knowledge that students have gained. Student collaboration, on the other hand,
stresses the collective discovery of knowledge and rewards and assesses the group rather
than the individual, which is a difficult transition for many students. The arts have a long

CCSC: Central Plains Conference

219

tradition of studio-based collaborative critiques, and because the Interactive Digital
Media students take several art classes, they come to this course with collaborative
studio-based critique experiences of their design projects [4].

Student collaboration has many benefits. (1) It reduces the amount of design time,
(2) provides support for students with both technology and aesthetics as they work in a
team, and (3) allows them to partner new ideas within a team. While most assignments
in our capstone seminar course are individual assignments, we use student collaboration
to enhance the student's individual assignments.

4. ASSESSMENT
4.1 Student Teams and Assessment

Students are broken up into interdisciplinary teams composed four or five students
for electronic portfolio critiques. Team selection is mixed with students from each of the
three concentrations, Computer Science Programming, New Media and Visual Imaging.
Instructors form interdisciplinary teams based upon students' technical, design,
communication and social abilities to ensure that the teams are well balanced.

Students break into teams and assess student work at three critical phases in the
electronic portfolio process, (1) the "look and feel" or storyboard phase, (2) the
interdisciplinary team critique toward the end of the portfolio process, and (3) the
concentration critique in which they are assessing work from students in their discipline
toward the end of the portfolio process. For the interdisciplinary and concentration phase,
the instructors provide the students with a checklist of criteria of verbal and numerical
student-based criteria to evaluate each other's portfolios. The interdisciplinary
studio-based critique phase is especially beneficial for the students as they collaborate
and suggest different approaches to presenting their portfolio work. Students are asked
to evaluate their team members based upon a checklist provided by the instructors. While
this task is difficult for students, we have determined that it is beneficial for them to
evaluate each other on each student's contributions to the team.

4.2 Instructor Assessment
Instructor assessment is intensive and takes place in several places in the course with

individual assessment used for some assignments and interdisciplinary studio-based
critiques for other assignments. First, individual feedback is provided by each instructor
to students in their concentrations for student resumes, reflection papers for the mock
interview with an industry professional, the career fair and the job shadow and the
concentration portfolio group critiques Next, instructors use a studio-based
interdisciplinary approach to assess several of the phases of the electronic portfolio. In
particular, the instructors rotate between all the teams to discuss the portfolios of each
team. This phase is particularly helpful to the students and the instructors because each
instructor has a different expertise and therefore students are able to receive critiques
from several different viewpoints.

JCSC 25, 5 (May 2010)

220

4.3 External Assessment
External assessment is used in our capstone seminar course in several ways. First,

the campus career services office provides feedback to students on their resumes during
one class period after which students are then asked to incorporate the suggestions in their
resumes. Second, industry professionals are invited to campus to conduct mock
interviews with students, which allow students to receive friendly feedback first-hand
from an industry professional regarding how they conducted themselves during an
interview. Industry professionals have been willing to participate in this exchange
because it provides them with an opportunity to search for the best talent but also most
say that are willing to assist students develop "soft skills". Third, industry professionals
are invited to campus once during the semester to share with students what skills and
knowledge they expect from a student who will be seeking their first full-time position.
This experience has been beneficial because industry professionals often mirror
information that we have been sharing with them about their industry. Fourth, industry
professionals provide feedback on the student's portfolio when they job shadow. This
allows the students to receive feedback from an industry professional before they seek
full-time employment. Many students have received offers for a summer internship or
full-time employment from the job shadow and portfolio critique experience and industry
professionals are always eager to discover talent for their companies. Finally, the visits
from industry professionals provide an opportunity for feedback to the course instructors
about the students and our program, which allows the instructors to validate our program
and make modifications where needed.

5. COURSE CHANGES, IMPACT OF COURSE, AND CHALLENGES
Our capstone seminar course has changed since 2004 based upon lessons we have

learned. First, we have augmented additional opportunities for interaction within the
interdisciplinary teams. Comments from industry professionals about the importance of
team work within their industries and after witnessing first-hand the benefits of team
interactions encouraged us to incorporate more team interactions. Second, we have fine
tuned the assessment phases used to develop the electronic portfolio by creating
progressive check points throughout the process. In the first year, we incorrectly expected
that the students would follow the process we laid out to develop their portfolios, but
learned quickly that students are motivated by assessment check points. Third, we now
provide a form of team assessment on the electronic portfolio teams. We determined that
there are benefits to having students assess the effectiveness of their team members.
Finally, we meet prior to the semester to plan the course assignments and activities,
regularly during the semester to discuss the progress of students in the course and at the
end of the semester to evaluate the effectiveness of the course. We find that good
communication between the instructors leads to a successful course and a richer
experience for the students.

The impact of the course for students is profound. First, students are provided an
opportunity to work with interdisciplinary teams, which often model the particular
industry, they will enter. Second, many students receive job offers for internships or
full-time employment prior to graduation, which we directly relate to the "soft skills"
student have developed, the job shadow with an industry professional and their electronic

CCSC: Central Plains Conference

221

portfolio. Finally, faculty and student contact with industry professionals has
strengthened our majors and this course. Through contacts from this course, many
industry professionals now serve on the various department advisory boards, are willing
to participate in the student mock interviews and job shadows. This has provided
opportunities for additional feedback from industry on our Interactive Digital Media
curriculum.

Challenges for this course have been when students have not completed all the
prerequisite core or significant concentration courses. While this does not happen often,
it limits the ability of the students to finish the portfolio during the semester. Other
challenges have been the pace of the course and the need for the instructors to devote a
great deal of time assessing course assignments. While the instructors receive great
satisfaction in working with students, the art and mass communication instructors teach
this one-hour course as an unpaid overload.

Gonzalez, Cranitch and Jo suggest that the disciplines that may lay claim to
multimedia "have traditionally antagonistic cultures" [5, p. 89]. Additionally, they point
out that "The lack of cohesion and identity in the context of cross faculty implementation
would limit the quality and depth of knowledge that could be imparted" [5, p. 90].
However, our experience has been very different. We created this major with a
philosophy that each department brings unique qualities to the major and that no one
department may claim the major as their own. We consider our major unique because of
the shared governance process. We encourage other universities and colleges to explore
a similar interdisciplinary working relationship as they develop new majors.

Our experience has been a pleasant working relationship in which we must
compromise with each other to achieve one goal. This concept of one goal is what Klein
says separates a multidisciplinary program from a true interdisciplinary program. She
notes that at the highest level "is a conscious attempt to integrate materials from various
fields of knowledge into 'a new, single, intellectually coherent entity.' This demands an
understanding of the epistemologies and methodologies of other disciplines and, in a team
effort, requires building a common vocabulary." [7, p. 57]. Two aspects that contribute
to the success of our capstone course are the personalities involved and the willingness
of faculty to develop knowledge in other domain areas.

6. BROADER APPLICATIONS
The lessons on interdisciplinary capstone courses are that computer science students

working on capstone projects would benefit by reaching out beyond their own department
to work with other disciplines. Possible collaborations might be working with the
department of psychology on evaluating software usability or business programs on the
viability of a particular software project.

7. REFERENCES

[1] Bowers, M. Y. & Scherpereel, C. M. (2008). Bizblock: A Cross-Disciplinary
Teaching and Learning Experience. Business Communication Quarterly 71(2), p.
221-226.

JCSC 25, 5 (May 2010)

222

[2] Boyer, E. (1990). Scholarship Reconsidered: Priorities Professoriate, Carnegie
Foundation Special Report. Princeton University Press, New Jersey.

[3] Clear, T., Goldweber, M., Young, F., Leidig, P., Scott, K., (2001). Resources for
Instructors of Capstone Courses in Computing, ACM SIGCSE Bulletin. 33(4).
Pp. 93-113.

[4] Docherty, M. & Brown, A. (2001): Studio-based teaching in information
technology. Flexible Learning for a Flexible Society: Proceedings of the
ASET/HERDSA Conference 2000 Joint International Conference 2-5 July, 2000.
Toowoomba, Queensland: Australian Society for Educational Technology and
Higher Education Research and Development Society of Australasia. Retrieved
August, 2008 from
http://www.ascilite.org.au/aset-archives/confs/aset-herdsa2000/procs/docherty.ht
ml

[5] Gonzalez, R., Crantich, G. & Jo, J. (2000, January). Academic Directions of
Multimedia Education. Communications of the ACM. 43(1), 89-95.

[6] Hudhausen, C. D., Narayan, N. H. & Crosby, M. E. (2008). Exploring
studio-based instructional models for computing education. SIGCSE Bulletin.
40(1). Pp. 392-296.

[7] Klein, J.T. (1990). Interdisciplinary: History, Theory, & Practice. Wayne State
Press, Detroit.

[8] Spradling, C., Strauch, J. & Warner, C. (2008). An Interdisciplinary Major
Emphasizing Multimedia. ACM SIGCSE Bulletin. 40(1). pp. 388-391.

[9] Woods, Charlotte. (2007). Researching and developing interdisciplinary
teaching: towards a conceptual framework for classroom communication. Higher
Education. 54:853-866.

* Copyright © 2010 by the Consortium for Computing Sciences in Colleges. Permission to copy
without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the CCSC copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires a
fee and/or specific permission.

223

A COMPARATIVE STUDY OF INFORMATION SECURITY AND

ETHICS AWARENESS IN DIVERSE UNIVERSITY

ENVIRONMENTS*

Max North, DeAnthony Perryman, Shekinah Burns, and Sarah North
Engineering Technology & Management

Southern Polytechnic State University
max@acm.org

ABSTRACT
 People involved in management information systems face several challenges,
especially when it comes to securing their information systems. This is most
evident within the university environment, specifically when providing
computing resources to students in diverse university environments. There is
a common belief that students who attend technology universities have more
awareness of security and ethics than those who do not. This study was
conducted to compare the levels of information security and ethics awareness
of students in diverse university environments. It compares survey data
collected from two different university environments-a liberal arts university
and technology university. The result of this comparative study shows that
students attending the technology university tend to be more aware of security
and ethics in information systems than those who attend the liberal arts
university. Finally, based on analysis of the collected data, several
recommendations are provided to increase the awareness of computer security
and ethics in university environments.

INTRODUCTION
Information security and ethics awareness of information systems plays an important

factor in university environments, especially in today's technological era [4]. One
pressing challenge of maintaining information systems within university environments

JCSC 25, 5 (May 2010)

224

is determining how aware students are of security and ethics, and then providing the
appropriate measures to help users and information technology staffs protect these
systems [1, 3, 6]. Although there has been data from student surveys relating to awareness
and security, there were not any data that related directly to student population of
technology universities or to liberal arts universities until the two recent studies
conducted by the primary authors of this article [7]. Along with previous work, these
recent studies still make it evident that computer security and ethics education is
imperative for university users. In a quantitative survey conducted by EDUCAUSE, only
a third of higher education institutions offer security and awareness training for students
and faculty [2].

The term liberal arts denotes a curriculum that imparts general knowledge and
develops the student's rational thought and intellectual capabilities, unlike the
professional, vocational, technical curricula emphasizing specialization. Specifically,
technology denotes a curriculum that deals with the creation and use of technical means
and their interrelation with life, society, and the environment. Technology universities
distinguish themselves from liberal arts universities in that they are typically more
exposed to information systems because of the amount of related courses and majors
offered [12]. Students of liberal arts universities, however, may not be as exposed, due
to a lack of related courses and majors [7, 8]. This study is an attempt to compare the data
of the information security and ethics awareness surveys conducted in two different
university environments, thus identifying what causes students of one university
environment to be more aware than others in a different environment.

METHODOLOGY
More than one thousand volunteers participated in this study. There were

approximately five hundred participants from the liberal university, with the remainder
coming from the technology university. The participants responded to a questionnaire,
in two major parts, consisting of 24 questions total. The first part of the questionnaire
assessed the awareness of computer security. It was comprised of several topic sections:
(i) passwords, (ii) data backups, (iii) antivirus software, (iv) firewalls, (v) software
updates and patches, and (vi) uninterruptible power supplies. The second part measured
the level of ethics awareness in computer use. It was a brief section covering the code of
ethics. The questionnaire answers were either yes, no or unsure. The questionnaire was
then given quantitative values in the form of percentages. The data were analyzed and
compared to identify significant differences, and the results were generated into bar
charts. Details of the analyzed data are provided following each section.

RESULTS
Data collected from the two universities were analyzed to determine any possible

difference that might occur. For promoting the simplicity of visualization techniques, the
universities were depicted in two groups: Group-1 directly pertains to the technology
university, and Group-2 refers to the liberal arts university. A z-test statistical technique
was performed to determine whether the differences between the universities were
significant. The z-test directly compared the percentages at a 99% confidence level.

CCSC: Central Plains Conference

225

Antivirus Software - Antivirus software is one the most effectively proactive ways to
secure, protect, and maintain privacy from unauthorized access to computer resources.
Group-1 and group-2 were asked if there was antivirus software installed on the
respondent's personal computer. 91% of group-1 answered "yes", while 78% of group-2
answered "yes". 2% of group-1 and 20% of group-2 replied "no". 7% of group-1 and 2%
of group-2 answered "unsure". Analysis shows that there is a significant difference
between the two groups in those who answered "yes" (z-value=5.59), "no" (z-value=8.99)
or "unsure" (z-value=3.66) to question 1. Question 2 asked if the respondent had a current
antivirus subscription; 71% of group-1 and 68% of group-2 answered "yes". 16% of
group-1 and 24% of group-2 answered "no". 13% of group-1 and 8% of group-2
answered "unsure". There is a significant difference between the two groups in those who
answered "no" (z-value=3.08), and "unsure" (z-value=2.48) to question 2. There appear
to be no significance difference between "yes" responses (z-value=0.96) for both groups.
Question 3 asked if the respondent's antivirus software performed automatic updates. 71%
of group-1 and 68% of group-2 answered "yes". 12% of group-1 and 27% of group-2
answered "no". 17% of group-1 and 5% of group-2 answered "unsure". There is a
significant difference between those who answered "no" (z-value=5.90) and "unsure"
(z-value=5.96). There appears to be no significance difference between responses to "yes"
(z-value=0.96). Question 4 asked if the respondents performed manual updates to their
antivirus program. 36% of group-1 and 47% of group-2 answered "yes". 55% of group-1
and 49% of group-2 answered "no". 9% of group-1 and 4% of group-2 answered
"unsure". There is not any significant difference in "no" responses (z-value=1.83)
between the two groups. There is a significant difference between the two groups in those
who answered "yes" (z-value=3.46), and "unsure" (z-value=3.08) to question 4. Question
5 asked if the participants were aware the university computers have antivirus software.
67% of group-1 and 65% of group-2 answered "yes". 19% of group-1 and 26% of
group-2 answered "no". 14% of group-1 and 9% of group-2 answered "unsure". There
is not a significant difference in "yes" (z-value=0.60) responses of both groups. There
is a significant difference between the two groups in those who answered "no"
(z-value=2.57), and "unsure" (z-value=2.38) to question 5.

Firewalls - Firewalls are a type of security measure used to prevent unauthorized access
of computer data. Question 6 asked if the respondent knew what a firewall consists of.
88% of group-1 and 54% of group-2 answered "yes". 0% of group-1 and 35% of group-2
answered "no". 12% of group-1 and 11% of group-2 answered "unsure". There is a

JCSC 25, 5 (May 2010)

226

significant difference between the two groups in those who answered "yes"
(z-value=11.77) or "no" (z- value=13.91). There appears to be no significance difference
between responses of "unsure" (z-value=0.39) for both groups. Question 7 asked if
respondents had a firewall installed on their personal computers. 83% of group-1 and
47% of group-2 answered "yes". 10% of group-1 and 33% of group-2 answered "no".
7% of group-1 and 20% of group-2 answered "unsure". There is a significant difference
between the two groups in those who answered "yes" (z-value= 11.86), "no"
(z-value=8.77) or "unsure" (z-value=5.92). Question 8 asked if respondents were aware
the university has a network firewall. 78% of group-1 and 42% of group-2 answered
"yes". 9% of group-1 and 45% of group-2 answered "no". 13% of group-1 and 13% of
group-2 answered "unsure". There is a significant difference between the two groups in
those who answered "yes" (z-value=11.55) or "no" (z-value=12.75). There is no
significant difference in responses of both groups who answered "unsure" (z-value=0.09).

Passwords - Passwords are a set of codes primarily used as a deterrent to unauthorized
access. Question 9 asked if the respondent had a password on his or her personal
computer. 88% of group-1 and 80% of group-2 answered "yes". 7% of group-1 and 20%
of group-2 answered "no". 5% of group-1 and 0% of group-2 answered "unsure". There
is a significant difference between the two groups in those who answered "yes"
(z-value=3.36), "no" (z-value=5.92) or "unsure" (z-value=4.13). Question 10 asked if
respondents had to use a password on university computers. 95% of group-1 and 86% of
group-2 answered "yes". 0% of group-1 and 13% of group-2 answered "no". 5% of
group-1 and 1% of group-2 answered "unsure". There is a significant difference between
the two groups in those who answered 'yes" (z-value=4.74), "no" (z-value=7.68), or
"unsure" (z-value=3.52). Question 11 asked if the respondent's password was easy to
guess. 5% of group-1 and 29% of group-2 answered "yes". 83% of group-1 and 71% of
group-2 answered "no". 12% of group-1 and 0% of group-2 answered "unsure". There
is a significant difference between the two groups in those who answered "yes"
(z-value=10.01), "no" (z-value=4.43) or "unsure" (z-value=7.31).

Software Updates and Patches - Software updates and patches are an essential part of
maintaining proper protection against malware. Question 12 asked if the respondent kept
current with software updates and patches against the latest security threats on personal
computers. 70% of group-1 and 51% of group-2 answered "yes". 21% of group-1 and
42% of group-2 answered "no". 9% of group-1 and 7% of group-2 answered "unsure".
There is a significant difference between the two groups in those who answered "yes"
(z-value=6.08), "no" (z-value=3.52) or "unsure" (z-value=3.52). Question 13 asked if
respondents were aware that the university keeps current with software updates and
patches. 62% of group-1 and 44% of group-2 answered "yes". 21% of group-1 and 46%
of group-2 answered "no". 17% of group-1 and 10% of group-2 answered "unsure".

CCSC: Central Plains Conference

227

There is a significant difference between the two groups in those who answered "yes"
(z-value=5.63), "no" (z-value=8.30) or "unsure" (z-value=3.14).

Data Backups - Data backup is the process of copying data to an external source or
system. The data is backed up as a preemptive measure to secure its access in case the
original data becomes inaccessible. Question 14 asked if the respondent had a current
backup of personal data. 45% of group-1 and 44% of group-2 answered "yes". 43% of
group-1 and 42% of group-2 answered "no". 12% of group-1 and 14% of group-2
answered "unsure". There is not a significant difference between the two groups in any
of the categories; "yes" (z-value=0.25), "no" (z-value=0.25), or "unsure" (z-value=0.84).
Question 15 asked if respondents were aware that the university keeps a current backup
of personal data. 55% of group-1 and 41% of group-2 answered "yes". 26% of group-1
and 46% of group-2 answered "no". 19% of group-1 and 13% of group-2 answered
"unsure". There is a significant difference between the two groups in those who answered
"yes" (z-value=4.36), "no" (z-value=6.52), and "unsure" (z-value=2.50).
Uninterruptible Power Supply (UPS) - An Uninterruptible Power Supply is used to
protect data from the constant, but rare, threat of power surge or electrical failure.
Question 16 asked if the respondent had a UPS to protect data in the event of a power
surge. 48% of group-1 and 40% of group-2 answered "yes". 40% of group-1 and 36%
of group-2 answered "no". 12% of group-1 and 24% of group-2 answered "unsure". There
is a significant difference between the two groups in two categories: "yes" (z-value=2.48),
and "unsure" (z-value=4.85). There is no significant difference in responses of both
groups to "no" (z-value=1.23). Question 17 asked if the respondent was aware that
university has UPSs for protection against power surges. 50% of group-1 and 31% of
group-2 answered "yes". 29% of group-1 and 52% of group-2 answered "no". 21% of
group-1 and 17% of group-2 answered "unsure". There is a significant difference between
the two groups in those who answered "yes" (z-value=6.05) and "no" (z-value=7.34).
There is no significant difference in responses of both groups to "unsure" (z-value=1.53).
Code of Ethics - Codes of ethics are the rules set in place to provide universally
acceptable guidelines for making ethical decisions [9, 12]. Although the questions
provide a broad overview of what ethics are, it is difficult to sum extensive personal
beliefs into standardized qualitative data. Qualitative data will have the tendency to be
based on cultural beliefs and should be kept with an open mind the data will vary from
person to person and group to group. Question 18 asked if the respondent had ever used
a computer to harm other people. 5% of group-1 and 14% of group-2 answered "yes".
90% of group-1 and 83% of group-2 answered "no". 5% of group-1 and 3% of group-2
answered "unsure". There is a significant difference between the two groups in those who
answered "yes" (z-value=4.74) and "no" (z-value=3.14). There is no significant
difference in responses of both groups to "unsure" (z-value=1.45). Question 19 asked if

JCSC 25, 5 (May 2010)

228

the respondent ever snooped around in other people's computer files. 21% of group-1 and
22% of group-2 answered "yes". 74% of group-1 and 75% of group-2 answered "no".
5% of group-1 and 3% of group-2 answered "unsure". There is not a significant difference
between the two groups' responses in all the categories; "yes" (z-value=0.30), "no"
(z-value=0.29) and "unsure' (z-value=1.45). Question 20 asked if the respondent had ever
used a computer to steal or bear false witness. 5% of group-1 and 15% of group-2
answered "yes". 93% of group-1 and 83% of group-2 answered "no". 2% of group-1 and
2% of group-2 answered "unsure". There is a significant difference between the two
groups in those who answered "yes" (z-value=5.16) and "no" (z-value=4.76). There is no
significant difference between the responses of both group to "unsure" (z-value=0.22).
Question 21 asked if the respondent had ever used other people's computer resources
without authorization. 17% of group-1 and 23% of group-2 answered "yes". 81% of
group-1 and 75% of group-2 answered "no". 2% of group-1 and 2% of group-2 answered
"unsure". There is not a significant difference between the two groups' responses in any
of the categories; "yes" (z-value=2.29), "no" (z-value=2.21) and "unsure" (z-value=0.22).
Question 22 asked if the respondent had ever interfered with other people's computer
work. 7% of group-1 and 16% of group-2 answered "yes". 88% of group-1 and 79% of
group-2 answered "no". 5% of group-1 and 5% of group-2 answered "unsure". There is
a significant difference between the two groups in those who answered "yes"
(z-value=4.36) and "no" (z-value=3.74). There is no significant difference in "unsure"
responses (z-value=0.14). Question 23 asked if the respondent had ever copied or used
proprietary software for which he or she had not paid. 50% of group-1 and 24% of
group-2 answered "yes". 45% of group-1 and 71% of group-2 answered "no". 5% of
group-1 and 5% of group-2 answered "unsure". There is a significant difference between
the two groups in those who answered "yes" (z-value=8.44) and "no" (z-value=8.26).
There is no significant difference in responses of "unsure" (z-value=0.14). Question 24
asked if the respondent had ever permitted someone else to use your computer/account
for illegal purposes. 5% of group-1 and 16% of group-2 answered "yes". 93% of group-1
and 82% of group-2 answered "no". 2% of group-1 and 2% of group-2 answered
"unsure". There is a significant difference between the two groups in those who answered
"yes" (z-value=5.57) and "no" (z-value=5.16). There is no significant difference in
responses of those who answered "unsure" (z-value=0.22).

CCSC: Central Plains Conference

229

CONCLUSION AND RECOMMENDATION
There are important and significant differences between understanding of information
security and ethical computer use among students in technology universities and liberal
universities. The way the individuals are taught and the way the students learn will create
a large variance in each culture's perspective. The largest difference in perspective was
found in the sections pertaining to firewalls, software updates and patches, uninterruptible
power supply, and briefly in the codes of ethics. Members of the technology university
had a greater awareness of what a firewall is, as well as its personal and college-based
use. The technology students were more aware of software updates and patches to a
significant degree. Although neither the technology university nor the liberal university
students had an overwhelming awareness of what an uninterruptible power supply is or
what it is used for, the technology university was significantly more aware the university
campus was using one. In the area of code of ethics, a significant difference presented
itself in the questions of using software not paid for or the use of an account for illegal
reasons. In reference to the use of software not paid for, the technology college used the
software significantly more than liberal student. However, when asked if their account
had been used for illegal reasons, the liberal university students said yes significantly
more than students of the technology university. Proper measures can be taken to increase
awareness among students of both universities [11, 13, 14], including
 1. Increased exposure to computers.
 2. Detailed training will ensure proper use and maintenance of the computers.
 3. Providing the proper tools to the university bodies.
 4. Offering classes periodically as technology changes.
 5. Developing an initial university computer awareness class to aid in universal

knowledge.

ACKNOWLEDGMENT
This effort was supported by the Department of Defense (DOD)/National Security

Agency (NSA) Grant. The content of this work does not reflect the position or policy of
the DOD/NSA and no official endorsement should be inferred. Southern Polytechnic
State University has been designated a Center of Excellence in Information Security
Assurance (CAE/ISA) by the Committee on National Security Systems (CNSS) and the
National Security Agency (NSA).

REFERENCES

1. Foster, A. (2004). Insecure and Unaware. Chronicle of Higher Education,
50(35), A33-A35.

2. Caruso, Judith B. (2003). Information Technology Security: Governance,
Strategy, and Practice in Higher Education Key Findings (ID: EKF0305). In
EDUCAUSE, http://www.educause.edu/ers0305/

3. North. S.M., George, R., Shujaee, K., and Mumford, A. (2005). Collaborative
Information Assurance Capacity Building at a Consortium of Colleges and

JCSC 25, 5 (May 2010)

230

Universities. Proceedings of the 43rd Annual Association for Computing
Machinery Southeast Conference, 361-362.

4. Laudon, K.C., Laudon, J.P. (2005). Essential of Management Information
Systems: Managing the Digital Firm (6th ed.). Prentice Hall.

5. Dinev, Tamara. (2008). Internet Users' Beliefs about Government Surveillance -
The Role of Social Awareness and Internet Literacy. Proceedings from the 41st
Hawaii International Conference on System Sciences, 275-275.

6. North, M., North, S., George, R. (2006). Computer Security and ethics awareness
in university environments: A challenge for management of information systems.
ACM SE'06, 434-439.

7. Myers, J Paul Jr., Riela, Sandra. (2008). Taming the Diversity of information
assurance and security. Consortium for Computing Sciences in Colleges,
173-179.

8. Holland-Minkely, Amanda M. (2006). Cyberattacks: A lab-based introduction to
computer security. SIGITE'06, 39-46.

9. Dorantes, C., Hewitt, B., Goles, T. (2006). Ethical Decision-Making in an IT
context: The Roles of personal moral philosophies and moral intensity.
Proceedings of the 39th Hawaii International Conference on System Sciences, 8,
206c-206c.

10. McCoy, Carrie (2004), "You are the key to security": establishing a successful
security awareness program. Proceedings of the 32nd annual ACM SIGUCCS
conference on User services, 346-349.

11. Hentea, Mariana (2005). A perspective on achieving information security
awareness. Issues in informing science and technology, 169-178.

12. Epstein, R. (2006). An Ethics and Security course for students in computer
science and information technology. Proceedings of the 37th SIGCSE technical
symposium on Computer science education, 233-236.

13. Dark, M., Harter, N., Morales, L., Garcia, M. (2008). An information security
ethics education model. Consortium for computing sciences in college, 82-88.

14. Katz, Frank H. (2007). Integrating a security awareness program into an
information security course. Journal of Computing Sciences in Colleges, 23(2),
181-187.

* Copyright © 2010 by the Consortium for Computing Sciences in Colleges. Permission to copy
without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the CCSC copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires a
fee and/or specific permission.

231

IDENTIFYING GENE REGULATORY NETWORKS USING

EVOLUTIONARY ALGORITHMS*

Carl Davidson
Simpson College

701 North C Street Indianola, IA 50125
(515)288-9256

carl.davidson@simpson.edu

ABSTRACT
This paper discusses experiments with genetic algorithms to reconstruct gene
regulatory networks represented as Bayesian networks. In our algorithm
Bayesian networks are represented by their topological order. Various
selection methods and fitness functions were tested on data generated from a
small-scale Bayesian network. The algorithm was run on a large fragment of
the human transcriptome to demonstrate scalability. Additional improvements
on the implementation are proposed for future research.

INTRODUCTION
Gene Regulatory Networks

Under various environmental conditions, genes may produce proteins at different
rates, known as expression levels. The proteins have various effects upon a cell, some of
which may be upon the expression levels of other genes. As a result, a gene regulatory
network exists which provides feedback to events both inside and outside the cell [2].
Understanding this regulatory network may be important when altering genetic
information without adverse consequences.

To elucidate the gene regulatory network, scientists first create what are known as
microarrays, in which the expression levels of genes are examined under various
environmental conditions. Data collected from microarrays are then analyzed by software
to produce plausible gene regulatory networks [2]. Existing algorithms represented gene

JCSC 25, 5 (May 2010)

232

regulatory networks in a number of ways [1, 2, 5]. Here, several implementation
strategies were investigated for one common representation - Bayesian networks.

Bayesian Networks
Bayesian networks are directed acyclic graphs in which nodes represent variables

and edges represent relationships between them. Each variable takes on a single value at
any time, the combination of which is known as an event. Each event may occur with a
degree of certainty, perceived by the network as its frequency [6]. In the context of gene
regulatory networks, nodes represent genes, which may be underexpressed,
overexpressed, or normally expressed. Edges represent interactions between genes,
regardless of whether they contribute to underexpression or overexpression.

Because the runtime of certain operations on Bayesian networks increases
exponentially with the number of variables, approximation algorithms are typically used
to generate large Bayesian networks. Here, only one such optimization algorithm is
discussed - a genetic algorithm.

Genetic Algorithms
Genetic Algorithms find favorable solutions for problems among many potential

solutions, in a manner inspired by natural selection. The majority of Genetic Algorithms
consist of four stages: creation, selection, mating, and mutation [4]. During creation, a
series of potential solutions is randomly created. The solutions are collectively known as
a "population." During selection, a mating population is created by selecting the best
solutions, which are said to have higher "fitness." While mating, a new population is
created by combining solutions from the mating population, thus producing new
solutions. The combination of solutions is referred to as "crossover." Finally, during
mutation a percentage of the population is randomly altered in some way [3, 4].

This process repeats for a desired period. Each individual repetition is known as a
"generation." When proper strategies are employed, the section of the population with the
best fitness will increase over several generations. The highest fitness in the population
should also increase, eventually creating an approximate, yet satisfactory, solution [3].

Genetic algorithms typically require customization to produce faster, better results
for specific problems. Each stage of a genetic algorithm offers its own means of
customization. During creation, the size of a population, the means of representing
solutions, and the means of creating solutions may vary. During selection, the percentage
selected, the method of calculating fitness, and the method of selection may vary. Finally,
during mating and mutation, methods for manipulating solutions must be specified [3, 4].

Here, various customizations were made to a genetic algorithm that would generate
Bayesian representations of gene regulatory networks. A test dataset was randomly
generated from a hypothetical Bayesian network, and customizations were rated on how
well the Bayesian network was recreated from test data. Finally, the implementation was
used on a large scale, practical application - analyzing gene expression in a large segment
of the human transcriptome.

CCSC: Central Plains Conference

233

IMPLEMENTATION
Representation

Some previously implemented genetic algorithms have represented Bayesian
networks as 2D Boolean arrays, in which each cell signifies whether a relationship exists
between variables [1, 5]. Variables are assigned rows and columns in these arrays, which
remain constant throughout all Bayesian networks created by the algorithm. One such
popular implementation is found in WEKA, or the Wakaito Environment of Knowledge
Analysis [1].

Because a 2D array may also represent cyclical graphs, representing acyclic graphs
is problematic. Without implementing additional code to validate solutions, Bayesian
networks may be generated that violate their acyclic nature. However, implementing
validation code jeopardizes efficiency, which is important when dealing with large
datasets such as those found in microarrays. Furthermore, because less than half of each
2D array could represent the edges of an acyclic graph, a large percentage of each 2D
array would be wasted, again jeopardizing efficiency.

Here we describe an efficient method used to represent valid Bayesian networks in
a genetic algorithm. In addition to relationships between variables, each Bayesian
network would store their topological order. To conserve memory, relationships could
then be represented as a 2D jagged array - a list of arrays of different lengths.
Relationships that violate topological order are simply unrepresented.

The topological order of each Bayesian network is represented as a 1D array with
a length equal to the number of variables. Each variable is assigned one cell in this array,
which contains the position of the variable in the topological order. Variables are then
assigned rows and columns in the jagged array, which correspond to their positions in the
topological order. Because relationships that violate the topological order are
unrepresented, the size of a row at column N in the jagged array equals N. Figure 1
illustrates this design.

Fitness
All fitness functions examined were based on the entropy metric scoring function

implemented by WEKA. Two modifications of the entropy metric were implemented as
scoring functions: the AIC metric, and MDL metric [1]. These metrics account for the
correlation between values of variables and their parents. For instance, if a gene and its

Figure 1. A Bayesian network (leftmost) represented using two different methods - a
regular 2D array, and a jagged array.

JCSC 25, 5 (May 2010)

234

parents are consistently overexpressed in the sample data, the network's score would be
high, meaning that an existing relationship has been identified.

Manipulation
The crossover and mutation of Bayesian networks center upon topological order.

Because topological orders are permutations of a single list of numbers, the
implementation borrowed heavily from genetic algorithms used to solve the Traveling
Salesman Problem. Such genetic algorithms represent potential solutions as permutations
of a list of towns, which must be visited exactly once in the shortest possible route [3, 4].
In our implementation, potential solutions are represented as permutations of a list of
genes, corresponding to the topological order of the Bayesian network.

Unlike the genetic algorithm used to solve the Traveling Salesman Problem, the
relationships of a Bayesian network must be updated to reflect changes in its topological
order. In the current implementation, the new network is simply populated by all
relationships from the old network that conform to the new topological order. Because
a network with n nodes contains O(n2) possible relationships, this method is of the
runtime O(n2).

Testing
Tests were performed on two datasets. The first dataset was a collection of 100

samples randomly generated using probabilities provided by a trivial Bayesian network,
seen in Figure 1. Using this dataset, the best network of each generation was recorded for
20 generations. This was repeated 50 times for each fitness and selection function
implemented. Selection functions included tournament, rank-based, and elitist selection
methods. Rank based selection was tested using both 2 and 10 ranks. Fitness functions
included the entropy, AIC, and MDL metrics. The best networks ever generated during
tests were then compared with the network described in the dataset.

The second dataset was a fragment of a microarray performed on the complete
human transcriptome. Half of the 158 samples and a quarter of the 22,216 genes were
included in the dataset, which was the largest dataset possible on our available hardware.
Numerous experiments were performed to evolve populations of 50 networks over several
thousand generations, which was, again, the largest number possible on our available
hardware. Observations were made on the runtime and on the results of the genetic
algorithm while processing this dataset.

RESULTS
Best solutions were consistently higher on the first dataset when forms of rank based

selection were employed. 10-Rank selection typically reached its peak fitness in a shorter
number of generations. However, 2-Rank selection generated slightly better solutions at
a steady rate. As a result, it is believed analysis using 2-Rank selection is less likely to
return solutions at a local optimum. Figure 2 illustrates these findings. All fitness scores

CCSC: Central Plains Conference

235

are relative to the dataset used to generate networks - that is, networks from different data
sets cannot be compared through their scores.

The 2-Rank selection method and the MDL metric were employed to analyze the
fragment of the human transcriptome microarray. Each network consumed approximately
17.5 MB storage, and an average of 5 seconds to generate and analyze on our available
hardware. Resource consumption was greatest during selection and mating operations,
when duplicates of the population were created to which existing networks were
imported.

Each network generated had an MDL fitness score ranging from approximately 40
000 to 1.4 x 107. Curiously, the fitness of networks fell within ranges, those being 40 000
to 60 000, 1 x 106 to 2 x 106, near 5 x 106, and near 1.4 x 107. Only two iterations of the
genetic algorithm ever produced networks with MDL fitness scores within the 1.4 x 107

category. Each iteration did so within the initial generation.
Each network generated 0 to 7 relationships per gene, with an average of 2

relationships per gene. This number likely reflects the probability at which relationships
are randomly generated in the initial population, rather than the actual average of
relations per gene.

DISCUSSION
Best solutions were consistently closer to the original Bayesian network when the

MDL metric was used as a fitness function. Best solutions generated using AIC and
entropy metrics were often characterized as having one variable with relations to most
other variables, while the other variables had little to no other relations. No reason for this
behavior was found.

No network was generated that flawlessly reconstructed the Bayesian network
expressed in test data. However, the majority of the best networks generated shared

Figure 2. Fitness of best solutions over time, using four selection functions.

JCSC 25, 5 (May 2010)

236

similar topological orders with the actual Bayesian network. Figure 3 illustrates the 3 best
networks generated.

It is important to note the genetic algorithm could reconstruct only the topological
order expressed in test data. Because the topological order allows much less variation
than the relationships themselves, it is possible the algorithm was only capable of finding
the topological order given inadequate time or data. However, because the topological
order was used to represent networks, it is possible this is an inherent characteristic of the
algorithm. In either case, additional generations or larger populations may still alleviate
the issue - it is still possible for the algorithm to generate any valid Bayesian network, and
providing additional generations and larger populations increases the likelihood of the
algorithm to generate the correct one. However, this is a very resource intensive solution.
A more efficient solution would use the algorithm to determine the topological order of
the Bayesian network expressed in the data, and then use existing algorithms to determine
the specific relationships of the Bayesian network, given the topological order.

Analysis of a portion of the human transcriptome demonstrated the algorithm could
scale to large, real world applications. However, the sheer size of the networks made it
difficult to determine any visible patterns among their relationships, if any existed. Based
on results using test data, it is presumed best solutions could reliably predict only the
topological order of such regulatory networks, and patterns among relationships would
be limited. Furthermore, the average number of relations per gene was close to the default
value specified, and it is presumed not enough generations were simulated to produce
reliable relationships that would occur in patterns. For these reasons, extracting any
practical information on gene regulation is unsound, for the moment.

CONCLUSION
Understanding gene regulatory networks contributes to knowledge in genetics, and

in turn, quality of life. Here, a genetic algorithm was implemented to elucidate gene
regulatory networks using Bayesian networks. Various selection methods, and fitness
functions were examined based upon efficacy. A method for representing Bayesian
networks in genetic algorithms was also implemented, which stores the topological orders
of each network to improve efficiency. The implementation was then tested on a real life
microarray. Results demonstrated the method was able to reconstruct equivalent

Figure 3. A Bayesian network (leftmost) and the best reconstructions generated.
Numbers next to each graph denote fitness using the MDL fitness function.

CCSC: Central Plains Conference

237

topological orderings of the sample network, but could not completely reconstruct the
network's relations. Rank based selection and the MDL fitness scores appeared to
generate the best solutions. Some features of the microarray could be extracted from the
results, but the size of these results prevents manual interpretation.

ABOUT THE PAPER
This project was performed over the 2008-2009 school year by an undergraduate

student of Simpson College, Iowa. Its subject matter was proposed by Dr. Lydia Sinapova
to fit the student's interests in Computer and Biological Sciences. Most all other aspects
of the work were performed by the student. In the context of CS Education, it
demonstrates the possibilities for high quality, interdisciplinary undergraduate research
projects where an interest exists.

The project was sponsored by the Iowa College Foundation through the
Maytag-McElroy Undergraduate Research Grant. Many thanks to Dr. Sinapova for her
support.

REFERENCES

[1] Bouckaert, R., Bayesian network classifiers in Weka,
weka.sourceforge.net/manuals/, retrieved 2/1/2009.

[2] Do, K., et al. Bayesian Inference for Gene Expression and Proteomics, New
York: Cambridge University Press, 2006.

[3] Goldberg, D., Genetic Algorithms in Search, Optimization & Machine Learning,
Boston: Addison Wesley Longman, Inc, 1989.

[4] Haupt, R., Haupt, S., Practical Genetic Algorithms, New York: John Wiley &
Sons, Inc, 1998.

[5] Larranaga, P., et al. Structure learning of Bayesian networks by genetic
algorithms, Pattern Analysis and Machine Intelligence, 18, (9), 912-926, 1996.

[6] Neapolitan, R., Learning Bayesian Networks, Upper Saddle River, NJ: Pearson
Education, Inc, 2004.

* Copyright is held by the author/owner.

238

JAVA SLOT MACHINE APPLET*

NIFTY ASSIGNMENT

Thomas Mertz
Department of Engineering Technology

Kansas State University at Salina
2310 Centennial Road

Salina, KS 67401
(785) 826-2602
tmertz@ksu.edu

ABSTRACT
This paper describes an assignment in which a student implements a Java
applet that simulates a slot machine. The assignment is given in an advanced
Java programming course in conjunction with the topic of multithreading. The
assignment's student learning objectives include: (1) implement multiple
concurrent threads, (2) recognize and use the Java synchronized construct,
(3) recognize and use thread states to pause and resume thread execution, (4)
use nested panels to construct an attractive GUI. Because most students know
what a slot machine is, they immediately understand the requirements of the
assignment and most think it is fun.

THE COURSE
The assignment is used in a three-credit course covering advanced Java

programming. Students taking this course have already completed three prerequisite
computer courses (nine credits). These are a 3-credit course in algorithm development,
a 3-credit course in computer hardware and architecture and a 3-credit Java programming
course that covers material roughly equivalent to the first eleven chapters of Deitel and
Deitel [1].

The advanced Java programming course covers a sequence of topics similar to that
of the subsequent chapters of Deitel and Deitel.

CCSC: Central Plains Conference

239

THE ASSIGNMENT
For this assignment, each student implements a Java applet that simulates a slot

machine. The applet presents the user with three spinners and a play button. When the
user clicks the play button, each of the spinners begins to cycle through a sequence of
images. Each spinner has its own stop button. When the user clicks a stop button, the
associated spinner stops on the most recently displayed image. The applet has a "stomp"
button that, when clicked, stops all spinners. Figure 1 shows a user interface for the slot
machine designed by a student. It is fairly typical of what students come up with.

Figure 1 – Typical Slot Machine User Interface

STUDENT LEARNING OBJECTIVES
The primary purpose of the assignment is to cover the topic of multithreading.

Students must implement each spinner as a concurrent thread. The play and stop buttons
require the spinners to pause and resume execution so the students must understand
thread states and be able to use the synchronized construct to implement the thread
states of running and waiting.

Prior to this assignment, students have already completed chapters and assignments
on applets and GUI programming. For the topic of multithreading, I introduce the
students to material similar to the first three sections of the concurrency lesson in the Java
Tutorials [3]. This includes basic concepts of concurrency and how to implement a
concurrent thread using the Thread class in the Java API [2]. I follow this with an
introduction to thread states similar to that in Deitel and Deitel [1] (pages 1059-1067). I
find it useful to provide an example containing a thread that can be paused and resumed
using stop and go buttons as this is a topic that cannot be readily found in references.

Since the primary focus of the assignment is on multithreading and not simulation,
the students are not required to accurately simulate the workings of a real slot machine
or its stochastic behavior.

JCSC 25, 5 (May 2010)

240

CONCLUSION
Advantages of the assignment are that it is a fairly straightforward implementation

of multithreading. Students need not worry about race conditions as there is no access to
common data. Furthermore, programming the play and stop buttons is a useful skill that
can be used in subsequent programs and is not covered in most textbooks.

REFERENCES

[1] Deitel, H. M. and Deitel, P. J. Java, How to Program. Eighth Edition. Upper
Saddle River, NJ: Prentice Hall, 2010.

[2] Sun Microsystems. "Class Thread." Java™ Platform Standard Edition 6. 2008.
Web. 5 December 2009. <http://java.sun.com/javase/6/docs/api/>.

[3] Sun Microsystems. "Lesson: Concurrency." The Java™ Tutorials. 1995-2009.
Web. 5 December 2009.
<http://java.sun.com/docs/books/tutorial/essential/concurrency/index.html>.

* Copyright is held by the author/owner.

241

HUMAN ROBOT ASSIGNMENT FOR CS0 OR CS1*

NIFTY ASSIGNMENT

Ernie Giangrande Jr.
Mathematics & Computer Science Dept.

Wingate University
Campus Box 3007
Wingate NC 28174

(704) 233-8000
egiangra@wingate.edu

The purpose of this assignment is (a) to get students familiar with the level of detail
required in developing computer programs, and (b) to reduce student anxiety about
computer programming, and about the course. This assignment is to write a ‘program' to
move a human ‘robot' from one location on campus to some other location on campus.
The assignment consists of four phases. Phase One consists of talking about what kinds
of instructions might be required to program a human robot and developing a command
set for the human robot (see below). Phase Two consists of each student writing a
program to move the human robot from the front of the classroom to some specified
location on campus. In Phase Three students pair up with student #1 playing the role of
a human robot, and following the instructions in student #2's program. Student #2
observes and notes ‘bugs' in his or her program. The pairs of students then return to the
classroom and exchange roles. Finally, in Phase Four, each student then takes his or her
program, as well as their observations re bugs, and rewrites the program to correct those
bugs.

THE ASSIGNMENT:
This assignment is to write a ‘program' to move a human ‘robot' from one location

on campus to some other location on campus.

JCSC 25, 5 (May 2010)

242

An Example Control Set:
 Sequential Constructs Control Structures
 · STEP FORWARD · IF/THEN – END IF
 · STEP BACKWARD · IF/THEN/ELSE – END IF
 · TURN LEFT d* · WHILE – END WHILE
 · TURN RIGHT d*
 · STEP UP
 · STEP DOWN
 · OPEN DOOR
 · WAIT s
* where d is the number of degrees, and s is seconds

 Conditions Examples
 · AT DOOR IF (AT WALL) THEN STEP
 · DOOR OPEN BACKWARD END IF
 · AT WALL
 · AT TOP OF STAIRS IF (DOOR OPEN) THEN STEP
 · AT BOTTOM OF STAIRS FORWARD

 · AT PATH INTERSECTION ELSE
 · AT STREET CROSSING OPEN DOOR STEP
 · CAR COMING FORWARD END IF

 WHILE (NOT AT DOOR) STEP
 FORWARD
 END WHILE

* Copyright is held by the author/owner.

243

APPLIED PROBLEM SOLVING*

NIFTY ASSIGNMENT

Wen-Jung Hsin and John Cigas
Information and Computer Science

Park University
8700 N.W. River Park Drive

Parkville, MO 64152
wen.hsin@park.edu

In a Discrete Math course, to allow students to be creative, think about what they
have learned, and be able to apply what they have learned, the authors have created the
following assignment:

Assignment:
Applied Problem Solving – Apply a problem solving technique to a life example.
Each student proposes a problem using the problem solving technique studied in
class, but in a different context from the scenarios shown in the text. Students post
their problems to an electronic discussion board for other students to view and
solve.
This is a weekly assignment. The student's choice of the problem domain is based

on the weekly reading. After students understand a concept, they need to know how to
apply it.

This assignment gives students power and freedom, and many students respond well.
Since all student-proposed problems are posted on the electronic discussion board,
everyone in class can see what other students have done with the same concept learned
in class. This assignment is a very nice reinforcement for concepts that students have
learned.

This assignment serves well if the course is accompanied by electronic discussion
board for group discussion. This is better done for discussion outside of the classroom
because it gives students time to think about the problems and the solutions. However,
in-classroom discussion can also be conducted once students have a chance to think about
the assignment outside the classroom.

JCSC 25, 5 (May 2010)

244

In our presentation, we will show several problems proposed by the students and give
summaries of the ensuing discussions.

* Copyright © 2010 by the Consortium for Computing Sciences in Colleges. Permission to copy
without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the CCSC copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires a
fee and/or specific permission.

245

ANIMATIONS FOR COMPUTER NETWORKING PROTOCOLS*

Wen-Jung Hsin
Associate Professor

Information and Computer Science
Park University

wen.hsin@park.edu

ABSTRACT
This paper introduces several collections of computer networking protocol
animations that can be used in conjunction with classroom instruction. Some
of these animations allow users to change parameters and settings, thereby
enhancing the interactive learning. Additionally, this paper discusses in detail
two computer networking protocol animations that were written by students
at Park University. These animations have been made publicly available in the
student resource website [2] of Kurose and Ross' Computer Networking book
[1] and have been used around the globe for several years.

1. INTRODUCTION
The theory of computer networking is the foundation of the Internet and its popular

applications such as web, email, and streaming multimedia. However, teaching the theory
of computer networking to students without visual aid can be rather dry and uninteresting.
Drawing pictures on the board or on a presentation slide is fine; however, drawing takes
time and usually misses the live interaction in the network communication. In recent
years, various technologies and software can help animate the networking theories.
Furthermore, it is a belief that visualization technology has a positive impact on student
learning [3]. This paper provides a list of computer networking animation resources that
can help teachers teaching the networking concepts. In addition, this paper presents
computer networking animations that were written by Park University students to help
learners understand how the underlying protocols work.

This paper is organized as follows. Section 2 provides a list of computer networking
animations resources. Section 3 presents the Selective Repeat protocol animation. Section

JCSC 25, 5 (May 2010)

246

4 presents the Flow Control protocol animation. Finally, section 5 provides a summary
and conclusion.

2. LITERATURE RESOURCES IN NETWORKING ANIMATIONS
This section provides and discusses several collections of networking protocol

animations in the literature.
Kurose and Ross [1] provide a publicly available collection of Java applets [2]

illustrating HTTP, DNS, CSMA/CA, CSMA/CD, Flow Control, Go-Back-N, Selective
Repeat, IP fragmentation, packet vs. message switching, transmission vs. propagation
delay, queuing and loss, etc. This collection of animations makes the theory more
understandable as the students get to explore various networking scenarios by
experimenting with different parameters and settings. Park University students have
contributed 2 Java applets to this collection of networking animations. In Sections 3 and
4, we will discuss the animations by Park University students in more detail.

Forouzan [4] also provides a publicly available collection of Macromedia Flash
animations in [5]. This collection of animations animates the figures in the networking
textbook [4]. Unlike [2], the animation scenarios in [5] are static such that users are not
allowed to change parameters or settings. Nonetheless, it is still useful in illustrating how
some of the network protocols work.

Holliday [6, 7, 8] discusses Java applets featuring a protocol layer stack, error
control, and Ethernet.

For network security related animations, Yuan, et.al. [9] introduced an animated
simulator for packet sniffer. This animation is written in Macromedia Flash MX. It can
be run in a web page as a Flash Applet, or as a standalone application. Yuan, et.al. [10]
provided a visualization tool with 5 demonstrations for wireless network attacks. Yuan,
et. Al. [11] provided an animated tool for Kerberos authentication. Schweitzer and Baird
[12] introduced an interactive visualization applet for teaching ciphers.

Turner and Robin [13] introduced JASPER (Java Simulation of Protocols for
Education and Research) as a protocol simulator. Note that [13] is included in [14], a
related literature source that gathers the teaching computer networking tools around the
globe.

3. SELECTIVE REPEAT PROTOCOL ANIMATION
Selective Repeat (SR) protocol is a protocol that can be used in the Transport layer

for reliable data transfer. Park University student Joshua McKinzie wrote the SR protocol
animation during 2005-2006 academic year as a class project assigned by the author in
a Computer Networking course. This animation has been published in [2], and used
world-wide ever since according to the authors of the textbook. Additionally, this
animation is linked from the Wikipedia External Resource [15].

In the SR protocol, a receiver acknowledges every packet that it receives correctly,
and buffers any packet arriving out-of-order. In this way, the sender only needs to
re-transmit the packet that is not acknowledged. This is in contrast with the Go-Back-N

CCSC: Central Plains Conference

247

(GBN) protocol in which if a receiver is waiting for the next sequential numbered packet,
but when other higher numbered packets arrive, these out-of-order packets are discarded
and the receiver sends an acknowledgement for the most recently received in-order
packet. Thus, in GBN, an acknowledgement of a packet number n indicates all packets
up to and include n are received correctly by the receiver.

In comparing SR and GBN protocols, GBN may incur a large number of
re-transmissions due to a packet error (because out-of-order packets are not being
buffered); whereas, SR, trying to solve GBN's problem, requires acknowledging every
packet it receives.

As an exercise to illustrate this difference between SR and GBN protocols, the
students of a computer networking course at Park University are directed to send 5
packets using both SR and GBN animations in [2]. After 5 packets are sent, students are
to kill packet 2, meaning that packet 2 is lost in the transit. Figures 1 and 2 illustrate this
scenario. In Figure 1, for SR protocol animation, the acknowledgement for packets 3 and
4 are marked accordingly. After the agreed-upon timeout, the sender knows to re-transmit
packet 2 only. In Figure 2, for GBN protocol animation, the acknowledgement for packets
3 and 4 are marked 1, indicating the receiver has received up to packet 1 correctly. Thus,
in GBN, after the agreed-upon timeout, the sender will not only need to re-transmit packet
2, but also packets 3 and 4.

After a couple of other experiments (such as killing an acknowledgement) using
these animations, the students in general gain a better understanding the difference
between SR and GBN protocols.

Figure 1. Selective Protocol Animation

JCSC 25, 5 (May 2010)

248

4. FLOW CONTROL PROTOCOL ANIMATION
Flow Control is a mechanism adopted by the Transmission Control Protocol (TCP)

in the Transport Layer so that a sender does not overwhelm the receiver's buffer space.
In the collection of networking animations [2], the Flow Control animation was originally
coded by Hyojin Kim at the University of Pennsylvania in 1997. However, this original
animation has several problems, including reporting incorrect window sizes in the
acknowledgements. Park University student Rodrigo Neri re-coded the program to fix the
problems and enhanced the program (including slower and faster simulation) that is now
published in [2].

In the flow control of a TCP connection, the receiver informs the sender how much
buffer space is left so that the sender knows how much it can send.

As an exercise, the students of a computer networking course at Park University are
directed to set the file size of 8 Kbytes and buffer size of 2 Kbytes as an experiment.
Figure 3 illustrates a scenario in which the receiver has successfully received 4096 bytes
from the sender and has sent those data to the application layer. Thus, the receiver
informs the sender of its buffer space (i.e., WIN = 2048) and ACK = 4096 to the sender.

By observing the headers of packets and acknowledgements in the experiments of
this animation, the students, in general, gain a better understanding of how TCP prevents
the overflow of the receiver's buffer.

Figure 2. Go-Back-N Protocol Animation

CCSC: Central Plains Conference

249

5. SUMMARY AND CONCLUSION
This paper presents collections of networking animations for illustrating how

various elements in the networks communicate. Many of these animations are readily
available to the instructors and students. With the networking animations, the learners can
develop a better understanding of theoretical concepts. It is particularly useful when the
animations allow for changing of the input parameters or settings.

REFERENCES

[1] Kurose, J. and Ross, K. Computer Networking, a Top-Down approach featuring
the Internet, 5rd edition, Addison Wesley, 2009.

[2] Kurose, J. and Ross, K. Student Resource Java Applet web site,
http://wps.aw.com/aw_kurose_network_5/111/28536/7305312.cw/index.html

[3] Naps, T. et.al. "Exploring the role of visualization and engagement in computer
science education", ACM SIGCSE Bulletin, vol. 35. Issue 2, pp. 131-152, 2003.

[4] Forouzan, B. Data Communications and Networking, 4th edition, McGraw Hill,
2007.

Figure 3. Flow Control Animation

JCSC 25, 5 (May 2010)

250

[5] Forouzan, B. Java Applet Networking animations.
http://highered.mcgraw-hill.com/sites/0072967757/student_view0/index.html º
Student edition º choose a chapter º More resources º Animations

[6] Holliday, M. "Animation of Computer Networking Concepts", ACM Journal of
Educational Resources in Computing, volume 3, issue 2 (June 2003), pp. 1-26
(issue appeared in May 2004).
http://polaris.cs.wcu.edu/~holliday/papers/jeric03Paper.pdf.

[7] Holliday, M. and Johnson, M. "A web-based introduction to computer networks
for non-majors - the protocol stack", February, 2004.
http://cs.wcu.edu/~holliday/cware/Stack/indexStack.html.

[8] Holliday, M. "A Java applet for illustrating Internet error control", Mathematics
and Computer Educaiton, Fall 2004, vol. 38, no. 3. Pp. 326-332.

[9] Yuan, X., Vega, P., Xu, J., Yu, H., and Providence, S., "An animated simulator
for packet sniffer", Proceedings of WECS7 - The seventh workshop on
Education in Computer Security, January 4-7, 2006, Monterey, California.

[10] Yuan, X., Archer, R., Xu, J., and Yu, H., "A visualization tool for wireless
network attacks". http://cisr.nps.edu/downloads/wecs7_ch9.pdf.

[11] Yuan, X., Qadah, Y., Xu, J., Yu, H., Archer, R, and Chu, B. "An animated
learning tool for Kerberos authentication architecture", Journal of Computing
Sciences in Colleges, April, 2007.

[12] Schweitzer, D. and Baird, L. "The design and use of interactive visualization
applets for teaching ciphers", Proceedings of 2006 IEEE Workshop on
Information Assurance, 2006.

[13] Turner, K. and Robin, I. "An interactive visual protocol simulator", Computer
Standards & Interfaces, 23, pp. 279-310. 2001.

[14] Sarkar, N. (Editor). Tools for Teaching Computer Networking and Hardware
Concepts, Information Science Publishing, 2006.

[15] Selective Repeat ARQ. Wikipedia. External Link resource.
http://en.wikipedia.org/wiki/Selective_repeat

* Copyright © 2010 by the Consortium for Computing Sciences in Colleges. Permission to copy
without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the CCSC copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires a
fee and/or specific permission.

251

EXPERIENCES WITH ONLINE SQL ENVIRONMENTS*

John Cigas and Barbara Kushan
Computer Science, Information Systems, and Mathematics Department

Park University
Parkville, MO
816-584-6435

john.cigas@park.edu, bkushan@park.edu

ABSTRACT
This paper describes our experiences with teaching SQL using three different
online SQL environments: SQLzoo.net, MySQL Query Browser, and Teradata
SQL Assistant/Web Edition. Each has been used in formal classes for learning
SQL. This paper documents the features of each, along with highlighting the
strengths and limitations.

INTRODUCTION

For their first introduction to SQL, we have tried to give students access to
preconfigured environments that do not require the setup and loading of a database, thus
allowing them to focus on writing queries. One way of doing this is to distribute a single
database file for a personal database, like Microsoft Access or OpenOffice Base. While
seemingly convenient, this has proven to be less than successful for teaching SQL. Our
experience is that students using MS Access tend to use Query By Example (QBE) to
build their queries, and then use an SQL view to get the query for grading submission.
While this is easily detected and discouraged, it is still common for students to take this
path and avoid learning the details of SQL queries.

MS Access also has caused issues with our students taking classes online.
Invariably, someone does not have the school's current version, and struggles to work
with their database. Keeping multiple file versions, each with its own set of
documentation is neither practical nor desirable.

Our strategy then has been to provide tools that can be used with an online server,
accessible from anywhere on the Internet. This serves students in all modes of instruction
with a single, well-defined environment.

JCSC 25, 5 (May 2010)

252

The remainder of this paper outlines the three different SQL environments that we
have used SQLzoo.net, MySQL Query Browser, and Teradata SQL Assistant/Web
Edition, emphasizing the usefulness and limitations of each one.

SQLZOO.NET
Overview

The simplest and easiest SQL environment to setup and use is SQLzoo.net. This web
site, designed and maintained by Andrew Cumming [1], provides brief SQL tutorials, a
small variety of non-trivial databases, and opportunities for students to try numerous SQL
queries, with automatic feedback for less than perfect attempts. There is absolutely no
set-up for the instructor and no registration for the student. All that is required is a web
browser along with an Internet connection.

A sample from the web site is shown in Figure 1. Each exercise page gives a
description of the table(s) being queried, any supplementary information, an input box
for entering a query, and a results box for the query output.

When the user enters a query that generates incorrect data, there is often appropriate
feedback, such as that shown in Figure 2.

Figure 1

CCSC: Central Plains Conference

253

SQLzoo.net provides numerous opportunities to practice simple queries, as well as
subqueries, aggregate functions and joins. For more advanced students (or those more
curious) there is a way to select different back-end database servers to see the variations
in acceptable SQL syntax.

Strengths
The primary benefits of SQLzoo.net are the universal Internet access, complete lack

of set up, and a variety of non-trivial databases. Students can get started on these tutorials
and exercises with only the briefest of introductions.

The downsides to the tool are the lack of easy way of recording student work. As
a tutorial for students to work through on their own, it is outstanding. As an assignment
that requires assessment, there are a few problems.

Limitations
Although this is a good tool for tutorials and practice, it can't be used easily for

assessed exercises. In keeping with the tutorial spirit, many answers are already posted
on the web site. However, even for those tasks meant as assessments, there is no way for
students to save their work and resume later from a different computer. There is neither
a login nor personal storage on the server. Furthermore, there is no easy way for students
to submit their work for assessment. One way is to have students cut and paste the query
and then the results from the browser window into a word processing document. While
not excruciatingly tedious, it is an extra step that has resulted in errors and
inconsistencies. Having students save the HTML page has not been universally successful
either. Depending on the browser and browser settings, only some of the queries and
results may get saved on the local computer.

In order to provide good feedback, each query of the tutorial is fixed. While it is
possible to submit other queries against the database in a provided input box, the
corresponding feedback will not reflect the modified assignment and can be a big
distraction, especially when it contradicts a set of correct outputs.

Figure 2

JCSC 25, 5 (May 2010)

254

No other databases are available. While there are a good variety of different
databases, it is not possible to use this site with a database from a textbook.

With a few simple exceptions, this is a tutorial on using the SELECT statement.
There are brief examples using other SQL commands (INSERT, UPDATE, DROP,
CREATE, etc) but these don't have the same level of interactivity as for writing select
statements, where students get to experiment.

The page organization has gotten a little out of kilter. Pages don't flow in numeric
order and links don't necessarily take you to the expected next page. For example,
Tutorial 1 is on page 1.html, but tutorial 2a is on page 1b.html and tutorial 2b is on page
1a.html!?! This is minor overall, but does require some attention to detail and perhaps
more specific instructions from the instructor before sending students off on their own.

Overall, this site is excellent for introducing students to SQL SELECT statements
and providing them feedback. It is less helpful for assessed exercises, and not useful for
queries against any arbitrary database.

MYSQL QUERY BROWSER
Overview

The MySQL Query Browser [2] is a multi-platform application that allows a user
to query and manipulate MySQL databases over the Internet. The application has
pre-built binaries for MS Windows, Mac OS X, and several Linux distributions, as well
as source code for compilation under other operating systems.

Figure 3

CCSC: Central Plains Conference

255

Strengths
The primary benefits of using the MySQL Query Browser are the graphical user

interface and the total ability to query and manipulate an accessible MySQL database
from anywhere on the Internet. This tool allows a user or group of users to write and test
SQL and to visually see all the effects of any database manipulations. Group access is
possible because the instructor or IT department controls the MySQL server. It also
allows for the creation and execution of stored procedures, granting of privileges, and
other database activities. Figure 3 shows an example.

Queries are saved in a history until cleared, and individual result sets can be saved
to disk in a variety of formats (.html, .xls, .csv, and .xml).

Limitations
The biggest limitation is the overhead in setting up the MySQL databases and the

installation of the MySQL Query Browser environment. There must be an Internet
accessible server and the instructor or IT support staff must create the individual
databases and accounts for each student. While not an impossible task, it does take some
effort, especially initially, and must be done for every new class of students.

More problematic is the installation and configuration of the MySQL Query
Browser by the individual students. The installation of pre-built binaries itself is not
difficult, but many students have problems with installing software (either technically,
or administratively when trying to do class work on their company's computers)
Furthermore, no matter how detailed the instructions, there are always issues in getting
the correct username, password, and connection port to work together for a successful
login.

Overall, the MySQL Query Browser is the most flexible, complete, and usable tool
of these three for learning SQL. It is also the one with the highest overhead both in terms
of student installation and in terms of instructor/staff setup.

TERADATA SQL ASSISTANT/WEB EDITION
Overview

The Teradata SQL Assistant/Web Edition is a browser-based environment
functionally similar to the MySQL Query Browser. The environment is accessible from
any web browser with an Internet connection. Using it requires multiple registrations by
the instructor, then a separate registration for each student. However, the student
registrations are automatically approved. There is no additional software to install. An
example session is shown in Figure 4.

Note that the Teradata SQL Assistant/Web Edition is just one resource available
from the Teradata University Network [5] which also has many other free resources for
learning about databases.

For those wishing to see this environment, there is a trial version that does not
require registration [4]. This trial only allows read access against a single, pre-defined
database but does show off the full feature set of the tool.

JCSC 25, 5 (May 2010)

256

Strengths
The full version allows students to query a number of pre-defined databases from

several popular database textbooks. The instructor has control over which databases
students have access to. This read-only access is good when students are initially learning
queries. For more advanced SQL, including views, stored procedures, and table
manipulations, students are allowed to create their own, private sets of tables.

As with the MySQL Query Browser, students can save their individual result sets
locally on their own computer in a variety of formats. Query history is retained in the
online environment across login sessions. This history can also be saved locally, but this
is only useful for short queries. Since student registration is tied to a specific course, this
allows the system to set permissions for the instructor to have read access to all students'
databases and stored procedures.

Limitations
Although this tool is slower than the locally run MySQL Query Browser, it would

otherwise seem to be an ideal tool for online use, since it does not require students to
install any additional software, nor fight with configuration settings. However, in
practice, there are some issues that make this less than ideal for assignments. The biggest

Figure 4

CCSC: Central Plains Conference

257

issue is lack of support. The instructions for requesting support of the SQL Assistant/Web
Edition are not correct, and requests to the main Teradata University Network site are
often unacknowledged and ignored.

Having support is necessary because there are numerous issues, both large and
small. These include the site being down, an instructor losing access to student work,
multiple back-end servers with significantly different clocks, causing queries to be listed
out of sequence, and the artificial limitation of being able to only save the first 100
characters of a query to a local file. While none of these are detrimental to learning about
SQL, they are necessary for assessing student work.

CONCLUSIONS
This paper has shown three different online SQL environments, SQLzoo.net,

MySQL Query Browser, and the Teradata SQL Assistant/Web Edition. It has described
each, and listed the usefulness and limitations of each one in the context of online
instruction. None are perfect for every situation, but all are useful in specific instances.

REFERENCES

[1] Cumming, A., SQLzoo, 2009, www.sqlzoo.net, retrieved November 27, 2009.

[2] Sun Microsystems, MySQL Query Browser, 2008,
dev.mysql.com/doc/query-browser/en/index.html, retrieved November 29, 2009.

[3] Teradata Corporation, Teradata Database for Your Classes,
tunweb.teradata.ws/tunstudent/, retrieved November 27, 2009.

[4] Teradata Corporation, SQL Assistant/Web Edition Trial,
tunweb.teradata.ws/trial, retrieved November 27, 2009

[5] Teradata Corporation, Teradata University Network, 2009,
academicprograms.teradata.com/tun/, retrieved November 27, 2009.

* Copyright © 2010 by the Consortium for Computing Sciences in Colleges. Permission to copy
without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the CCSC copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires a
fee and/or specific permission.

258

USING TOPIC MAP TO CREATE AN E-LEARNING

ENVIRONMENT: THE TOPIC OF OSI MODEL MAP*

Marcos S. Pinto
NYC College of Technology (CUNY)

Computer Systems Dept.

ABSTRACT
Topic maps can be used to create ontology-based e-learning repositories that
manage learning resources. The objective of this paper is to create a repository
that enables e-learners to access and retrieve information on the definition of
the layers of the OSI (Open System Interconnection) network model. The
process of creating a topic map on the OSI can then be also applied to any
other topic of interest which results in the gathering of all available semantic
metadata on the topic and subtopics to ultimately facilitate searching and
retrieving information on them. One of the key strategies for effective
e-learning explorative learning is to promote student-centered learning
environments, providing access to alternative resources through knowledge
management processes. Topic map is such a tool providing management of
learning resources.

1. INTRODUCTION
The important components of knowledge management are people, content, culture,

process and technology. In a learning context, people, learners and teachers, create, share,
and re-use knowledge. Content is the quantitative aspect of a specific, relevant, and
authenticated knowledge that is being shared and managed. Culture must include sharing
knowledge in its definition. Processes are knowledge operations of acquisition,
organization, authentication, and retrieval - crucial operations for effective transfer of
knowledge for both learners and teachers. Technology fosters and enhances learning
experiences, and topic maps are an example of technology used for e-learning.

CCSC: Central Plains Conference

259

An e-learning experience consists of an unsupervised, self-centered, self-guided, and
above all, self-documenting learning experience. One of the key strategies for effective
e-learning explorative learning is to promote student-centered learning environments,
providing access to alternative resources through knowledge management processes.
Topic map is such a tool providing management of learning resources.

Topic map is a drawing (map) of a collection of related topics. These topics are
linked to each other via drawing lines according to their relationship, whether is unary
or n-ary. A topic may also be related to any number of resources by its occurrences.
Topics can have various names, but also can contain references to resources outside the
map (mostly URLs). This collection represents a concept, an idea, an application, an
object - that is, anything that is known and the parts that compose it are also known. The
map assists the learner, through navigation or query, to understand what is depicted in a
compact way by revealing all its components.

The map shows the relations between topics and the relations between a topic and
the resource(s). Thus topic maps are like index lists which consist of lists of topics,
associations between topics (e.g., subentries), and occurrences of topics (pointed to via
locators: page numbers, section numbers, etc). The fundamental constructs of a topic map
are topics, associations, and occurrences, frequently mentioned as the TAO of topic maps.
Furthermore, since ontologies are explicit descriptions of concepts in a specific domain
and shared understanding, then it is safe to explain topic maps as a visualization of an
ontology.

We are faced, at present, with the challenging task of managing the world's largest
knowledge base, the world wide web (www). Topic maps simply help us to find what we
are looking for. Its visible display of resources specific of certain knowledge domain
make it easy to access information on the domain and discover other knowledge
domain(s) related to the one at hand. Furthermore, topic map is a tool that we can rely on
because it is an ISO (International Organization for Standardization) standard for
representing knowledge structures[1].

The most common use for topic maps right now is to build web sites that are entirely
driven by the topic map, in order to fully realize their information-finding benefits. The
topic map provides the site structure, and the page content is taken partly from the topic
map itself, and partly from the occurrences. This solution is perfect for all sorts of portals,
catalogs, site indexes, and so on. Since a topic map can be said to represent knowledge
about the things it describes, topic maps are also ideal as knowledge management tools.

This is by no means all topic maps can be used for, however. They can also be used
to organize the content in content management systems (instead of the simple folder
hierarchies and property-value metadata often used today), they integrate information
from diverse sources (using merging), they can drive expert systems, and much more.

Topic Maps and RDF (Resource Description Framework) [5] are web technologies
that can be alternatively used for knowledge management, web portal development,
information search, content management and e-commerce. RDF, as its name implies, is
a framework for describing and interchanging metadata. It is a language for representing
information about resources on the World Wide Web, particularly intended for
representing metadata about Web resources, such as the title, author, and modification

JCSC 25, 5 (May 2010)

260

date of a Web page, However, by generalizing the concept of a "Web resource", RDF can
also be used to represent information about things that can be identified on the Web, even
when they cannot be directly retrieved on the Web.

There are other forms of maps for e-learning such as mind maps and concept maps.
These type of maps present some similarities and some differences from topic maps. Like
topic maps concept maps emphasize and describe the relationships between concepts,
mind maps do not; concept maps do not need to have a central topic, mind maps usually
do, and topic maps require at least one; concept maps have a non-hierarchical net
structure, mind maps take the form of a modified tree diagram, while topic maps are
hierarchical structures. Some argue that concept maps consist of named nodes and labeled
arcs. Topic maps consist of a few more objects than that, objects that deal with
occurrences, scopes, roles, association membership, and so forth - more semantic objects.

2. TOPIC MAP DEVELOPMENT
Before building a topic map, let us list the benefits of topic maps which are:

 • easy visualization
 • easy extension of ontology without changing the storage schema
 • integrating knowledge domains: merging of topic maps
 • reuse the data for other purposes
 • Extensibility: more information can be incorporated at any time

Creating a topic map is easy once you classify the subject into topics and subtopics.
Topics are first fed into the software according to their hierarchy and their relationships

Figure 1. Topic Map and Resources

CCSC: Central Plains Conference

261

(associations). Topics are then linked to resources (occurrences). Topic map is saved as
.xtm file and it is created according to the Topic Maps Reference Model [3]. We are
using the TM4L editor [2] for creating our topic map for the OSI model. Figure 1 is a
generic visualization of a topic map with its topics and resources.

The map is like an index of resources related to the main topic like the index of the
back of a book. The topic we chose is the layers of the OSI network model. It is a fairly
known network model and its layers' definitions are the base of all the telecommunication
networks around the world. The map is useful for recognizing relationships of knowledge
about the OSI model and its components.

The idea is to implement the creation of topic map with a standard subject so to
emphasize the efficiency of topic maps in providing a "complete as it can be"
understanding of the subject depending on the willingness of the map creator and
collaborators to further the breadth of the map. It should be noted that any topic map's
validity is the sole responsibility of the topic map creator who is assumed to be the expert
in the main subject.

3. THE DESIGN OF OSI TOPIC MAP
The standard OSI network model consists of seven layers. Table 1 shows the seven

layers and their definitions according to ISO.

Layer Name Definition
1 Physical Media interface, transmission method, signal strength
2 Data Link Physical addressing, error detection, acknowledgments
3 Network End-to-end delivery, logical addressing, routing
4 Transport Fragmentation/sequencing of data
5 Session Controls conversations/sessions
6 Presentation Data formatting, i.e. ANSI, compression/encryption
7 Application Provides services/protocols to applications

Table 1. The seven layers of the OSI network model

The topic and subtopic structure of the OSI model can be written as:
Topic: OSI
Sub-Topics: Components (Physical, Data Link, Network, Transport, Session,

Presentation, Application)
Protocols (Physical Layer Protocols, Data Link Layer Protocols,

Network Layer Protocols, Transport Layer Protocols,
Session Layer Protocols, Presentation Layer Protocols,
Application Layer Protocols)

The next thing is to create the associations (relationships) between the topics. We
make use of two associations: the whole-part and the placed-atop. The former is of the
type includes/part-of-it, and the latter is of the type placed-atop-of/placed-below-of. The
whole-part is a typical relationship of topics that are related to each other hierarchically.
The seven layers of the OSI model communicates with the adjacent layers, therefore the

JCSC 25, 5 (May 2010)

262

association placed-atop-of would recognize this situation. For example, it can be
formulated that the topic Application Layer is part of the OSI model and it is place on top
of the Presentation Layer which is also part of the OSI model. This relationship can be
seen in the topic map of the OSI model shown below.

We will implement the resources for better understanding the OSI model using
web-based tools such as URLs, blogs, and wikis.

4. TM4L EDITOR
We use the TM4L Editor which is a free software that allows us to create topic

maps. It consists of a TM editor and a TM viewer. The TM4L Editor is an ontology editor
allowing the user to build ontology-driven learning repositories using Topic Maps. It
provides ontology and metadata engineering capabilities coupled with basic document
management facilities.

The TM4L Editor benefits from the Topic Maps' fundamental feature to support
easy and effective merge of existing information resources while maintaining their
meaningful structure. This allows for flexibility and expediency in re-using and extending
existing repositories.

The learning content created by the editor is compliant with the XML Topic Maps
(XTM) standard and thus interchangeable and interoperable with any standard TM tools.

A screenshot of the TM4L Editor interface is shown on Fig. 2.

The TM4L Editor is implemented as a client-server application developed in Java
and using the TM4J Topic Map Engine, which is an open source providing
comprehensive API that allows creating and modifying topic map structures.

Figure 2. TM4L Editor

CCSC: Central Plains Conference

263

The associations of whole-part (instance-of) and placed-atop are defined for each
of the seven layers of the OSI model. Figure 3 shows the relationships between topics.

5. CONCLUSION
Topic maps are a form of semantic where the knowledge base is driven by visual

features. These characteristics support our idea of providing an interpretive, semantic
layer on top of document collections that classify these documents according to scope,
context and constraints. Topic map can be recommended as a support tool in educational
planning in one more way: it can bring to light the concepts that pass through several
distinct topics. The visual form of knowledge representation must also be mentioned:
without this, teachers would need much more time and effort to show their own schemes
to students and fellow teachers. It provides better personalized courseware presentations
using visual semantics. It can help distributed courseware development for the reuse and
the exchange of learning materials. Finally, it is possible to set collaborative visual topic
maps authoring among instructors and/or learners. Work is currently being undertaken
to specify multi-dimensional metadata under topic maps model and to collect related data
from experts and pupils. The next step will be for experts and non-experts such pupils to
enrich visual topic maps with sets of vast amount of single documents or learning objects
of the same context to make them more easily accessible.

6. REFERENCE

[1]. ISO (2005) "ISO/IEC CD 13250-5 Topic Maps - Part 5: Reference Model". Online
at http://www.isotopicmaps.org/TMRM/TMRM-5.0/TMRM-5.0.pdf

[2] TM4L: Topic Maps 4 e-learning. http://compsci.wssu.edu/iis/nsdl

Figure 3. Relationship between topics

JCSC 25, 5 (May 2010)

264

[3] Dicheva, D. and Dichev C. (2007): Authors support in the TM4L environment.
Information Technologies and Knowledge 1(3):215-218.

[4] D. C., D. Dicheva, and L. Aroyo(2004). Using topic maps for web-based education.
Int. J. of Advanced Technology for Learning, volume 1(1), pages 1-7, 2004.

[5] Berners-Lee, T. Hendler, J. & Lassila, O., The Semantic Web. Scientific American,
17 May 2001.

* Copyright is held by the author/owner.

265

STUDENT CLASSROOM SOFTWARE DEVELOPMENT

PROJECTS: A PRACTITIONERS PERSPECTIVE*

PANEL DISCUSSION

Edward Mirielli
Westminster College, Fulton, MO
ed.mirielli@westminster-mo.edu

Kian L. Pokorny
McKendree University, Lebanon, IL

klpokorny@mckendree.edu

James Buchan
College of the Ozarks, Point Lookout, MO

buchan@cofo.edu

The development of software involves the strategic integration of processes. These
sorts of projects are integrative at all stages of the system development life cycle and
concern issues of available technology services, infrastructure, components, as well as
people. Uncertainty in the outcome and scope of the project can be very high during the
inception stage. Being systematic at the outset and throughout a software development
project provides for a better understanding of the scope of the problem to be addressed,
a more applicable vision for a solution, and an empirical estimate of the overall project
feasibility and success. Due to these and other issues encountered when developing
software, adopting a software engineering approach has become an increasingly
important topic of debate in the computer science and software engineering literature
[3,4,5,6]. This debate has a direct impact on the application of model curriculum and
ideological principles advocated as "best-practice" in CS and SE education.

As with most topics in computer science, the scope of "model curriculum" content
coverage is growing faster than most departments can adapt[1]. This is particularly true
for small academic departments that cannot continually add and staff new courses.
Beyond the traditional aspects covered in software development and programming
courses, in today's post-modern world, it is vital the students receive a more integrated
learning experience which emphasize aspects of oral and written communication, team
work, professional practices, and ethics, to name a few. Each learning experience,
especially at the upper-level, must be directed at total student development and be
instrumentally designed to pedagogically address Bloom's higher level learning constructs

JCSC 25, 5 (May 2010)

266

of synthesis and evaluation [2] and provide a proving ground for students to practice and
demonstrate their skills, ability, and creativity.

Academia is a goal-driven institution. Schools have mission statements.
Departments and programs have learning goals. Individual courses have learning
objectives. Too often, our students become focused on individual courses as goals in
themselves instead of the overall learning objectives and the relevance of a course to their
intended program of study. This panel will discuss our overall curriculum design,
individual course objectives and activities, and the integrated project experiences we use
to address the common themes inherent in software engineering and development
projects. We conclude with a discussion of what is required from the instructors and
students including implications for practice in today's CS classroom.

REFERENCES

[1] ACM/IEEE. Computer Science Curriculum 2008: An Interim Revision of CS
2001. November, 2008.

[2] Bloom, Benjamin S. & David R. Krathwohl. (1956). Taxonomy of educational
objectives: The classification of educational goals, by a committee of college and
university examiners. Handbook 1: Cognitive domain. New York , Longmans.

[3] Boehm, Barry. A View of 20th and 21st Century Software Engineering. ICSE'06,
May 20–28, 2006, Shanghai, China. 2006 ACM 1-59593-085-X/06/000

[4] IEEE Computer: Rethinking Formal Methods. September 2009.

[5] Jianguo, LIU. Combination of Research and Teaching in Software Engineering
Education. 2009 WASE International Conference on Information Engineering.
978-0-7695-3679-8/09 2009 IEEE DOI 10.1109/ICIE.2009.53

[6] Sjøberg, Dag I. K., Tore Dybå & Magne Jørgensen. The Future of Empirical
Methods in Software Engineering Research. Future of Software Engineering
(FOSE'07) 0-7695-2829-5/07, 2007

* Copyright is held by the author/owner.

267

TEACHING AND INTEGRATING SOCIAL AND

PROFESSIONAL ISSUES INTO A SMALL COLLEGE

COMPUTER SCIENCE CURRICULUM*

TUTORIAL PRESENTATION

Carol Spradling
Computer Science/Information Systems

Northwest Missouri State University
Maryville, MO 64468

660-562-1588
c_sprad@nwmissouri.edu

Brian Hare
School of Computing and Engineering
University of Missouri - Kansas City

Kansas City MO 64110
816-235-2362

hareb@umkc.edu

ACM and IEEE support the inclusion of social and professional issues in the
computer science curriculum in the 2001 Computing Curricula Computer Science volume
and the recent C2008 Computing Curricula Computer Science volume. The
IEEE-CS/ACM Joint Task Force on Computing Curricula note:

Undergraduates also need to understand the basic cultural, social, legal, and
ethical issues inherent in the discipline of computing. They should understand
where the discipline has been, where it is, and where it is heading. They should
also understand their individual roles in this process, as well as appreciate the
philosophical questions, technical problems, and aesthetic values that play an
important part in the development of the discipline. ([4], p. 152)

The 2008 Computer Science Curriculum Interim volume [1] identifies knowledge units
regarding seven required coverage topics (history of computing, social context of
computing, methods and tools of analysis, professional and ethical responsibilities, risks
and liabilities of computer-based systems, intellectual property, privacy and civil
liberties), and four remaining topics considered appropriate for elective coverage
(security operations, computer crime, economic issues in computing, philosophical
frameworks).

Spradling, Soh and Ansorge [6] conducted a study of 251 computer science
programs in the United States and determined that 88% (220 programs) address social

JCSC 25, 5 (May 2010)

268

and professional issues in their courses. While this finding is encouraging, the study
further uncovered that of the 31 programs not covering social and professional issues,
77% (24 programs) have enrollments under 100 computer science majors. Of the 24
programs not covering social and professional issues, the study determined that the major
reason that these programs do not teach social and professional issues is because
computer science faculty have not been trained [5]. Engaging students on these issues
does present some challenges [2], but does not require extensive specialized expertise.
Resources are readily available to assist in engaging students [3].

This workshop will address social and professional topics, how to integrate these
topics into the curriculum or in a standalone courses, and explore appropriate resources
available to faculty and discuss how to integrate these resources. Both of the presenters
have experience developing coursework around professional ethics and responsibility,
and integrating these subjects into the larger curriculum.

REFERENCES

[1] ACM/IEEE-CS Joint Curriculum Task Force. (2008, December). Computer
Science Curriculum 2008: An Interim Revision of CS 2001. Retrieved
Novebmer, 2009 from
http://www.acm.org//education/curricula/ComputerScience2008.pdf

[2] Hare, B. (2008). Ethics education in computer science: engaging future
technologists on policy issues. Presentation at Oxford Roundtable: "Regulating
the Internet: Balancing the Interests," March 19, 2008, Pembroke College,
Oxford University, Oxford, England.

[3] Hare, B (2009). Implementing a writing-intensive C.S./I.T. ethics course. Journal
of Computing Sciences in Colleges, (24)1, 76-82.

[4] IEEE-CS/ACM Joint Task Force on Computing Curricula. (2002). Computing
Curricula 2001 Computer Science. (Final Report IEEE-CS/ACM Joint Task
Force on Computing Curricula). Los Alamitos, CA: IEEE Computer Society.

[5] Spradling, C., Soh, L.-K. & Ansorge, C. (2008). Ethics training and
decision-making: do computer science programs need help? ACM SIGCSE
Bulletin, 35(1), 153-157.

[6] Spradling, C., Soh, L. & Ansorge, C. (2009, September). A comprehensive
survey on the status of social and professional issues in United States
undergraduate computer science programs and recommendations. Computer
Science Education Journal, 19(3), 137-153.

* Copyright © 2010 by the Consortium for Computing Sciences in Colleges. Permission to copy
without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the CCSC copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires a
fee and/or specific permission.

269

CLUSTER COMPUTING ON A SMALL DEPARTMENT

BUDGET*

David Bainum
Washburn University, Topeka KS

(785) 670-1261
david.bainum@washburn.edu

Bruce Mechtly
Washburn University, Topeka KS

(785) 670-1160
bruce.mechtly@washburn.edu

ABSTRACT
This paper discusses our experience in an advanced computer science course
in which students built modern computing clusters from scratch. The least
expensive cluster used an existing computer lab for the compute nodes. The
students also built a 10-node cluster using bare-bones computer kits for a total
cost of about $2800. For software we used Perceus which is included in the
CAOS NSA Linux distribution. Students were required to perform a number
of administrative tasks on the system, write and test simple parallel programs
(using OpenMPI), and run benchmark programs to compare performance with
other parallel systems.

INTRODUCTION
Cluster computing is a somewhat advanced field for undergraduates, but promises

to be an increasingly important one in the future. Stories of large computing facilities
abandoning mainframes in favor of computing clusters are now commonplace. While
state-of-the-art clusters are typically built using the very best computing hardware, there
are many instances where surprisingly powerful systems are built using ordinary desktop
systems. These clusters are sometimes referred to as Commodity, Off-The-Shelf (COTS)
systems [1]. The obvious advantage of a COTS cluster is that it can be built cheaply;
making it perfectly suited for an academic environment.

In what follows we will describe our experience building, configuring and testing
COTS clusters. The CAOS NSA Linux operating system was installed on the master

JCSC 25, 5 (May 2010)

270

node and the CAOS NSA Node operating system downloaded into the memory of the
compute nodes at boot time. The Perceus Cluster Management Software is included in
the CAOS NSA system installed on the master node.

Students successfully built Perceus clusters in two different environments. First,
existing computers in a lab were used as the compute nodes. Only one additional system
was required to install the master node OS. The computers in the lab PXE booted and
downloaded their operating system image from the master. The default downloaded OS
image does not mount the local hard disks, so the systems in the computer lab are not
disturbed except for BIOS changes to start with PXE boot.

The second cluster the students constructed required the purchase of 10 bare-bones
kits. One kit served as the master node and the other 9 served as compute nodes. These
computers were dedicated to use as a cluster. In this environment students could do more
advanced operations such as configuring separate data and control networks and
mounting the local hard drive for scratch space.

HARDWARE
We purchased 10 identical systems. They were sold as "bare-bones kits". They

included the case, power supply, motherboard, CPU (dual core Pentium), 1 gigabyte of
RAM and a 160 gigabyte hard disk. A CPU fan and a case fan were purchased separately.
The systems were purchased from Tiger Direct [2] for about $220 each. Another good
source is New Egg [3]. These systems were sold without any operating system, which is
perfect for building a Linux cluster.

If you are not using an existing computer lab you will also need to get at least one
ethernet switch (~$200 for a layer 2 switch), an extra ethernet card for the master node
(if you want to access your cluster remotely) and at least 10 ethernet cables. You can get
better performance by buying two ethernet switches and extra ethernet cards and cables
for the nodes. Later in this paper we will discuss how to set up separate data and control
networks to help with performance.

OPERATING SYSTEMS
For our cluster operating system we chose CAOS NSA Linux [4] which includes

Perceus [5] as the cluster management software. CAOS NSA (Node, Server, Appliance)
is a Linux distribution developed for servers, compute nodes and network appliances.
CAOS NSA was installed on the master node of the cluster. As part of the CAOS
installation, Perceus was selected for installation and configuration for cluster
management. CAOS uses dnsmasq for DHCP and TFTP servers which PXE boot the
compute nodes. Immediately after booting, the compute nodes are provisioned with a
Virtual Node File System (VNFS) by Perceus running on the master node. The CAOS
NSA Node system was used as the VNFS in this cluster. The VNFS is an operating
system image which is downloaded into the memory of the compute nodes from the
master node via a provisioning daemon running on the master. The obvious advantage of
using Perceus is that there is no need to individually install an operating system on the
compute nodes.

CCSC: Central Plains Conference

271

Perceus provides a number of tools to set up and administer the cluster. Particularly
important at the outset is to establish the identity of each compute node and set up
communication with each node using ssh. Also, it is typical in clusters to mount the
home directories, located on the master hard drive, on each compute node via NFS.
When users are created on the master, Perseus creates a set of public and private keys to
facilitate logging into the computer node via ssh, should one want to login to the compute
nodes. Program development using C and C++ and OpenMPI can be done in the user's
directory on the master so there is typically no need to log into the compute nodes.

CAOS AND PERCEUS INSTALLATION
By far the easiest way to install Perceus is to download the iso image file for CAOS

NSA Linux [4], which includes Perceus, and burn that iso image to a CD.
After booting the master node using the CD, the CAOS NSA install script will guide

you through the installation, which is fairly straightforward. You will need to provide
identity information for the master node. When it gets to "Select roles for this system"
you should select "File-Server" and "Clustering". When it asked if Perceus should be
installed select "Yes".

When you get to "Perceus Configuration" you have the ability to choose the number
of the first node the total node count and a naming scheme for the nodes (we used the
default n####). The compute nodes are usually on their own private network typically
192.168.1.X or 10.1.1.X. We chose 10.254.0.0/22 as the subnet for the cluster.

Perceus configuration will also ask you to select a VNFS image for use on the
compute nodes. The installation will suggest a VNFS image which will be automatically
downloaded from the Internet if it is selected. In our installation, the VNFS image
downloaded was caos-nsa-node-1.0.25.X86_64.vnfs. The downloaded VNFS was stored
in the /var/lib/perceus/vnfs directory on the master node. This VNFS image will be
downloaded into the compute nodes immediately after booting via PXE. In preparation
for PXE booting the cluster compute nodes, the master is configured as a TFTP and
DHCP server using dnsmasq. The files to support PXE booting of the compute nodes are
stored in /var/lib/perceus/tftp. Perceus and dnsmasq configuration files are located in
/etc/perceus.

SETTING UP THE COMPUTE NODES
The compute nodes and master node were connected to a 24-port gigabit ethernet

switch which was the high-speed interconnect (HSI) [6] of the cluster. The BIOS in the
compute nodes was set to PXE boot from the master node when the compute nodes are
powered on.

Assuming a successful install of CAOS NSA and Perceus on the master node, the
compute nodes can now be PXE booted and obtain an IP address from the DHCP server
on the master. Immediately after booting, the compute nodes are provisioned when the
master downloads, using NFS, the VNFS image into the memory of the compute nodes.
The master monitors the provisioning and records the state of the compute nodes as the
state changes from an initial "init" state while being provisioned to a final "ready" state.

JCSC 25, 5 (May 2010)

272

REBUILDING THE IMAGE FILE
The VNFS image, which is the operating system downloaded into the compute

nodes when they are booted, can be customized by mounting it on the master using the
"perceus vnfs mount" command. Once mounted, the VNFS can be accessed as a file
system and changes easily made. Also, packages can be added to the VNFS by using the
CAOS SMART package management tool. After the desired changes have been made,
the "perceus vnfs umount" command will rebuild the VNFS image. Rebooting the
compute nodes will load the modified VNFS image or the command "perceus vnfs
livesync" can be used to load the modified VNFS image into the compute nodes without
rebooting them. For example, the java RTE was installed into the VNFS so it would be
available on each compute node. Also, for test purposes the VNFS was modified to allow
the root user to log in locally on each compute node.

USING PDSH AND OPENMPI
To execute code on the compute nodes, the parallel distributed shell, pdsh, can be

used to manually copy the code to each compute node or OpenMPI can be used to
develop MPI-based applications which are distributed to the compute nodes using MPI
library routines. As an example of the use of pdsh, a java application which calculated
members of the Mandelbrot set was copied to each compute node so that multiple
Mandelbrot images could be computed in parallel to make a Mandelbrot "movie". The
first MPI program [7] students run is a "hello world" program which has each compute
node report in the compute node identity and the rank of the process executing on the
node. Other MPI programs to calculate integrals and perform other parallel computations
were written by the students who finished the semester with a MPI project of their
choosing. Students also ported benchmark programs to the cluster to test the performance
of the cluster and its high-speed interconnect.

SEPARATE DATA AND CONTROL NETWORKS
In its initial configuration, the cluster high-speed interconnect (HSI) was one gigabit

ethernet network for control and communication and data distribution. After that
configuration was working and throughly tested, the HSI was split into two gigabit
networks, one for control and communication and one for data distribution using NFS.
All compute nodes had two ethernet interfaces, one on the motherboard and one as a PCI
adapter. The master node had three ethernet interfaces; one for the command and control
network, one for the data network and one for access to the public Internet. The control
and communication subnet IP addresses were assigned using DHCP. The ipaddr Perceus
module was edited to enter the data for the subnet IP addresses.

For example, to create separate control and data subnets of 10.254.0.X/22 and
10.254.4.X/22 the ipaddr file looked like this:
* eth0:[default]/[default] eth1:10.254.4.1/255.255.252.0/10.254.4.1
n0000 eth0:[default]/[default] eth1:10.254.5.0/255.255.252.0/10.254.4.1
 . . .

CCSC: Central Plains Conference

273

MOUNTING THE LOCAL HARD DISK
Since each compute node had a 160 gigabyte hard disk, the VNFS was modified to

mount that disk locally on each compute node when the node was booted. This allowed
for local "scratch" space and for storing data sets which were distributed prior to
executing code utilizing the data sets. To do this the students edited the file /etc/fstab in
the VNFS image.

CLUSTER OPERATION AND ADMINISTRATION
The Perceus Cluster Management System was installed as part of the CAOS NSA

installation on the master node. Students used Perceus commands to perform routine
systems administration tasks on the cluster. The following is a summary of Perceus
commands which the students used to build and administer the cluster [8]:
 perceus node add Import a new node into the node database
 perceus node delete Delete a node or set of nodes
 perceus node list List the configured nodes
 perceus node show Dump the node configuration
 perceus node status Current status of node provisioning
 perceus node summary General configuration summary
 perceus vnfs import Import a new VNFS capsule into Perceus
 perceus vnfs list List configured VNFS capsules
 perceus vnfs livesync Update the file system of a running node
 perceus vnfs mount Open the VNFS image to modification
 perceus vnfs umount Close the VNFS image and save any changes
 perceus module activate Activate a module to run in a provisionary state
 perceus module list List the installed modules (doesn't mean active!)
 perceus module summary Show list of modules and activated states
 perceus info system Print system information (useful for troubleshooting)

MEASURING PERFORMANCE
The IOZone [9] and Skampi [10] benchmark programs were used to measure cluster

performance. IOZone was run across a wide range of record sizes and file sizes to test
data communications throughout the cluster. Skampi included "pingpong" functions
which measured point-to-point communications in the cluster.

An MPI version of the N-queens program from Kise [11] was used to measure the
computational performance of the cluster and compare the cluster with other clusters. For
this purpose, a lab with 20 PCs was "clusterized" using CAOS NSA and Perceus to test
the effect of having more compute nodes in the cluster. Each node had an AMD
Athlon(tm) 64 X2 Dual Core Processor with a 3 GHz clock speed and 2 gigabytes of
memory. This cluster used a 100 Mbps HSI and the command and control and data
networks were combined on one switch. This 20-node cluster is identified as the "Mo16"
cluster while the 10-node cluster discussed previously is the "St314" cluster. The
following is a comparison between these two clusters using the MPI-based N-queens
program:

JCSC 25, 5 (May 2010)

274

 Cluster Number of Queens Time to Find All Solutions (seconds)
 St314 19 551.3
 Mo16 19 279.5
 St314 20 4066.3
 Mo16 20 1888.4
The execution time for this application scales with the number of compute nodes.

CONCLUSIONS
Building a cluster system is very easy using the CAOS NSA Linux distribution and

the Perceus Cluster Management System. The developers of Perceus have used their
Warewulf experience to develop a powerful yet easy to install and operate cluster
management system. Inexpensive computers constructed from "bare-bones" kits can be
used for the master node and compute nodes. It is possible to include a CAOS NSA
server in an existing computer lab to "clusterize" the computers in the lab. Thus, anyone
with a small department budget and/or a computer lab can have a cluster by using the
"magic" of Perceus.

REFERENCES

1. Sloan, Joseph D., High Performance Linux Clusters, O'Reilly Inc., 2005, p. 8.

2. Tiger Direct Inc. 2009, www.tigerdirect.com.

3. Newgg Inc. 2009, www.newegg.com.

4. The CAOS Project, 2009, www.caoslinux.org.

5. The Perceus Project, 2009, www.perceus.org.

6. Lucke, Robert, Building Clustered Linux Systems, Prentice Hall PTR, 2005, p. 22.

7. Sloan, Joseph D., High Performance Linux Clusters, O'Reilly Inc., 2005, p. 228.

8. The Perceus Users Guide, www.perceus.org/docs/perceus-userguide-1.5.0.pdf.

9. IOzone Filesystem Benchmark, 2009, www.iozone.org.

10. SkaMPI 5 Benchmark Software, 2009, liinwww.ira.uka.de/~skampi.

11. Kenji Kise, et. al., Solving the 24-queens Problem using MPI on a PC cluster,
Technical Report UEC-IS-2004-6, Version 2004-06-14.

* Copyright © 2010 by the Consortium for Computing Sciences in Colleges. Permission to copy
without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the CCSC copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires a
fee and/or specific permission.

275

A ONE-CREDIT ARTIFICIAL INTELLIGENCE COURSE FOR A

GENERAL AUDIENCE*

Michael Black
American University

mblack@american.edu

ABSTRACT
In order to expose more students to computer science, we developed "Artificial
Intelligence", a one-credit course intended for non-computer science majors.
The course seeks to give students a taste of various technical topics in AI,
ranging from expert systems to neural networks, without requiring any
programming or mathematics background. The course uses a mixture of
hands-on exercises and software demonstrations to illustrate the principles
behind AI. Despite the technical subject matter, students from a variety of
majors reported that they found the course both accessible and interesting.

1. INTRODUCTION
With enrollments declining, luring students to computer science is a serious

challenge. Our computer science program relies heavily on recruiting internally,
encouraging current students who are undecided about their major to consider computer
science. One of our key problems is that most students are unfamiliar with computer
science and have misconceptions about the subject. To remedy this, we have started to
offer one-credit "fun" courses intended for nonmajors. These courses have no
prerequisites and require no prior experience with programming or mathematics.
However, they are nevertheless intended to give students a comprehensive introduction
to an area of computer science.

This paper describes "Artificial Intelligence", the first course we offered. Artificial
intelligence lends itself naturally to a general survey course. It is relevent: all students
have unknowingly come into contact with AI software on the internet, in games, or
elsewhere. It has a dark and controversial side, as any student who has seen The Matrix

JCSC 25, 5 (May 2010)

276

or Blade Runner can attest. AI can also be humorous (think Dr. Eliza), and lends itself
well to hands-on demonstrations.

Courses abound both at our university and elsewhere that discuss AI's effect on
society, usually in the context of science fiction. However, in designing this course, I
opted for a different approach. Rather than focus on the social impact of AI, I instead
looked at the technical aspects of AI. The resulting course explored various tricks and
approaches to mimicking AI, from neural networks to expert systems to exhaustive
searching. "How does it work?" was the underlying question.

There are several reasons for making a technical survey course. First, students can
already find discussions of AI and society in existing courses. Second, students are
unlikely to have their misconceptions of computer science dispelled unless they are
presented with real computer science. Third, a course designed to entice students to study
computer science should show students examples what they might study.

Creating an AI course with broad appeal and a technical subject matter turned out
to be a balancing act. On one hand, the course had to appeal to the nonscience student.
On the other hand, much of AI is mathematically dense and deals with abstractions. I
approached this by creating a course that avoids theory as much as possible and focuses
instead on hands-on demonstrations and simple explanations. I wrote a series of software
demonstrations explicitly for the course.

Survey results from students at the end of the course were universally positive.
Students enthusiastically took part in discussions and exercises, in some cases bringing
their own material to class. A second offering of the course, advertised largely by
word-of-mouth, filled rapidly. Several students subsequently pursued independent study
projects based on the course material.

In this paper I will discuss how I structured the course and approached the material,
lesson-by-lesson. In the end I will discuss the results of student feedback.

2. THE COURSE AND ITS STUDENTS
An unusual structure was chosen for this course. Rather than running one

semester-long section, we opted for two sections, offered back to back. The first section
started in late January and concluded in early March. The second section began in March
and concluded at the end of April. We chose this structure for several reasons. It allowed
us to gauge student interest by seeing how many students enroll for the second section,
which was advertised by word-of-mouth. The second section also gained us students who
dropped another course early in the semester and needed to pick up a credit-hour.
Because of the short duration of the course, weekly class periods lasted 105 minutes,
allowing a new topic to be covered in entirety each week.

14 students enrolled in the first section and 10 in the second section. A variety of
majors were represented, including Math, Theater, Psychology, Journalism, and
Economics. 5 of our own computer science students also enrolled. Students were drawn
to the class for different reasons, including flyers, their advisor's recommendation, and
the urging of their friends.

CCSC: Central Plains Conference

277

The course consisted of one lesson per week for seven weeks. In each class period
I covered a separate topic. I generally followed the same structure for each concept:
 • A teaser software demonstration. Some were internet demonstrations and and some

were written for the course.
 • An exercise. Students were given a hands-on activity that illustrated the concepts

to be discussed that day.
 • An interactive discussion, where students learned how the technology worked.
 • One or more illustrative software demonstrations.
 • Examples of real applications, sometimes accompanied by additional

demonstrations.
Because a grade had to be assigned, the students were required to write a brief group

paper about an application of AI technology. Students were asked to find an example,
discuss how the AI works, and constrast it with approaches used before the technology
existed. Some of the topics students investigated included fuzzy logic, post office zip
code scanners, Pleo, and facial recognition.

3. LESSONS
Five topics were covered in this course: searching, expert systems, natural language,

neural networks, and genetic algorithms. Two additional class periods dealt with defining
AI and the future of AI. A synopsis of each lesson is detailed below.

3.1. Defining AI
My objective for the first lesson was to show students the difficulty of defining

artificial intelligence or its goals. We covered three major topics.
 • "How do I know my neighbor isn't a robot?" Students interviewed neighbors and

listed on an index card what behaviors demonstrated that their neighbor is human.
 • The Turing Test
 • A short narrative on the history of AI, from mechanical automata to the present.

Students were assigned to read Computing Machinery and Intelligence and discuss
it briefly at the beginning of the next lesson.

3.2. Searching
The second lesson introduced students to the concepts of backtracking, search trees,

and heuristics. The lesson started with mazes and puzzles, and proceeded to competitive
games like Chess. Figure 1 shows screenshots of the demonstrations used.
 • Mazes. Students were asked to solve a maze on paper and note down their thought

process. Two maze solving programs were demonstrated, one only using an
exhaustive search and the other incorporating a heuristic.

 • 8 puzzle. Students were given 8 puzzles to solve by hand, and then tried several 8
puzzle solving programs that used different searching techniques. Students learned
the difference between breadth and depth first search.

JCSC 25, 5 (May 2010)

278

 • Tic Tac Toe. Students played each other at Tic Tac Toe and noted how Tic Tac Toe
is effectively a search problem.

 • Money game illustrating minimax. A volunteer was shown three envelopes, each
containing pennies, nickels, and dimes. The volunteer was told that she would
receive one coin from whichever envelope she chose, but would not get to choose
the coin.

 • Chess. Students watched two AIs play each other, one searching to depth 2, the
other to depth 3.

 • Pruning. The money game was again with a 5 second time limit, teaching the
volunteer to reject envelopes with pennies.

3.3. Expert Systems
The third lesson introduced students to decision trees, predicate logic, and

forward/backwards chaining.
 • Decision trees. Students played several rounds of the "Guess the animal game" and

discussed how it works. Students then played the "Guess the Dictator / Sitcom
Character" where the weaknesses of decision trees are very apparent.

 • Rules chaining. Students learned about how forwards and backwards chaining, and
tried a simple medical diagnostic software using forward chaining.

3.4. Natural Language
In this lesson I focused on three applications: machine translation, composition, and

conversation. For each application, we discussed a rules based approach and a statistical
approach.
 • Dr. Eliza. Students played the psychiatrist game and then looked through the rules

file to discover how it works.
 • Translation. Students learned about parsing and tried out Stanford's online parsing

utility [] to see how it handles ambiguous sentences. We then used the Systran
translator to translate Spanish news articles to English.

 • Scigen. Students tried the Scigen utility to generate phony research papers.

Figure 1: Search Demonstrations

CCSC: Central Plains Conference

279

 • Markov models. Students tried out a Markov model-based sentence generator
written for the class. They produced Keats-style poems, Alice in Wonderland style
prose, and State of the Union addresses in the style of George Bush.

 • Google translator. Students used the statistical-based Google translator and
compared it with Systran.

 • Jabberwacky. The class conversed with the online Jabberwacky chatterbot.

3.5. Neural Networks
Students were introduced to the concept of making computer models of brain cells

to solve problems. Figure 2 shows screenshots of the neural network software written for
this course.
 • Perceptron. Students trained a perceptron program written for the class to learn the

max function and observed how the weights responded. Students then tried training
it on the XOR function.

 • Multilevel network. Students taught XOR to a second program modeling a
multilevel neural network.

 • Tic Tac Toe. A Tic Tac Toe game that uses a neural network to mimic the human
player's strategy. Students tried teaching the game to play Tic Tac Toe, and saw
how it learned to mimic wrong moves as well as right moves.

 • Character recognition. Students tried a Hopfield network-based program written for
the course. The program asked students to draw a number and tried to guess the
digit.

Figure 2. Neural Network Demonstrations

3.6. Genetic Algorithms
The last technical topic covered was genetic algorithms. Students discussed the

principles of evolution and brainstormed how they could be modeled by a computer.
 • Knapsack solver. I developed a genetic algorithm program for the course that shows

the population on a GUI. Students tried solving an example problem with index
cards, then watched the computer solve it.

 • SRAT solver. Students tried solving James Propp's Self Referential Aptitude Test
[] by hand, and then watched a genetic algorithm estimate a solution.

JCSC 25, 5 (May 2010)

280

3.7. Future of AI
In the final lesson of the course I showed a series of movie clips showing various

science fiction authors' visions of robots and the future of AI. Clips were chosen from
2001, Blade Runner, AI, the Matrix, the Day the Earth Stood Still, and various Twilight
Zone episodes.

4. SURVEY
In addition to the regular evaluation, a survey was given to the class at the end of

the last lesson. Student responses to the survey questions are shown in Table 1.

Did you find this course interesting? All students answered "yes"
Did you feel it was too technical or not
technical enough?

1 answered "Too technical", 2 answered
"not technical enough", 11 answered
"about right"

What topics would you have liked to have
seen?

"Emotional replication" and "robotics"
were given.

In this class I tried to mix demonstrations,
explanations, and exercises. Of those
three, which would you have liked have
seen more of?

7 answered "demonstrations", 6 answered
"exercises"

Is there anything else you want to
comment on that could be improved?

1 answered "more movies", the rest
answered "nothing" or left it blank

Table 1: Qualitative feedback (first section only)

In addition, students were asked, for each topic, whether they enjoyed it, felt
neutral about it, or disliked it. As can be seen in Table 2, there was no consensus,
with different students enjoying very different topics.

Topic # enjoyed # neutral # disliked
Defining AI 10 4
Search problems 14
Expert systems 11 1 2
Neural networks 13 1
Genetic algorithms 10 4
Movies about AI 9 3 2
Philisophical discussions

Table 2: Feedback by topic

CCSC: Central Plains Conference

281

REFERENCES AND RESOURCES

[1] Bowles, "An Idiot's Guide to Neural Networks",
http://richardbowles.tripod.com/neural/neural.htm

[2] Guzdial and Forte, "Design process for a nonmajors computing course", SIGCSE
Technical Symposium, 2005.

[3] Propp, "Self Referential Aptitude Test", http://faculty.uml.edu/jpropp/srat.html

[4] Russell and Norvig, "Artificial Intelligence, A Modern Approach", 1995.

[5] Turing, "Computing Machinery and Intelligence", Mind, 1950.

[6] "Guess The Dictator / SitCom Character", http://www.smalltime.com/Dictator

[7] "Jabberwacky Live Chat Bot", http://www.jabberwacky.com/

[8] "Stanford Parser", http://nlp.stanford.edu:8080/parser/

* Copyright is held by the author/owner.

282

CONNECTING HIGH-LEVEL PROGRAMMING CONSTRUCTS

TO ASSEMBLY LANGUAGE USING FRANCES*

TUTORIAL PRESENTATION

Kian L. Pokorny, Ph.D.
Division of Computing

McKendree University, 701 College Rd., Lebanon, IL 62254
618-537-6440

klpokorny@McKendree.edu

Tyler Sondag
Dept. of Computer Science

Iowa State University, 226 Atanasoff Hall
Ames, IA 50014

sondag@cs.iastate.edu

Hridesh Rajan
Dept. of Computer Science

Iowa State University, 226 Atanasoff Hall
Ames, IA 50014

hridesh@cs.iastate.edu

Central to computing is machine code generation. Upper level undergraduate
students studying computing are quite familiar with high-level languages. Most
undergraduate programs in computing begin with a course involving computer
programming in a high-level language and as students progress through their studies they
gain more experience with high-level languages. Not only is the machine code central to
upper level courses in computer science, introductory programming texts address the
issue of how high-level languages are translated to execute on the machine [3, 4].

In recent years, as the field of computing has expanded, courses in assembly
language have been supplanted with more timely material [1]. In the most recent ACM
curricula guidelines assembly language is only mentioned in one of the fourteen sections,
Architecture and Organization [2]. One of the ten subsections herein has nine hours
recommended and there are nine learning objectives for this subsection. The ninth
learning objective is: "Understand how, at the assembly language level, how parameters
are passed to subroutines and how local workplace is created and accessed" [2]. Courses
in computer architecture, operating systems and compiler design revolve around machine
language yet the disconnect that exists from the lack of a course dedicated to the topic of

CCSC: Central Plains Conference

283

assembly language introduces a gulf in knowledge. This makes it difficult for students
to quickly grasp the concepts of these other courses and requires the instructor to spend
time with the topic of assembly language.

Frances [5] is a new tool that shows graphically the relationship between statements
in a high-level language and the generated assembly language. This tool allows students
to quickly make a connection between the written high-level language and the generated
assembly instructions. The environment has several unique features that make it useful
to students needing to gain an understanding of this relationship.

Computing faculty teaching courses at all levels will be interested in the potential
for classroom use. The presentation will provide instruction on the use of the tool,
information about supporting material and access to the tool for future use in the
classroom.

REFERENCES

[1] Agarwal, K.K., Agarwal, A., Do we need a separate assembly language
programming course?, Journal of Computing Sciences in Colleges, 19, (4),
246-251, 2004.

[2] Computer Science Curriculum 2008: An Interim Revision of CS2001, December
2008. Joint Task Force on Computing Curricula, IEEE Computer Society,
Association for Computing Machinery, 2008.

[3] Deitel, P.J., Deitel, H.M., C++ How to Program 6 ed, Upper Saddle River, New
Jersey: Pearson's Education Inc., 2008.

[4] Gaddis, T., Starting out with Control Structures Through Objects 6 ed, Upper
Saddle River: Pearson's Education Inc., New Jersey, 2009.

[5] Sondag, T., Pokorny, K.L., Rajan, H., 2010. Frances: A tool for understanding
code generation, Proceedings of the 41st SIGCSE technical symposium on
Computer science education, Milwaukee, Wisconsin, USA, March 10-13, 2010.

* Copyright is held by the author/owner.

284

AUTOMATED GRADING OF STUDENT PROGRAMMING

ASSIGNMENTS*

TUTORIAL PRESENTATION

Stefan Brandle
Computer Science and Engineering

Taylor University
236 W. Reade Avenue

Upland, IN 46989
765-998-4685

sbrandle@cse.taylor.edu

THE ASSESSMENT DILEMMA IN COMPUTER SCIENCE EDUCATION
 In a SIGCSE note [1] Henry Walker addresses some of the problems with grading
in computer science. He cites a report from the MAA/ACM/IEEE Computer Science Task
Force on the Teaching of Computer Science with Mathematics Departments [2] to
demonstrate that "grading CS [computer science] takes longer than comparable
assignments in mathematics or other sciences; CS grading rates appear more closely tied
to foreign language than science. [...] However, while upper-level foreign-language
courses often require only 4 or 5 short papers during a semester, many CS faculty believe
that one assignment every 2 or 3 weeks provides students with inadequate practice. Thus,
in CS, assignment frequency may parallel other sciences, while grading time parallels
foreign language." Walker concludes from the task force report that "One can grade
approximately one and one-half [times] as many English examinations and almost twice
as many calculus examinations in a fixed time period [as computer science]." This is part
of the CS assessment burden.

In a special SIGCSE working group report "How Shall We Assess This?" [3] the
authors discuss how increased class sizes, distributed learning, and distance learning are
forcing changes in current assessment practices. They present the debate over the value
of automated assessment. In the paper's introduction section they state:

"With increasing class sizes in educational establishments worldwide, the
practice of assessment is becoming a problematic issue; increased numbers
make it more difficult to assess student attainment. If assessments are graded
manually, educators must either set fewer assessments tasks or resign

CCSC: Central Plains Conference

285

themselves to a greatly increased marking load. In order to cope with
increasing student numbers automated assessment is becoming increasingly
important in many courses. The number of papers related to the topic that have
been presented at ITiCSE conferences in recent years [...] reflects this
increasing interest. Automated assessment can save time and human resources
but its adoption must be pedagogically sound. It is a widely held belief that
on-line teaching and learning will be the savior of the educational system."
Grading student programs is one of those things that can be a headache for both

faculty and students. For faculty – especially if teaching with frequent assignments or
larger class sizes – grading takes a lot of time. In addition, it is hard to stay on top of the
grading of weekly programs. Students often do not receive feedback quickly enough for
it to be helpful for the next assignment and it is frequently not very detailed.

The idea of deputizing the computer to help out with grading is nothing new. J.
Hollingsworth's 1960 CACM paper "Automatic Graders for Programming Classes" [4]
describes automated grading of punchcard-based programs by a punchcard-based
program. Several hundred papers have been published since, but few teachers use
automated grading tools. Those who do so, typically use homemade, hard-to-share
systems. In order to leverage the ability to share tools, I recently stopped using my
homemade system and switched to Web-CAT [5], which supports standard platforms and
a range of languages and grading techniques. If one person adds support for a new
language or assessment tool, all Web-CAT users can start using it. I am the project
contributor of the code that provides Python support.

Attendees will learn about a set of useful tools that are beneficial and reasonably
easy for faculty and students to use.

TUTORIAL TOPICS
 • Different approaches to automatic program testing. Application testing vs. more

detailed unit testing.
 • Test-driven development (TDD) vs. non-TDD.
 • What is feasible and infeasible (or still hard to do) with automated testing.
 • Quick introduction to the xUNIT architecture.
 • Examples of how to test code in Python, Java, and C++.
 • A demonstration of the Web-CAT automated grading system.

REFERENCES

[1] Walker, Henry M. Notes on grading, SIGCSE Bulletin, 32 (2), 18-19, 2000.

[2] Haytock, B., Karian, Z., Selter, S. Teaching computer science within
mathematics departments, Computer Science Education, 1, 1991, 1990.

[3] Carter, J., Ala-Mutka, K., Fuller, U., et al. How shall we assess this? Working
group reports, ITiCSE 2003, 107-123, 2003.

[4] Hollingsworth, J., Automatic graders for programming classes, Communications
of the ACM, 3 (10), 528-529, 1960.

JCSC 25, 5 (May 2010)

286

[5] Edwards, S., Web-CAT, http://web-cat.cs.vt.edu, retrieved January 19 5, 2010.

* Copyright © 2010 by the Consortium for Computing Sciences in Colleges. Permission to copy
without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the CCSC copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires a
fee and/or specific permission.

287

RESISTOR NETWORK-BASED ALGORITHMS FOR

ENUMERATING RATIONAL NUMBERS*

Samuel C. Hsieh, C. Van Nelson, and Logeshbabu Sampath
Computer Science Department

Ball State University
Muncie, Indiana, U.S.A.

ABSTRACT
A class of simple resistor networks is used to enumerate the set of positive
rational numbers. A one-to-one correspondence between the simple resistor
networks and rational numbers is established, and efficient algorithms to find
the rational for a given ordinal number, to find the ordinal number for a given
rational, and to generate the rationals up to a given ordinal number are
presented. The bijection and the algorithms answer some typical questions that
are frequently asked by students in discrete mathematics or computing theory
classes related to counting positive rational numbers.

1. INTRODUCTION
The set of positive rational numbers is commonly shown to be countable by using

a matrix of fractions [e.g., 1, 2]. Each fraction i / j is located in the ith row and the jth
column of such a matrix. An enumeration is then shown by sequentially listing the
fractions on the diagonals, starting from the corner where the fraction 1/1 is located, and
skipping an element if it causes a repetition. When this approach is used to present the
topic in discrete mathematics or computing theory classes, some of the typical questions
from the students are:
 • What is the mapping from the integers to the rationals?
 • Is there an easy way to find the nth rational for a given n?
 • Is there an easy way to find the ordinal number of a given rational?
Indeed, the approach constructs a linear list of positive rational numbers but does not
provide a formula for the one-to-one correspondence. In particular, the list so constructed

JCSC 25, 5 (May 2010)

288

includes "holes" to avoid double counting. The above questions usually arise from the
students' concern with such holes in the list and the lack of an explicit formula that avoids
double counting.

We will present a mapping that answers such questions. The mapping is based on
a class of simple resistor networks and can be defined by simple formulas for computing
the equivalent resistance of the networks. Efficient algorithms to find the nth rational for
a given ordinal number n, to find the ordinal number for a given rational, and to generate
a list of rationals up to a given ordinal number will be presented and analyzed.

Enumerating the rational numbers is a well-studied problem. A salient feature of the
approach discussed in this article is that it is based on concrete physical objects: resistor
networks.

2. SIMPLE RESISTOR NETWORKS
Let r1 and r2 be the resistance values of two resistors. The resistors can be connected

(combined) in parallel or in series, as shown below.

When the two resistors are connected in parallel (Fig. 1a), the equivalent resistance (the
combined resistance) of the resistor network is r1r2/(r1+r2). When the resistors are
connected in series (Fig. 1b) the equivalent resistance is r1 + r2.

CCSC: Central Plains Conference

289

As an example, consider two resistors of resistance a/b and 1 (ohm). The equivalent
resistance of the two resistors connected in parallel (Fig. 2a) is (a/b)/(a/b + 1) = a/(a+b),
and that of the resistors in series (Fig. 2b) is a/b+1 = (a+b)/b.

We consider a sequence of resistor networks. Each network is constructed from
1-ohm resistors. The first network in the sequence is a 1-ohm resistor. For n > 1, if n is
even then the nth network is formed from the (n/2)th network by connecting a 1-ohm
resistor in parallel with the (n/2)th network; if n is odd, then the nth network is constructed
from the (n/2)th network (discarding fractional part of the quotient n/2) by connecting a
1-ohm resistor in series with the (n/2)th network. Fig. 3 shows the first seven networks
in the sequence and their equivalent resistance R(1), R(2)..R(7) as fractions.

It should be clear that the 2nd and the 3rd networks are formed from the 1st network, the 4th

and the 5th networks are formed from the 2nd network, and the 6th and the 7th networks are
formed from the 3rd network. The equivalent resistance of each network can be computed
using the simple formulas given in Fig. 2. For example, since the 5th network is the 2nd

network with a 1-ohm resistor connected in series, the equivalent resistance R(5) can be
computed from R(2) by using the formula in Fig. 2b: since R(2) is 1/2, R(5) is (1+2)/2 =
3/2. As another example, since the 6th network is the 3rd network in parallel with a 1-ohm
resistor, the equivalent resistance R(6) is computed from R(3) by using the formula in
Fig. 2a: since R(3) is 2/1, R(6) is 2/(2+1)=2/3.

In summary, the equivalent resistance of the first network R(1) is 1/1. To compute
the equivalent resistance R(n) of the nth network for any n > 1, let R(n/2) be a/b (if n is
odd, the fractional part of the quotient n/2 is discarded). R(n) is a/(a+b) if n is even and
(a+b)/b if n is odd. The next section will establish that R is a one-to-one correspondence
between the set of positive integers and the set of positive rationals. Hence, the set

{ R(n) | n 1}≥

is the set of all positive reduced fractions, i.e., the set of all positive rationals, and the

JCSC 25, 5 (May 2010)

290

sequence R(1), R(2), R(3)… is an enumeration of them.

3. ONE-TO-ONE CORRESPONDENCE
For any positive integer k, R(k) is a reduced fraction because
 • R(1), i.e., 1/1, is reduced, and
 • Any fraction of the form (a+b)/a or the form a/(a+b) derived from a reduced fraction

a/b is also reduced.
Suppose R(k) is a/b for some positive integer k. We note, from the definition of R, that
 • a=b if k = 1, and
 • a > b if k is odd and k 1, and ≠
 • a < b if k is even.

We will now show, by contradiction, that R is a one-to-one correspondence. That
is, R is both injective (one-to-one) and surjective (onto).

Suppose R is not injective. There exist two positive integers j and k such that j ≠
k but R(j) = R(k). Without loss of generality, let's assume j < k. Since R(j) = R(k), j and
k must either be both odd or both even. Since R(j) and R(k) are derived from R(j/2) and
R(k/2) in the same way, R(j/2) must be the same fraction as R(k/2) and, therefore, j/2 and
k/2 must either be both odd or both even. Besides, j/2 < k/2 because j < k and j and k are
either both odd or both even. For the same reasons, the invariant that R(j) = R(k), j and
k are either both odd or both even, and j < k holds for the values of j and k right after
every iteration of the following loop in C++:
while (j != 1)
{j = j/2;
 k = k/2;
 //at this point R(j) = R(k), j and k are either both be odd or both even, and j < k
}
When j = 1, the loop invariant becomes a contradiction because R(1)=1/1 but R(k) cannot
be 1/1 since 1 < k. Therefore, R is injective.

Now suppose R is not surjective. There exists a positive reduced fraction a/b that is
not in the range of R. If a < b, then a/(b-a) is not in the range of R - otherwise, there
would be a positive integer n such that R(n)= a/(b-a), and a/b would be in the range of R
because R(2n) would be a/b. Similarly, if a > b, then (a-b)/b cannot be in the range of R.
By the same reasoning, the invariant that a/b is not in the range of R holds for the values
of a and b right after every iteration of the following loop in C++:
while (a != b)
{ if (a > b) a=a-b;
 else b=b-a;
//at this point, the fraction a/b is not in the range of R
}

We note that the above loop implements the Euclidean algorithm for computing the
greatest common divisor of a and b. Since a and b are initially coprime (because a/b is a
reduced fraction), their greatest common divisor is 1. When a=b=1, the loop invariant
becomes a contradiction because 1/1 is in the range of R. Therefore, R is surjective.

CCSC: Central Plains Conference

291

3. ALGORITHMS
In the algorithm given below, a fraction num/den will be represented by the

following structure in the language C++:
struct Fraction
{ int num; //numerator of a fraction
 int den; //denominator of a fraction
};

An algorithm to compute R(n) for any given n is presented below as a function
findR in the language C++. The function takes an input parameter n and returns a
fraction. The algorithm closely follows the definition of R presented in the previous
section.
Fraction findR (int n)
{ Fraction result;
 if (n == 1)
 { result.num = result.den =1;
 }
 else
 { result=findR(n/2);
 if (n%2) result.num += result.den;
 else result.den += result.num;
 }
 return result;
} //end function findR

Since both n and 2 are of the int type, the division yields an int quotient (e.g., 7/2 is
3). Since every recursive call to findR reduces the parameter by at least one half, the
running time is obviously O(log n).

As an example, let's consider the function call findR(5), which will compute the
fraction R(5)=3/2. The following calling chain will take place: findR(5) calls
findR(2), which calls findR(1). Then,
findR(1) returns 1/1, which is used in
findR(2) to compute and return 1/2, which is used in
findR(5) to compute and return 3/2

Since the mapping R is a one-to-one correspondence, for any given rational a/b, its
ordinal number n can be computed such that R(n) is a/b. The algorithm to do so is
presented as a C++ function below. The function findOrd, when given a reduced fraction
a/b as two integers via the parameters, returns the ordinal number of a/b.
int findOrd (Fraction f)
{
 if (f.num < f.den)
 { f.den -= f.num;
 return findOrd(f) *2;
 }
 else if (f.num > f.den)
 { f.num -= f.den;
 return findOrd(f) *2 + 1;
 }
 else return 1;

JCSC 25, 5 (May 2010)

292

}

In terms of the ordinal number n, the algorithm is O(log n) time. In terms of the
parameters a and b, the algorithm is linear-time with the worst case running time being
O(max(a, b)).

Clearly, the function findOrd performs the inverse of what findR does. As an
example, the function call findOrd(3/2) will call findOrd(1/2), which will call
findOrd(1/1). Then,
findOrd(1/1) returns 1, which is used in
findOrd(1/2) to compute and return 1*2=2, which is used in
findOrd(3/2) to compute and return 2*2+1=5
Note the calls to findOrd and findR involve the same sequence of rationals (1/1, 1/2,
3/2) and of ordinal numbers (1, 2, 5).

The C++ function enumerate, given below, returns a sequence of rationals R(1),
R(2), ..R(n) for any given n in an array A of fractions. The array A will contain reduced
fractions such that A[i]is R(i). To call this function, the actual parameter for the array
A must be of size n+1 or larger. For ease of presentation, the first element of the array A
is left unused.
void enumerate(int n, Fraction A[])
{ int i;
 A[1].num=A[1].den=1;
 for (i=2; i <= n; i++)
 { A[i] = A[i/2];
 if (i%2)
 A[i].num += A[i].den;
 else
 A[i].den += A[i].num;
 }
}

The main control structure of the function is a loop that derives A[i] from A[i/2] for all
i in the range 2..n in accordance with the definition of R. The running time is O(n).

4. SUMMARY
An enumeration of the positive rationals based on a sequence of resistor networks

is presented. Efficient algorithms to find the rational for a given ordinal number, to find
the ordinal number for a given rational, and to generate the rationals up to a given ordinal
number are presented and analyzed. The enumeration and algorithms answer some typical
questions frequently asked by students in discrete mathematics or computing theory
classes.

REFERENCES

[1] Rosen, K. H., Discrete Mathematics and Its Applications, McGraw-Hill, 6th ed.,
2007.

CCSC: Central Plains Conference

293

[2] Sipser, M., Introduction to the Theory of Computation, Thomson Course
Technology, 2nd ed., 2006.

* Copyright © 2010 by the Consortium for Computing Sciences in Colleges. Permission to copy
without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the CCSC copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires a
fee and/or specific permission.

294

A WEB SERVICE MODEL FOR CONDUCTING RESEARCH

IN IMAGE PROCESSING*

Chengcheng Li, Ph.D.
Department of Technology Systems

East Carolina University
Greenville, NC, USA

liche@ecu.edu

ABSTRACT
This study is an online application development process, covering a range of
computing science topics, including image processing, feature extract,
statistical analysis and artificial intelligence, .NET programming, Matlab
programming, web development, and database design and implementation. An
online cattle meat quality assessment model is created. Users can contribute
and share ultrasound scans of live cattle through the image database
management system. Real-time meat quality assessment is performed on the
server side using Matlab .NET components. The algorithms are based on linear
regression analysis and neural networks. The algorithms yield high accuracies
in predicting the intramuscular fat (IMF), which is an important indicator of
cattle meat quality. By reading the meat qualify predication from this online
approach, the farmers can know the values of the cattle and adjust the feeding
method accordingly to maximize profit.

BACKGROUND
The research on beef quality grading through ultrasound technology started more

than a decade ago [1][2]. The low resolution and high noise-to-signal ratio of ultrasound
images and the limited computing power of the early studies resulted in low accuracies
of IMF prediction. In fact, the technician visual appraisal of beef IMF on carcass is still
the primary means to evaluate the beef quality today. Stimulated by contemporary genetic

CCSC: Central Plains Conference

295

research, computer based IMF assessment on live cattle has yielded encouraging results
[3][4]. However, the technology is still limited in the laboratory for research purpose.
There are few commercial software products for IMF assessment on the market and they
have been used in only testing areas across the country due to the limited available
ultrasound scan data and lack of standardized image processing and AI predication
algorithms in this field.

Computer-based IMF assessment on farmed animals is very difficult because of the
complicated data collection process, which leads to big data variances. Meat quality can
be determined by characters other than those shown on the ultrasound images. These
characters include gender, age, weight, and breed. Research on cattle feeding and genetic
optimization, consumer's satisfaction based on IMF percentage [5], and nutrition values
have been the major force propelling the improvement of cattle meat quality and
productivity. There is a strong need for real-time live cattle IMF monitoring, so the
researchers can adjust their research process accordingly. The farmers will also welcome
the live cattle IMF percentage reading technology. They can know the exact value of the
cattle before the cows are sent to the slaughterhouse. The farmers can adjust their feeding
methods and find the best time for slaughtering, maximizing the value the cattle [6].

INTRODUCTION
The goal of this study is to produce a prediction model on live cattle IMF

percentage. There are three principle aims that have been achieved in the study.
1. Develop Prediction Algorithms
A feasible algorithm to predict IMF percentage based on features extracted from live

cow ultrasound images is produced. Classification methods such as linear regression
analysis and neural networks are used and compared to train the algorithm. The method,
which produces the best results in terms of computing time and accuracy, is chosen as the
optimal method to predict IMF percentage. The goal of the algorithm is to provide meat
quality assessment with accuracy high enough to be approved by the USDA.

2. Build a Live Cow Ultrasound Image Database
Establishing an online publicly accessible database of live cattle ultrasound images

one the objectives of this study. The database is used as the primary venue for the online
processing and storage of images. The database provides researchers a friendly interface
for uploading and querying images, so that the researchers could develop and implement
new methodologies to predict IMF percentage on the given images. The database can also
be used as a common platform to standardize the format of cow ultrasound images
obtained from different resources. An online publicly accessible solution inevitably
stimulates collaboration of research on the live cow ultrasound technology usage
throughout the country. Input from the same discipline is highly expected.

3. Develop an Online Image Processing Software Application
An executable software application is produced. This application provides a friendly

user interface to display the ultrasound images and a clear output of the predicted IMF
percentage value. An interactive design allows the users to input and modify data which
are not showing on the image, such as the sex, the weight, and the age of the cow. This

JCSC 25, 5 (May 2010)

296

software application works with the online database system on the background. It adds
new entries to the database based on the user's input. This application is written in
ASP.NET and should be executable within the major web browsers such as IE and
Firefox under various operating systems.

METHODOLOGY
1. Algorithm Development
This study continues a previous study [7] and investigates different classification

methods in linear multilinear regression analysis and neural networks. Trained
technicians are used to collect ultrasound images of live cattle from Brown Loam
Experiment Station (BLES). The cows are constrained by a specially made machine
available at BLES, so that they could be held very still to reduce the noise in the
ultrasound images. Aloka 500V SSD ultrasound machine is used to collect high
resolution grey-scale images on 11th to 14th ribs of the cattle. Four images are collected
on each cow. The cows are sent to the slaughterhouse. The USDA (United States
Department of Agriculture) certified technicians visually grade the carcass' marbling
levels. Chemical analysis is conducted to produce detailed quantitative data of the IMF
percentage. The correlation between live images and the fat percentage data is
investigated through a series of image processing operations and statistical analyses,
leading to a highly accurate and the USDA approved IMF percentage prediction model
on live cows.

384 ultrasound images were scanned from 91 live steers to train and test the
proposed algorithms. The region of interest (ROI) is automatically extracted based on the
image features. The training-testing ratio is 3:1 which means seventy five percent of the
images are used for the algorithm training purpose while the remaining images are used
to test the prediction accuracy of the algorithm.

A large number of image processing features are extracted from the ultrasound
scans. This number is reduced according to the correlation between the individual
features and the prediction results. It is important to reduce the dimensionality to
eliminate the uncorrelated features and make the real-time calculation possible. After
sufficient training, the algorithms generated from linear regression analysis and neural
networks both produce very high accuracy in predicting the IMF value. The following
table compares the effectiveness of the algorithms from this study and previous ones.

TABLE 1. Quantitative evaluation of IMF prediction algorithms
Whittake [2] Hanssen [8] Brethour [9] Li (LRA)[7] Li(NN)[7]

Accuracy 41% - 70.8% N/A 74%-82% 92.5% 89.8%
R2 0.37-0.82 0.69-0.72 0.32 0.823 0.809
RMSE 0.503-2.781 0.84-0.91 N/A 0.196 0.253

The accuracy is calculated based on
Accuracy = 1.0-[(|Estimated_Value - True_Value|)/True_Value] (1)

R2 and RMSE (root of mean squared error) are also used to compare the algorithms.

CCSC: Central Plains Conference

297

2. Online Image Repository System and Meat Quality Assessment
An image database is setup for researchers and farmers to upload cattle ultrasound

scans to a central online site. This online solution helps researchers to gather and share
data through the internet so that a large training set of data can be obtained. The data is
archived in an MS SQL Sever. The database interfaces the users through .NET
technology. A friendly user input page is developed as the follows.

The user can upload an image from local disk to the online database. Other
information accompanying the image can be also input. The images are classified as IMF
analysis, rib eye area size assessment, or just non-standard scan. For IMF and rib eye
scans from standard collection process using Aloha ultrasound machines and with an
image size of 480X512 pixels, the current system can automatically extract the ROI
(region of interest) from the image. Otherwise, the user has to determine the ROI area.
The image operation page, shown in Figure 2, allows user to further operate the images
within the database. The user can view the image by clicking the image name, delete or
download an image to the local disk through the "Del" and "Dnld" options, and read the
IMF and rib eye size prediction.

Figure 1. User upload page.

Figure 2. Image operation page

JCSC 25, 5 (May 2010)

298

Matlab is a very convenient computing environment when it comes to image
processing and matrix calculation. The embedded Matlab image processing and statistics
toolboxes are used to train the algorithms. Matlab objects or components are created and
placed on the server side so that they can be referenced by C# codes which are used to
c r e a t e t h e w e b s i t e a n d t h e p r o g r a m - b e h i n d - t h e - p a g e . T h e
MATLAB.NET.Arrays.MWArray component is particularly important for calculating the
image information from the matrix-like grey-scale pixel values. The combination of
Matlab component and the .NET technology results in fast real-time calculation and
relatively easy application development.

Figure 3. Viewing images Figure 4. Assessment report

Figure 3. shows an sample image stored in the database. User can view the image
by clicking the file name from the image operation page. An 80X80 ROI region is
automatically extracted from the image. The analysis of the ROI region is performed on
the background through the interaction between the C# programming and the Matlab
components. The analysis result can be viewed by clicking the "IMF result" or "Ribeye
result" hyperlinks on the image operation page. A sample of IMF analysis report is shown
in Figure 4. It shows the information of the cow that was input by user and an estimated
IMF value of 3.4%.

CONCLUSIONS
The study is a complete online application development process, covering a wide

range of computing science topics, including image processing, feature extract, statistical
analysis and artificial intelligence, .NET programming, Matlab programming, web
development, and database design and implementation. It can work as a team project for
CS major students.

The online meat quality assessment site, the deliverable of this study, has great
practical values. It creates a common platform, provides data, and establishes standards
for the researchers to conduct research in animal science through image processing. This
model can be easily adopted and disseminated to other fields.

CCSC: Central Plains Conference

299

ACKNOWLEDGEMENT
This study is supported by a research project that is funded by ECU College of

Science and Technology.

REFERENCES

[1] James D. Mccauley, Brian R. Thane, A. Dale Whittaker, "Fat Estimation in Beef
Ultrasound Images Using Texture and Adaptive Logic Networks" Transaction of
ASAE, 1994, Volume 37, pp. 997-1002

[2] Whittaker, A. D., B. Park, B. R. Thance, R. K. Miller, and J. W. Savell, "Principles
of Ultrasound and measurement of Intramuscular Fat", Journal of Animal Science,
1992 volume 70, pp. 942-950

[3] Tait Jr., D.E. Wilson and G.H. Rouse, "Prediction of retail product and trimmable
fat yields from the four primal cuts in beef cattle using ultrasound or carcass data",
Journal of Animal Science, 2005, pp. 1353-1360.

[4] A. R. Williams, "Ultrasound applications in beef cattle carcass research and
management", Journal of Animal Science, 2002, Volume 80, pp. 183-188

[5] Fernandez X., Monin G.,Talmant A., Mourot J., Lebret B., "Influence of
intramuscular fat content on the quality of pig meat", Journal of Meat Science,
volume 53, number 1, September 1999, pp. 67-72

[6] Corino C., Magni S., Pagliarini E., Rossi R., Pastorelli G., Chiesa L.M., "Effects of
dietary fats on meat quality and sensory characteristics of heavy pig loins", Journal
of Meat Science, Volume 60, Number 1, January 2002, pp.1-8

[7] Chengcheng Li, Yufeng Zheng, Kwabena Agyepong, "Prediction of IMF Percentage
of Live Cattle by Using Ultrasound Technologies with High Accuracies", ICIE '09.
WASE International Conference on Information Engineering, July 2009, Volume
2, pp. 474 - 478

[8] A. Hanssen, D.E. Wilson, R.L. Wilham, G.H. Rouse and A. Trenkle, "Evaluation
of ultrasound measurements of fat thickness and longissimus muscles area in feedlot
cattle: Assessment of accuracy and repeatability", Canadian Journal of Animal
Science, 1998, pp. 227-285.

[9] R. Brethour, "Using receiver operating characteristic analysis to evaluate the
accuracy in predicting future quality grade from ultrasound marbling estimates on
beef calves", Journal of Animal Science, 2000, volume 78, pp. 2263-2268

* Copyright © 2010 by the Consortium for Computing Sciences in Colleges. Permission to copy
without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the CCSC copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires a
fee and/or specific permission.

300

WRONG NUMBER: AVOIDING THE HIDDEN PERILS IN

IPHONE DEVELOPMENT*

Michael P. Rogers
Computer Science Information Systems

Northwest Missouri State University
Maryville, MO 64468

Michael@nwmissouri.edu

ABSTRACT
Apple's iPhone represents an exciting opportunity for student developers to
hone their skills on a compelling platform. However, developing for the
iPhone is also extremely challenging, and faculty interested in guiding student
developers should be aware of some potential pitfalls. This paper will detail
some of the most common difficulties encountered in iPhone development, and
strategies for avoiding them.

1. INTRODUCTION
The iPhone almost needs no introduction. On the basis of an elegant user interface

and superb engineering, it has, in just over 2 years, risen from obscurity to become one
of the world's best selling smartphones, with total sales of over 30 million units. The
iPhone was originally envisioned as a closed platform; but after a public outcry, Apple
opened up the device to 3rd party developers. More than 85,000 applications ("apps")
have been written for the device, and there have been more than 2 billion downloads from
The App Store, which Apple uses to distribute iPhone apps.

These are astonishing numbers, but because the iPhone's rise has been so meteoric,
the materials that typically emerge to explain a new technology are still scarce. Good
texts on iPhone development are now just starting to appear. Most faculty have no
experience with the device, which presents problems when students approach, as they
surely will, asking for perhaps an independent study or even a course on the subject.

This paper attempts to help remedy that situation, by describing the most common

CCSC: Central Plains Conference

301

pitfalls encountered in iPhone development and how to avoid them.

2. MASTERING THE USER INTERFACE
The first, and what in retrospect should be the least surprising pitfall, is that while

students might - for reasons alluded to above - be eager to do iPhone development, they
might not have any actual experience with iPhones. And this applies to more than just
students: it is possible to envision a scenario where, in a capstone course with an outside
client wanting an iPhone app, none of the other participants have actually used an iPhone.
Needless to say, this could be a recipe for disaster.

The trouble is that, while the iPhone is easy to use, its user interface is nonetheless
novel; even the physical motions that one makes when using the iPhone are different than
on a computer. Consequently, it is essential that would-be developers spend hands-on
time using an iPhone: a mentoring faculty member should demonstrate and then turn
over the device for the students to explore, to develop a visceral feel for its behavior.

That exploration should start with the apps that ship with the iPhone. They are
written by Apple, and exercise all of the standard interface paradigms: so they may be
considered definitive, working models of how an iPhone app should behave. Students
also should read Apple's thoughtful and comprehensive iPhone Human Interface
Guidelines [1].

In many environments, an excellent way to test the user interface is with a prototype.
However, a curious point about iPhone development is that making a functional, or even
accurate-looking prototype, requires coding. This is because Apple's engineers adhere
closely to the model-view-controller design pattern. Views (technically, UIViews, the
highest level object in the hierarchy with a physical representation on the screen, and their
myriad subclasses) really are just something to look at. Navigating from one UIView to
another, or even filling a data view (e.g., populating a table, or placing a locator pin on
a map) requires writing a controller.

This has implications for iPhone neophytes starting a larger, perhaps semester-long
project. They really will want a working prototype to test their design, as there is a good
chance that they will get at least parts of it wrong the first time. Lacking the coding skills
to make one, they should be encouraged to resort to paper: 3x5 index cards, or even 2
judiciously fastened sticky notes, are about the right aspect ratio to represent an iPhone.

3. OBTAINING HARDWARE
Development for the iPhone does not actually require an iPhone. The iPhone

Software Developer's Kit (SDK) ships with a simulator that mimics nearly all of the
iPhone's functionality, lacking only a virtual camera and GPS. In addition, the SDK
includes Cocoa Touch, the frameworks on which iPhone applications are based; Xcode,
a powerful IDE which can be also be used to develop Mac OS X applications (iTunes,
Safari, and Mac OS X itself were written with it); Interface Builder, for designing the user
interface; and, finally, Instruments, a sophisticated profiling tool that can provide insight
into how an app is managing (or mismanaging) memory and other resources. The iPhone
SDK only runs on recent vintage Macintosh computers. However, the iPhone SDK itself

JCSC 25, 5 (May 2010)

302

is relatively resource friendly, so any recent vintage Mac should suffice.
At some point, students will need to run their app on an actual phone. Not only is

it the endgame of iPhone development, but also there are simply some aspects of usability
(most notably those involving the touch screen) that cannot be evaluated without one.

Making iPhone ownership a prerequisite for enrolling in a course would certainly
raise eyebrows, and departmental purchases are also problematic: iPhones require a
2-year contract with AT&T, and potentially variable monthly bills might prove awkward.

A possible alternative might be to use an iPod Touch - a device that has many of the
iPhone's features, and is code-compatible, in that an app written for an iPod Touch will
work on an iPhone. The iPod Touch does lack a camera and GPS, but other software will
run exactly as on an iPhone.

4. COPING WITH A NOVEL OPERATING SYSTEMS AND FRAMEWORKS
The iPhone runs a modified version of Mac OS X. Consequently, students who

have written Mac OS X programs, using the Cocoa frameworks, will have an advantage
when writing iPhone apps using the aforementioned Cocoa Touch. They share the
Foundation classes - those lacking a visual presence, such as data structures
(NSDictionary, NSArray), common data types (NSString, NSNumber), etc. At the GUI
level they do diverge, with Cocoa's AppKit and Cocoa Touch's UIKit offering classes
tailored to their respective platforms. Yet even here there is considerable overlap in
nomenclature and concepts.

However, the reality is that the number of students able to leverage their Mac OS
X development experience is small: indeed, at most universities, Computer Science
students will not have even seen Macintoshes in a classroom setting. So, while Mac OS
X does have a reputation as being easy to use, students will still benefit enormously from
an orientation session covering system configuration and administration, file system
navigation, etc.

Turning to Cocoa Touch itself, student developers will find themselves in a situation
that faculty who have been teaching for any length of time are already familiar with: the
need to assimilate and become productive in a new environment. It will require, in this
case, acquiring a new language and concepts, and learning new design patterns. While
undoubtedly challenging, this is excellent preparation for the workforce. It is axiomatic
that students will have to do the same after they graduate, and what better place to
practice than in a controlled, low-pressure environment with a sympathetic mentor?

It helps that Cocoa Touch is based on a venerable, popular, and well-documented
framework: Cocoa has been in existence in one form or another since the 1980's.
However, there are some technical issues that will trip up the unwary: we turn to those
now.

5. CHOOSING THE BEST LANGUAGE
Most iPhone applications are written using Objective-C, a variant of ANSI C with

object-oriented extensions based on the syntax of Smalltalk. Objective-C is a relatively

CCSC: Central Plains Conference

303

easy-to-learn language, especially since most of the awkward bits of C - arrays, strings,
and pointers - are almost never seen in a standard iPhone app. Instead, coders use
NSArrays and NSStrings; pointers are typically required only to declare an object, and
never explicitly dereferenced. While the syntax for method calls is different - parameters
are labeled, and object messaging uses square brackets rather than dot notation - diligent
students quickly become proficient in the language.

Figure 1 shows the interface section of a class named Submarine. Objective-C
classes are divided into interfaces and implementations, and usually stored in separate
.h and .m files, respectively. The interface section encloses its variables in curly
brackets, followed by the definition of its constructors, methods, and properties. The
compiler directives @interface and @end mark the beginning and end of the interface.
The implementation section, not shown here, is similarly defined between
@implementation and @end directives.

@interface Submarine {
bool periscopeUp; // instance variables are defined in {}

 // section
double depth;

}
-(id)init; // constructor, returns id (a generic type)
+(Submarine *)createSub; // class (+) method that returns a
 // Submarine *
-(void)raisePeriscope; // an instance method with no parameters

-(void)diveToDepth:(int)depth withAlacrity:(bool)alacrity;
@end // diveToDepth:withAlacrity has 2 parameters

Figure 1

Using the Submarine class is quite easy, as shown in Figure 2.

Submarine * nautilus = [[Submarine alloc]init];

[nautilus raisePeriscope]; // sending a message (raisePeriscope)
 // to an object (nautilus)

[nautilus diveToDepth:500 withAlacrity:YES];

Figure 2

In the first line of Figure 2, we send a class method, alloc, to the Submarine class,
to allocate memory for the object; the object that is returned is then init'd (that is, we call
its constructor). The careful reader may have noticed that init returns a data type called
id; this is a generic type, capable of storing any reference object. We could have had it
return a Submarine pointer, but id is more traditional. In the second line, we send a
raisePeriscope message to nautilus, and in the third line, we see the advantage of labeling
parameters. An equivalent Java statement:
nautilus.diveToDepth(500,true);

might have had the reader puzzling as to what the second argument signifies, in contrast
to the Objective-C code, where it is explicitly spelled out.

The danger, when it comes to languages, is in adopting one other than Objective-C.
Apple provides Cocoa bindings for Ruby and Python; Mono promises a tie to C#; and

JCSC 25, 5 (May 2010)

304

there are other beguiling alternatives. However, all of Apple's documentation and
virtually all third party texts use Objective-C. It is also the language of choice on most
online forums. In short, the few hours required to master Objective-C will pay big
dividends in the long run.

6. GETTING A HANDLE ON MEMORY MANAGEMENT

One of the most confusing aspects of iPhone development is memory management.
 While garbage collection is available for Mac OS X development, it is not supported on
the iPhone: the developer has sole responsibility for allocating and releasing memory
according to a set of clearly defined rules.

Briefly, any object that is allocated must, at some later date, be released; so for
example, each statement that allocates an object:
Submarine * nautilus = [[Submarine alloc] init];

must, at some later stage, be balanced by a statement that releases it:
[nautilus release]; // memory for nautilus is now freed up

So far, this is straightforward. But what about objects that are instantiated in a
method and then returned? For instance, suppose that nautilus is instantiated in a class
method called createSub, in a class called Submarine, and then returned.
+(Submarine *) createSub {

Submarine * nautilus = [[Submarine alloc] init];
 return nautilus;
}

Once createSub finishes, nautilus goes out of scope, making it impossible to send
it a release message. Each time createSub is invoked, it would leak a Submarine.

Apple's solution is to add these objects to an autorelease pool. As the name
suggests, objects in an autorelease pool will be automatically released, shortly after the
method that created them has completed. If other objects wish to use autoreleased
objects, they may: but if they need them for an extended period of time, they must
remove them from the autorelease pool by sending them a retain message. They
effectively take ownership of the autoreleased objects, and so owe them a release message
when finished with them.

These complex rules become clear with practice, and several recent texts [2, 4] do
a good job of explaining them. If all else fails, memory leaks are easy to spot using
Instruments.

7. UNDERSTANDING THE OUTLET DESIGN PATTERN
Easily the most confusing design pattern, for beginning iPhone developers, is that

of Outlets. When developing controllers and views, controllers are written in Xcode, in
standard .h and .m files. But the views are laid out using Interface Builder, in what are
called .xib files. Somehow, programmers must be able to connect the two, so that
controllers can access/manipulate the GUI widgets on the view.

The solution [2] relies on two main ideas. First, the .xib file contains not just a

CCSC: Central Plains Conference

305

view, but also a proxy for the controller. Secondly, the controller adorns some of its
variables with an empty C macro, IBOutlet.

Variables so adorned become visible (or exposed), within Interface Builder, as
outlets: the programmer physically drags a line from a proxy's outlet to a chosen GUI
widget and in doing so, establishes a connection. From then on, any time the controller
works with the outlet variable, it will in fact be working directly with the GUI widget.

8. SUMMARY
iPhone development, although rewarding and motivating, is fraught with peril.

Students will be challenged by the novelty of the language, frameworks, operating
system, memory management and design patterns. If given proper guidance, however,
they may very well exceed in this exciting new arena; and by following the advice
described in this paper, they will be more likely to do so.

9. REFERENCES

[1] Apple, Inc. iPhone Human Interface Guidelines, developer.apple.com/iphone,
retrieved December 9, 2009.

[2] Buck, Erik M. and Donald A. Yacktman. Cocoa Design Patterns.
Addison-Wesley, 2009.

[3] Mark, Dave and Jeff LaMarche. Beginning iPhone Development Exploring the
iPhone SDK. APress, 2008.

[4] Sadun, Erica. The iPhone Developer's Cookbook: Building Applications with
the iPhone 3.0 SDK, Second Edition. Addison-Wesley, 2009.

Figure 3

* Copyright is held by the author/owner.

306

PROGRAMMING USER INTERFACES USING THE NINTENDO

WII REMOTE*

TUTORIAL PRESENTATION

Chuck Pheatt
Department of Computer Science

Emporia State University
Emporia, KS 66801

620 341-5637
cpheatt@emporia.edu

Scott Goering
Department of Computer Science

Emporia State University
Emporia, KS 66801

620 341-5281
sgoering@emporia.edu

ABSTRACT
The NintendoWii gaming console utilizes a 3D user interface device called the Wii

Remote, also known as the Wiimote. The Wiimote incorporates a number of buttons for
console communication as well as an accelerometer and IR sensor. In addition, the device
allows accessories to be attached (such as the Classic Controller and Nunchuck) to extend
its capabilities. The Wiimote utilizes the Bluetooth wireless protocol for communicating
with the game console.

The Wiimote has been used in a wide variety of applications beyond simply acting
as a game console interface. Applications range from the seminal work with the Wiimote
device by a Carnegie Mellon University researcher involving an interactive whiteboard
[1] to the control of a 15 ton construction grapple by an Australian engineering firm [2].
It has become the favorite device with homebrew application developers [3] since
interfacing the Wiimote to a PC simply requires a low cost Bluetooth dongle (<$20).

In this tutorial we will present an easy to use software framework for utilizing the
WiiMote as a PC input device. Building on an existing library [4], we've developed a
series of examples that illustrate how the Wiimote may be used as a sophisticated input
device. The goal is to provide examples that can be used and extended by students
without detailed knowledge of user interface messaging requirements.

Examples included in the presentation will be:
 • Basic Wiimote and Bluetooth setup and "Hello World" applications.
 • Understanding of control button and sensor inputs including the accelerometer and

CCSC: Central Plains Conference

307

IR sensors.
 • Integrating input from external controls including the Classic Controller and

Nunchuck.
 • Developing a classic game using simple sprites.
 • Developing a gaming environment using OpenGL.

Programming examples may be utilized by introductory programming students as
well as computer science undergraduates developing unique user interfaces or pursuing
an independent study.

REFERENCES

[1] Lee, J., Hudson, S., Summet, J., and Dietz, P. "Moveable Interactive Projected
Displays Using Projector Based Tracking", Proceedings of the ACM Symposium
on User Interface Software and Technology, October 2005. pp. 63-72.

[2] Transmin Engineering, http://www.transmin.com.au. Video appears at
http://inventorspot.com/articles/tiny_wii_device_controls_giant_scary_grappling
_machine_31009

[3] Hack a Wii, http://hackawii.com.

[4] Brian Peek, Managed Library for Nintendo's Wiimote, MSDN Coding for Fun,
http://blogs.msdn.com/coding4fun/archive/2007/03/14/1879033.aspx.

* Copyright is held by the author/owner.

308

TEACHING NETWORKING AND DISTRIBUTED SYSTEMS

WITH SEATTLE*

TUTORIAL PRESENTATION

Justin Cappos, Ivan Beschastnikh
Department of Computer Science and Engineering

University of Washington
justinc@cs.washington.edu, ivan@cs.washington.edu

ABSTRACT
In this tutorial we describe an educational testbed called Seattle [1] that an
instructor can use to enhance a course on networks or distributed systems. We
give an overview of the Seattle educational testbed and describe assignments
and resources available to educators planning to use Seattle in the classroom.
Finally, we discuss the applicability of Seattle to other types of distributed
systems paradigms such as cloud computing, peer-to-peer networking, and
ubiquitous computing.
The purpose of the Seattle testbed is to provide instructors with resources on
computers all around the world. This allows students to learn about real world
network behavior as well as topics like cloud computing and peer-to-peer
computing. Seattle is free and is comprised of resources donated from
universities. Today, Seattle consists of resources on about 1000 computers at
over 100 universities on 6 continents.

OVERVIEW OF SEATTLE

Seattle is a community-driven testbed of computers from around the world. It is
completely free for anyone to use. Universities and individuals donate available
computational resources on multi-user machines, such as the machines in a computer
laboratory. Resources are donated by installing Seattle software, which runs in the
background while the computer is being used for other tasks. Seattle uses incentives to
drive adoption of the testbed. As of December 2009, for every computer running the
donation software, the testbed provides resources on ten other computers to the person
making the donation.

CCSC: Central Plains Conference

309

Seattle is safe to install because it has protection built-in (however may be installed
in a restricted account if desired). Seattle provides protection through a sandboxed
environment that provides strict isolation guarantees and resource restrictions. This
prevents a student program from impacting the security or performance of the donating
computer. Seattle programs are written in a specific language (a restricted version of
Python). This makes it possible to ensure the safety of the programs.
 Students can run Seattle programs by using a shell called seash. To run the
student's code on a remote computer, the shell contacts a program called the node
manager that runs on the remote computer. The node manager also ensures that the total
amount of resources consumed by all programs is kept below 10%. As a result, the
performance impact of Seattle on other users of the donated computer is minimal.
 The Seattle software requires no maintenance or overhead for the university's
technical support staff. Seattle software comes with a software updater, which
automatically keeps the Seattle software up-to-date without any user or administrator
intervention.

The SeattleGENI website facilitates sharing of resources [2]. This web site allows
instructors to share the donation credits they receive with students taking their courses.
It also allows students to request resources on computers with specific network
characteristics, such as LAN or WAN.

The Seattle website contains educational materials including the student portal and
the educator portal. The student portal contains tutorials that introduce students to Python,
teach the restricted Python language used to write Seattle programs, explain how to run
Seattle programs locally, and describe how to use seash for remote execution.
 The educator portal contains a set of tested assignments for instructor including a
complete semester's worth of assignments for both undergraduate and graduate
networking classes. For example, the Take-Home Assignment teaches students about
connectivity on the Internet. The goal is to teach student about non-transitive connectivity
and NATs (Network Address Translation) boxes. The student locates non-transitive
connectivity and sets up one-hop routing to avoid it. The student also determines if their
computer is behind a NAT. This is a good first assignment for a class because it only
takes an hour to complete and requires no programming.

TUTORIAL TOPICS
In this tutorial, we will show instructors teaching networking and distributed

systems courses the power of using the Seattle testbed. This will include:
 1. An overview of the instructional resources available for Seattle including software,

documentation, and course assignments.
 2. A brief overview of how to install and configure Seattle.
 3. A demonstration of how an instructor might use Seattle in a classroom with a live

programming session of an existing assignment.

JCSC 25, 5 (May 2010)

310

REFERENCES

 [1] "Seattle: The Internet as a Testbed." Accessed December 14th, 2009 at
https://seattle.cs.washington.edu/

[2] "GENI | Global Environment for Network Innovations using Seattle." Accessed
March 12, 2009 at https://seattle.cs.washington.edu/geni/

* Copyright © 2010 by the Consortium for Computing Sciences in Colleges. Permission to copy
without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the CCSC copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires a
fee and/or specific permission.

311

EXPERIENCES WITH VIRTUALIZAION TECHNOLOGY IN

EDUCATION*

Timothy Bower
Kansas State University at Salina

785-826-2920
tim@ksu.edu

ABSTRACT
This paper describes how virtualization technology was used to facilitate the
teaching of three classes and presents heuristic results describing when certain
technologies were preferred over others.

INTRODUCTION
Virtualization technology has relevance to the class room as well as to the server

room. Software virtualization technology is currently one of the most frequently
discussed topics in information technology (IT) and systems administration trade
publications. Virtualization technology allows additional modularization of applications,
which makes services easier to maintain. The bottom line result of using virtualization
technology in the server room is increased reliability and better utilization of high end
servers, which results in reduced operating costs.[4] This paper, however, considers a
completely different application of virtualization technology. It addresses the utilization
of virtualization technology in the class room and shares first hand experiences from
using virtualization to facilitate student access to the Linux operating system at both the
user and super-user (root) security levels. Students were given options to use either
traditional methods to access Linux based computers or to use one of two different
virtualization technologies to complete assignments in three different classes. In many
classroom situations, virtualization offered a preferred solution, but in other situations,
a traditional approach was preferred. The objective of this report is present information
to assist instructors and systems administration staff in planning for situations where
students need to use other operating systems than what is available on laboratory
computers.

JCSC 25, 5 (May 2010)

312

An informal, path of least resistance, experiment was conducted in three classes
with distinct assignment objectives. Each class has now been conducted two or more
times with students given the same options each time and quite consistent patterns were
observed regarding the technology choices made by the students. The primary factor
affecting the technology choices was the requirements of the work being performed,
which includes the required security level for the assignment, the amount of flexibility
required and the duration of the activity. The abilities and preferences of the student was
surprisingly a secondary factor with much less impact on the choices made. The students'
level of Unix / Linux experience varied quite a bit, but experience tended to only impact
their initial attempt, but not their final mode of access. The ease-of-use afforded by a
graphical user interface was consistently less important to students than work flow issues.
Especially important was the ability to save data so that in future sessions work can be
quickly resumed. A few students in this observation pool were non-traditional students
with full time jobs. These students were constrained regarding how much time they could
spend on campus using the school's laboratory computers. However, the need to use
their own computer to complete the assignments while mostly off-campus did influence
their technology choices.

OUR COMPUTING ENVIRONMENT
The computing environment at K-State at Salina is quite typical of small

under-graduate college settings. The campus has multiple computing laboratories
available for student use. The laboratories used for most student course work are
equipped with late model desktop computers running up-to-date operating systems from
the Microsoft Windows family of operating systems. These lab machines are protected
from unauthorized software installation and configuration changes by a product called
Deep Freeze.[2] Whenever a user logs out, Deep Freeze deletes files added and restores
any files that were changed or deleted by the user.

There is also a networking lab, which is behind a very restrictive firewall. This lab
is used by the computer networking and systems administration classes that need
administrative privileges. Several of the computers in this lab have removable hard drive
systems, which allows students in certain classes to have their own hard drive to use to
complete the class assignments. There is also one server grade computer, which runs
Linux, available to students in certain classes via remote SSH connection. A few students
and faculty have Linux or Apple Macintosh computers for their own use, but most
students use Windows exclusively. The servers supporting the campus information
technology needs use a mixture of Windows, Linux and Sun Solaris operating systems.

VIRTUALIZAION AND TRADITIONAL TECHNOLOGIES
In simple terms, virtualization means the simultaneous execution of more than one

operating system (OS) instance on a single computer. This differs from traditional
multi-programming, which is just multiple processes executing at the same time. There
are several advantages to simultaneous execution of multiple operating systems. Today's
computers are so fast that the CPU of most servers are under-utilized if it is running a
single OS, even with multiple services running. Yet at the same time, services are

CCSC: Central Plains Conference

313

increasing complex in terms of their software configuration, so there is a push to run only
one service on each OS instance. With virtualization, multiple, single service OS
instances can run from a single computer. It is also possible to migrate these modular OS
instances from one computer to another to support maintenance activities.

The available vitalization software products can be grouped into two technology
categories. The simpler model uses a host operating system and the virtual OS instances,
also called virtual machines (VM), run as an user level processes of the host operating
system. The second, newer architecture relies on technology called Hypervisor to
eliminate the host operating system. In the later architecture, there is a small piece of
operating system like software that controls the immediate access of each virtual machine
to the hardware, but it is not a full operating system and uses only a small amount of the
available memory and CPU time. With Hypervisor technology, the collective
performance of the virtual machines is improved and better features are available to
manage the virtual machines. The first, and most well know, Hypervisor product is
VMWare's ESX Server.[8]

Hypervisor technology is preferred for network servers run by large organizations.
We are interested in teaching students how to work with the products using Hypervisor
technology. However, from an education perspective, the older, hosted technology is
actually preferred in most cases. This is primarily due to security concerns, but the
administrative issues are also simpler when a host operating system is used. When the
virtual machines are run using a host operating system, the whole VM has no more
privileges than any other user level process. Thus, even if the user is logged in as root
(super-user) using a VM, they have no additional capability to engage in malicious
activities or to do harm to the computer or the network.

A number of host based virtualization products are available. From the perspective
of the user, many of the products provide very similar capabilities. Our criteria for use
was that it had to be free and that it had to allow Linux to run as a virtual machine. We
used the VMWare Player product to run Linux using Windows as the host computer. We
also used User Mode Linux (UML), which is an open source project, to run a Linux VM
with Linux as the host operating system. VMWare Player was run using the laboratory
computers while the use of UML used a remote SSH connection to a Linux server. As
described below, these two products offer opposite ends of the spectrum in terms of
ease-of-use and flexibility. Other available software products offer similar capabilities
to these two products.

VMWare Player
VMWare Player is a free, desktop application for running a virtual machine.[7][8]

The user has full access to the graphical desktop environment of the VM. The virtual
disk drive of the VM is a file on the host computer. This file is an image of a drive
containing a Linux file system. VMWare's web site contains a number of virtual machine
images that be downloaded for immediate use. With the use of the VMWare Server
product, which is also free, a custom image can be created. A virtual private network is
created between the host computer and the VM. Thus, using the host computer as a
router between the virtual network and the computer's network interface, the VM has full

JCSC 25, 5 (May 2010)

314

access to the network. Other computer drives, such the CD/DVD player and removable
USB drives, are also accessable to the VM. Users have the option of logging in as a
regular user or as a super-user.

The primary advantages of VMWare Player for education are that it runs locally on
the lab Windows computers and that students have access to the graphical user interface
of the Linux VM. Students with limited Unix / Linux experience were attracted to the
graphical interface, especially the graphical text editors.

In our environment, we did have the disadvantage of not being able to permanently
save data to the disk drive image. The Deep Freeze program restores the disk image after
the student logs out. Students are accustomed to saving all of their work on USB based
removable storage drives. However, in some cases, students may have to make
configuration changes to the Linux environment in order to complete assignments. Thus,
assignments that can not be completed in one session required repetition of some
configuration changes when the student returned to continue working on an assignment.
Printing from within the VM is also not possible. To print a file, the student would need
to either transfer the file to the host computer or save it to their removable drive to print
later.

User Mode Linux
User mode Linux (UML) is the implementation of the Linux kernel as an user level

Linux process.[3][6] Thus, unlike most visualization products, the UML system calls
are not trapped by the virtualization software and translated to modified native OS system
calls. Because the UML virtual machines run as native Linux processes they have very
good performance. However, there are more steps which must be completed before the
UML may be used. As with VMWare Player, a disk image of the Linux system must be
created. Additionally, a custom Linux kernel must be configured and compiled from the
Linux kernel source code. If the UML is run within the Linux desktop environment, it
is possible to use the graphical environment of the VM; however, in our environment,
which accessed the host computer via a SSH remote connection from the Windows based
computers, users were restricted to a command line shell environment. Despite the
additional effort required to get started using the UML and the lack of a graphical user
interface, UML offers some advantages that make it particularly appealing for many
tasks.

Copy on Write (COW) Files
When the UML is started, multiple disk image files may be specified along with the

mount points for each. Moreover, for each image file a copy-on-write (COW) file may
also be specified. Using COW files, the disk image files can be read-only, with any
changes made to the file system being recorded in the COW file. The file system
presented to the user, appear to function as any other file system, but any changes made
to the file system are recorded only to the COW file. Thus, each student starts with an
identical file system, yet the changes made from session to session are re-applied each
time UML is started. Students may also start multiple UML instances with each machine

CCSC: Central Plains Conference

1A TUN/TAP is functionally similar to a named loopback interface or named pipe
.A data structure is created in the kernel of the host OS and kernel code is used to allow
inter-process communication via this device.

315

using its own COW file and thus having an unique configuration. If mistakes are made
to where it would be easier to start over than to correct previous mistakes, the user can
shutdown the UML instance, delete the COW file and start over with a fresh COW file.
It is also possible to run commands from the host Linux system to merge a read-only disk
image with a COW file. This is a convenient way for system administration staff to test
new software or configuration changes. If the changes are acceptable, the file system
changes from the COW file may be merged. In an educational setting; however, merging
images would not often be needed.

Virtual Network Configuration
In addition to being able to run distinct UML virtual machines with unique

configurations, each VM may also use a flexible combination of network interfaces.
Rather than starting each VM with a standard, pre-configured virtual network interface,
a virtual device called a TUN/TAP, which is effectively a virtual Ethernet cable, is
created before the UML is started.1 In the simplest configuration, one end of the
TUN/TAP might be connected to the host system and the other end connected to a VM.
Another program, which is a virtual network switch, may also be started. So, a student
might build a virtual network using a switch connected to the host system and several
virtual machines. One VM might also have multiple network connections and function
as a router or firewall between different sub-nets. Thus, the advanced UML user can
configure an endless combination of virtual networks and computers to test a
configuration in a completely safe, virtual environment.

SSH Client (Putty)
Putty is a simple Windows application that provides a basic console and SSH client

for remote connections to Unix / Linux based computers running a sshd server.[5] With
Putty, students are able to use a Windows based computer to access Linux using the
command line interface. One advantage of Putty to students on our campus is simply that
it is a Windows application which can use the Windows clipboard to facilitate copying
and pasting data between Windows applications. How students use this feature is
discussed in the description of the Introduction to Unix class below.

Individual Workstation Installation
Another option is to install Linux on individual lab computers. In years past, this

was done by configuring the boot manager of the computer to provide a menu for
selection of booting either Windows or Linux. The advantage of duel booting is that it
provides a way to use a basic lab computer for use with either Windows or Linux. The
Linux user also has the benefit of the Linux desktop graphical environment. However,

JCSC 25, 5 (May 2010)

2Students are introduced to the vi editor, which is the one editor that can always be
 found on a Unix like operating system. However, most students feel more
comfortable using an editor where they are always in insert mode, so the simpler, but
less functional editor nano is the text editor most often used by students. Nano is a
clone of the pico text editor, which is used in the pine e-mail client. But because of
licensing issues, pine and pico are not readily available for most Linux distributions,
while nano is available as a standard package.

316

the duel boot configuration has been discontinued on our campus in favor of the other
technologies presented in this report. The most significant problem with duel booting
is that it is impossible to protect the disk partitions belonging to the operating system not
currently booted. Also, duel booting causes confusion for the less experienced students
and the mechanism for switching between Windows and Linux is slow and cumbersome.

If a Linux desktop environment is needed to complete assignments, a better
alternative is to use removable hard drives. These drives use locking trays with all
connectors on the back side of the tray, so the user simply slides the drive into the tray,
locks it and turns the computer on. For relatively small classes, each student can have
their own drive for the semester. This way, the same computer can be used for both
Windows and Linux. A compelling advantage of this approach is that the student can
build their configuration as the semester progresses. This, of course, implies that the
student has administrative privileges on their workstation, which requires that the
computer be in a Networking Laboratory, which is behind a restrictive firewall.

CLASSES, ASSIGNMENT REQUIREMENTS AND TECHNOLOGIES USED
Three classes were required to use Linux to complete varied assignments. Here the

nature of how Linux was used is described and which access technologies worked best
is discussed.

Introduction to Unix Class
This class teaches students how to use Unix / Linux. The objective is to teach new

skills, which are needed to work in the information technology field. Thus, the focus is
on the command line shell interface. The only real advantage to using a graphical
interface for this class is to use a graphical text editor, although students would still be
expected to become familiar with a console based text editor.2 Students only need
user-level access to a Unix / Linux computer.

Early in the semester, most students in this class try VMWare Player because of the
graphical interface, but when they understand that the graphical interface offers few
advantages towards completing the assignments, most students find that Putty allows the
most effective means of completing assignments. The assignments for this class are task
oriented. The students are asked to complete a number of activities that are similar to the
daily activities of a programmer or a systems administrator and make use of specific
standard Unix utilities. Most individual activities can be completed in fifteen minutes or
less, but to keep up with the course pace, students must complete three to four activities

CCSC: Central Plains Conference

317

by the end of each class period. Students must turn in documentation showing that they
have completed each activity. The documentation shows the commands they entered
including the content of any shell scripts, which they wrote, and the output produced by
the computer. Thus, the simplest work flow seems to be to open the assignment page
with a Windows based text editor, such as Notepad, and use Putty to access the Linux
system remotely. Once each activity is successfully completed, the student uses the
Windows clipboard to copy from the putty console to the text editor to fill in the answer
for each activity.

Operating Systems Class
Students in the Operating Systems class have used Linux to write, install and use

Linux Kernel Modules with the objective of learning more about the internal working and
data structures of a modern operating system.[1] As with the assignments for
Introduction to Unix, a graphical user interface is only a small benefit to the student.
However, some students in the Operating Systems class have not previously taken
Introduction to Unix, and thus were quite inexperienced regarding how to use Linux. To
install the kernel modules, students need root level access to the Linux system, thus they
were not able to simply use Putty by itself. For this activity, most students found that
Putty, in combination with User Mode Linux (UML) was the simplest to use. The
primary advantages of the UML over VMWare Player was the ability to save work
completed using a COW file versus the requirements of copying all files to removable
storage since Deep Freeze would restore the disk image to its previous state upon log-out.
One variation, which might have made using VMWare Player easier to use for this class
would have been to hold the entire disk image on removable storage. However, these
disk images can be quite large, so the availability and price of larger (8 GB) USB
removable drives, as well as the speed of the USB 2.0 interface, limited the appeal of this
option. A few students that were quite uncertain about using Unix / Linux had an initial
preference for VMWare Player, but when observing the productivity of students using
UML, most of them eventually switched to UML. The exception to this was the
non-traditional students with full-time jobs and their own laptop computers. These
students took the extra steps of installing VMWare Player on their computer. For these
students, the driving force of their choice was the need to work on assignments when not
on-campus.

Unix Administration Class
This class is a continuation of Introduction to Unix and focuses on how to perform

Unix / Linux systems administration tasks rather than just using Unix. These students
were given the option of installing their own Linux system using a removable hard drive
and all students have chosen to do so. Use of the VMWare Player in our public labs
would not be practical for this class because of Deep Freeze. Modern Linux systems
include a number of graphical administrative tools that were useful to the students,
however, students also learn how to perform administrative tasks by modifying
configuration files and issuing shell commands. User Mode Linux has also been
successfully used in this class for certain projects. UML was most useful to this class for

JCSC 25, 5 (May 2010)

318

networking related projects, such as building firewall systems.
CONCLUSION

Virtualization technologies used in conjunction with traditional technologies offer
appealing options to access Unix / Linux systems as needed to complete course
assignments. Having multiple access technologies available is important because the
nature of different assignments can significantly impact which technology is preferred.
 It is also important to note that for certain activities the traditional options may be
preferred. Key factors which universally influence the overall ease of use relate more
to storing work between sessions than to any convenience offered from a graphical user
interface.

BIBLIOGRAPHY

[1] Bower, T., Using Linux Kernel Modules for Operating Systems Class Projects,
Proceeding of the 2006 ASEE Annual Conference (ASEE'06), 2006.

[2] Faronics, Deep Freeze Product Page,
http://www.faronics.com/html/deepfreeze.asp, retrieved July 18, 2009.

[3] Dike, J., User Mode Linux, Upper Saddle River, New Jersey, Prentice Hall, 2006.

[4] Virtualization Meets Reality, Network World, Special Report, 2007.

[5] Tatham, Simon, Putty Web Page, http://www.putty.org/, retrieved July 18, 2009.

[6] UML Project Team, UML Project Home Page,
http://user-mode-linux.sourceforge.net/, retrieved July 18, 2009.

[7] VMWare Corporation, VMWare Player Product Page,
http://www.vmware.com/products/player/, retrieved July 18, 2009.

[8] Zimmer, Dennis. VMware Server and VMware Player. Sunny Edition, Maur,
UK, 2006.

* Copyright © 2010 by the Consortium for Computing Sciences in Colleges. Permission to copy
without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the CCSC copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires a
fee and/or specific permission.

319

CREATING A SUMMER PROGRAM TO ENGAGE STUDENTS*

Dr. Jerome Eric Luczaj
Department of Computer and Information Technology

Miami University Middletown
4200 East University Boulevard

Middletown, OH 45042
(513) 727-3292

luczajje@muohio.edu

ABSTRACT
The Summer Science Adventures provided an opportunity for rising
sophomores and juniors to study discipline specific coursework in an open
inclusive environment. This paper will discuss four principles used to create
a cohesive curriculum to provide thought provoking, inquiry-based courses to
spark student interest, inspire learning, and build confidence.

INTRODUCTION
Over the past nine years, Summer Science Adventures, a summer honor institute,

has provided college level courses for gifted rising sophomores and juniors (sophomores
and junior in the upcoming school year) high school students. These programs resulted
in engaged, knowledgeable, confident students enthusiastic about learning. The lessons
learned can be generalized and applied across a wider range of students and activities.

Entering the program, students selected one of five courses offered that summer.
Some of courses offered during the program were: Hollywood Mythbusters (a course that
used computer technology to explore physics in movies), Computer Animation: Modeling
and Motion, Flash and ActionScript Programming to Create Interactive Web Pages,
Programming Virtual Worlds (a course that taught object-oriented programming using
a three-dimensional virtual world), Hands on Design: Creating Architecture, Crime Scene
Analysis through Forensic Science, and Digital Fiction (a course that blended digital
technology with creative writing and pictorial story-telling). Every course, whether it
was a computer science course or science or art course, relied heavily upon computer
technology to deliver course content. The courses were multi-week, full day classes

JCSC 25, 5 (May 2010)

320

where students experienced in-depth learning of college level material. Although
students received feedback on their work, students did not take tests nor were they
required to do any homework.

METHODOLOGY
The goal was to provide thought provoking, inquiry-based curriculum that would

spark student interest and enthusiasm, inspire ownership in student learning, and build
student confidence through success and a support system of peers.

To accomplish this goal the program focused on four principles: Academically
challenging material, Active, hands-on learning, Student interaction and collaboration,
and the Opportunity to share their work. This paper will address each of these areas in
turn.

As discussed by Becker [1] applying Merril's first principles of instruction will
greatly enhance the effectiveness of computer science instruction. These include
engaging in real-world problems, using existing knowledge as the foundation,
demonstrating new knowledge, and applying new knowledge, integrating it into the
student knowledge base. In other words, challenge the students with new material that
connects to their own by giving them examples that they can show to others. In addition,
many studies have demonstrated that active learning is an effective means to learn [2][3]
as is student collaboration [4][5][6].

Academic Challenge
The material should provide an academic challenge to the students. To fully engage

students in the program, the content should stretch the students into areas they have not
yet explored. The belief is that programs, especially where students give up a large
portion of their summer break, spending their free time or extra-curricular time, need to
give the students experiences and knowledge unavailable to them during their normal
school year.

However, it is equally important that students have successes all the way through
the program. This was accomplished in multiple ways. First, material was broken into
small units each with tangible results. The overall course structure grouped these smaller
units into a larger, connected experience that provided the knowledge and skills that the
students needed to create a comprehensive final project. For example, in the
Programming Virtual Worlds class, students learned about variables and dynamic object
instantiation by creating a puzzle that, when solved, gave their character a key to open
a locked door. Then they built upon this by using loops to create a fixed number of
penguins in the world when the door was opened.

Second, material was accessible. Courses were taught in a student-centered manner.
Examples related to the students. Students drove project selection choices. Further,
students were guided within the framework of the course to make independent choices
and take responsibility for their learning. For example, to decide a topic for their final
project in the ActionScript course, the students brainstormed on projects they would like
to do. The instructor helped them scope and rank the projects by level of difficulty.

CCSC: Central Plains Conference

321

Students selected project teams and projects from this student developed,
instructor-guided list. As a result, the students took on difficult projects that stretched
their abilities, but with a sense of ownership and enthusiasm.

By providing new, challenging, academic content delivered in a structured,
student-driven, accessible manner the program linked success to academic challenge and
built student confidence. Students responded extremely favorably. Typical comments
were: "The content in this course was much harder than high school, but (the content)
was a lot more interesting and fun." and "…I was treated like an adult and not like
someone that is not capable of thinking for themselves…"

Both of the examples given here were specific to courses in computer science, but
can be applied to other disciplines. Students will rise to academic challenge with
enthusiasm especially when the instructor connects the challenge to student interests and
helps break the material into manageable units. Success without challenge becomes
tiresome, success with challenge is energizing.

Active, Hands-on learning
Student engagement occurs when students are involved in the class session, when

they are involved in class activities, attentive and participating. It only follows, then,
when students perform hands-on activities that they are engaged with the material. All
courses within the program relied heavily upon hands-on exercises and projects to
motivate student learning. Each exercise resulted in some tangible artifact, created by the
students. For example, the first mini-project in the Animation course resulted in an
animated, 3-D logo designed and created by the student. Again, these hands-on activities
relied upon a student-centered model to foster pride of ownership and motivate student
enthusiasm. It was not uncommon for students to try to work through their morning and
afternoon breaks because they were so absorbed in their projects (and the learning that
these projects entailed).

As previously mentioned, the program also actively involved students in course and
project decisions. As seen in studies (like Radenski [7]) giving students choice also
increased their motivation to perform. However, this was not the only benefit of working
with students on class decisions. It also gave students a model to use and practice
developing planning and decision making skills to help them in all their future activities.
For example, after deciding as a class to create a published anthology as the final project
for the Digital Fiction course, the class determined tasks needed, grouped them into
milestones, set responsible parties, and set the schedule with deadlines. The result was
hard-working, actively engaged students that created a 193 page, self-published graphic
novel anthology.

As in these examples, in computer science courses, involving the students in both
the activities and the decision making process will result in a more motivated student
because they are both responsible for the creating the final product as well as determining
how the product will be created.

JCSC 25, 5 (May 2010)

322

Student Interaction and collaboration
People, especially at the targeted age group, tend to be very social. The program

tapped into these tendencies with ice-breaking activities, small group projects, group
shuffling, and social time.

Ice-breaking activities were designed to start building a community in the
classroom. When possible these were tied to the course content, but the over-riding goal
was always for the students to get to know one another. One example of tying an
ice-breaking activity with course content was accomplished in the Digital Fiction class.
Students were paired and told to interview each other about what they wanted to do in the
future, but not about what they had done in the past. Then, using the gathered interview
material, students wrote stories about a character that had succeeded with those future
goals but with a fictional past. Students read the results out loud to the class. As a result,
these introductions were more engaging. Initial contact with each other was in small
groups and the interview pair helped provide support for reading their work out loud to
the class. Though there was added benefit received, the intent was for students to
establish a comfort level with each other.

The program also was designed so that students had a mixture of group and solo
projects, tending to mostly small group projects, with a target group size of two to three
students. The small group model helped the students establish a rapport and required that
each student work to get the tasks accomplished. As mentioned above, most of these
projects were small scale learning projects designed to bring success to the teams. As a
result, not only did students get to know each other better, but also they learned that
working with others produced success. It was not enough, however, to learn that working
with a particular teammate brought success, students must be able to extend that good
experience to working in teams in general. This student's comment was typical of student
reaction to working in teams "…not only did we learn from other people, we learned how
to work together with them even though we had only known each other for a short
amount of time."

The intent was to build connections between all of the students. Consequently, the
small groups were shuffled for every project. Only after they have had the opportunity
to work with all the other students at least once were students given the chance to choose
their own teammates. When they did get to choose teams, their choice was an outward
sign of their connection to others in the class and created a deeper, lasting connection to
the people in the program.

Lastly, the program set aside social time for the students outside of the academic
setting. Time for social interaction included breaks in the morning and afternoon session
as well as an extended lunch period. Board games, card games, disc golf, and soccer balls
were all provided for the students to use. There were also a limited number of areas for
the students to go, which did not include an area with a television. The goal was active
student interaction, not passive co-location. The other advantage with the social time
was that it helped to break up the day and helped the students maintain focus while they
were in the classroom.

Especially in computer science, students will be expected to work together
throughout their careers. Large parts of teamwork are the trust relationships that the team

CCSC: Central Plains Conference

323

members develop. Activities, like those described above, can be applied to any course
to help motivate and engage students.

Opportunity to share their work
The last area that the program used to motivate students was the opportunity to share

their work with others in small and large forums. Time was consciously scheduled
throughout the program during the class sessions for students to share their in-progress
and completed work. These opportunities tended to begin with informal sharing such as
reading the fictional biographies in the ice-breaker activity mentioned above and
progressed to more formal presentations of their work in front of the class. Easing the
students into formal presentation as their confidence and comfort progresses was another
way to give practical, practiced life-skills to students in the program.

The keystone of the program, though, was the final day presentation. Students
invited family and friends to see them present their final projects, making these
presentations a celebration of their experiences and accomplishments in the program.
This did at least four things. First, it motivated the students to apply themselves in a very
directed, productive way. Second, it gave students practical experience presenting their
ideas to a large audience. Third, it provided a final transition from course content that
belongs to the program to content that was created, internalized, and owned by the
students. Fourth, it connected the student's feelings of success, in a very tangible way,
to the program.

Bringing this idea into a computer science curriculum would allow the students the
opportunity to show pride in their work and accomplishment. This would require that
instructors insure that every student had a part in some tangible, demonstrable, concrete
product. That each student had taken ownership of what they and their team had created.

RESULTS
So the question remains, did this approach work? Specifically, did this approach

engage students in learning? And did they learn? During 2007 and 2008, the Ohio
Department of Education administered anonymous online surveys of students in the
program. The survey asked students to rate various aspects of their experience in the
program using the 5-point scale: Strongly Agree, Agree, Disagree, Strongly Disagree, Not
Applicable (were Strongly Agree was the most positive response and Strongly Disagree
was the most negative response). Of 610 total student responses 398 (65%) answered
Strongly Agree, 211 (35%) answered Agree with 1 response of Not Applicable. Student
comments reinforced this extremely positive impression. Examples included "I loved it!
I'm not the only nerd out there! I made friends with students I wouldn't otherwise have
the chance to meet." and "…the course truly allows one to walk away with something
one can make real use of sometime in the near future."

Parent and teacher surveys were likewise positive. Parent comments included:
"Gave my son something very positive, challenging, and educational to do during the
summer…" and "wonderful opportunity; my daughter was incredibly enthusiastic about
each day's learning experiences." Teacher comments included: "My student was smiling

JCSC 25, 5 (May 2010)

324

the entire time. I think he enjoyed being with other kids just as interested as himself…",
"…I was impressed how well he presented. I think this added to his confidence.", "It
challenged them, it made them use their knowledge in a creative way, and gave them a
sense of accomplishment." and "My student was highly encouraged about her future.
She seemed far more interested in science."

To answer the question: Did the students learn, pre and post assessment evaluated
student understanding of key content concepts within each course. Evaluations were on
a 4-point scale: Haven't heard of these terms, Heard of terms but can't explain, Can
explain but not demonstrate, Can explain and demonstrate. During the 2007 and 2008
programs the average pre course score was approximately 1.4 (ranging from 1.2 to 2.3
depending upon the course), indicating that the students had mostly not heard of the terms
before and if they had, they could not explain them. The post course score was
approximately 3.5 (ranging from 3.2 to 3.9 depending upon the course), indicating that
students could at least explain the terms and most likely demonstrate the concepts within
the context of the discipline.

Applying the principles of Academically challenging material, Active, hands-on
learning, Student interaction and collaboration, and the Opportunity to share their work,
has shown to be effective in student learning as well as with student reaction and
attitudes.

As one student put it, "I had hands-on lab experience in this course that I will never
forget. I made friends and had a lot of fun."

REFERENCES

[1] Becker, K. 2006. First principles of CS instruction. J. Comput. Small Coll. 22, 2
(Dec. 2006), 77-84.

[2] McConnell, J. J. 1996. Active learning and its use in computer science. In
Proceedings of the 1st Conference on integrating Technology into Computer
Science Education (Barcelona, Spain, June 02 - 06, 1996). ITiCSE '96. ACM, New
York, NY, 52-54.

[3] Schweitzer, D. and Brown, W. 2007. Interactive visualization for the active learning
classroom. In Proceedings of the 38th SIGCSE Technical Symposium on Computer
Science Education (Covington, Kentucky, USA, March 07 - 11, 2007). SIGCSE '07.
ACM, New York, NY, 208-212.

 [4] Gonzalez, G. 2006. A systematic approach to active and cooperative learning in CS1
and its effects on CS2. In Proceedings of the 37th SIGCSE Technical Symposium
on Computer Science Education (Houston, Texas, USA, March 03 - 05, 2006).
SIGCSE '06. ACM, New York, NY, 133-137.

[5] Ludi, S., Natarajan, S., and Reichlmayr, T. 2005. An introductory software
engineering course that facilitates active learning. In Proceedings of the 36th
SIGCSE Technical Symposium on Computer Science Education (St. Louis,
Missouri, USA, February 23 - 27, 2005). SIGCSE '05. ACM, New York, NY,
302-306.

CCSC: Central Plains Conference

325

[6] McKinney, D. and Denton, L. F. 2006. Developing collaborative skills early in the
CS curriculum in a laboratory environment. SIGCSE Bull. 38, 1 (Mar. 2006),
138-142.

[7] Radenski, A. 2009. Freedom of choice as motivational factor for active learning. In
Proceedings of the 14th Annual ACM SIGCSE Conference on innovation and
Technology in Computer Science Education (Paris, France, July 06 - 09, 2009).
ITiCSE '09. ACM, New York, NY, 21-25.

* Copyright © 2010 by the Consortium for Computing Sciences in Colleges. Permission to copy
without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the CCSC copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires a
fee and/or specific permission.

326

TEACHING MATHEMATICAL PROOFS TO CS MAJOR

STUDENTS IN THE CLASS OF DISCRETE MATHEMATICS *

Hongbiao Zeng, Department of Mathematics & Computer Science,
Fort Hays State University, Hays, KS 67601 (785) 628-5811 hzeng@fhsu.edu

Keyu Jiang, Department of Informatics,
Fort Hays State University, Hays, KS 67601 (785) 628-4684 kjiang@fhsu.edu

ABSTRACT
Teaching mathematical proofs to computer science major students is a
challenge. Computer science majors like logical reasoning but not complicated
mathematical proofs. This paper proposes two possible effective ways to teach
mathematical proofs to computer science major students in the class of discrete
mathematics.

INTRODUCTION
The fundamental concepts of modern computer science are built almost entirely

upon discrete mathematics. In order to learn the fundamental algorithms in computer
science, computer science students must have a solid background in discrete mathematics.
Indeed most universities and colleges have listed the course of discrete mathematics as
a requirement for pursuing a Computer Science degree. Of course, the class of discrete
mathematics may have various names in different universities and colleges. In some
universities and colleges, it is called Foundations of Computing. The name itself explains
how important discrete mathematics is to computer science.

Like other courses in mathematics, there are many mathematical proofs in discrete
mathematics, even when the course is particularly designed for computer science majors.
It is important to understand those proofs in order to understand the related theorems,
formulas, and concepts. However, since the audience is computer science majors, who
are curious about the logical reasoning but not too comfortable with the complicated
mathematic proofs, teaching these proofs to those students is always a challenge. This

CCSC: Central Plains Conference

327

paper researches some ideas on dealing with this challenge.
This research originated during one of Zeng's classes while the recurrence relation

was being taught. When Zeng was showing how to find the solution of a recurrence
relation, a famous identity was cited:

One student suddenly raised his hand and asked why the identity is true. This easy
question is not easy to answer. On one hand, a simple answer such as "it is a formula"
will not satisfy the students who want to have a logical reason. On the other hand, a proof
using mathematical induction (or other calculation) will just cost too much time and
distract the students from the original purpose of that class. Fortunately, Zeng came up
with a solution which satisfied the computer science students immediately. Consider the
binary number system,

In less than one minute, the question was answered and the class went back to its original
path.

This good experience motivated us to think about the following question: how do
we teach mathematical proofs in a way that attracts computer science students and is easy
for them to understand? In this paper, we propose two such ways, namely, teaching with
CS thoughts and teaching with graphs.

TEACHING MATHEMATICAL PROOFS WITH CS THOUGHTS
What is a CS thought? We define that a CS thought is any computer science related

thought with which computer science students are familiar and comfortable. If a
mathematical theorem or formula can be proved using a CS thought, it will be easy for
computer science students to understand and accept.

We believe that there are many CS thoughts out there that can be used to prove
mathematical theorems and formulas. In this paper, we will discuss three CS thoughts that
we have used in our Foundations of Computing class. These three CS thoughts are
thinking of binary, using truth tables, and writing algorithms.

JCSC 25, 5 (May 2010)

328

Thinking Of Binary
Thinking of binary is an obvious CS thought. As it is said in a famous computer

science joke: there are 10 kinds of people in this world: the one who understands binary
and the one who doesn't. Computer science majors belong to the first kind who
understands binary. In fact, computer science majors are familiar and comfortable with
the binary number system. This explains why the proof cited in the introduction section
was accepted immediately by students.

It is easy to find another similar example: using binary thought to prove the identity

 (1)

Are there any more examples? Let's consider the following identity

where .

When we explained the above identity to our students, we pointed out that thinking
of binary implies that the base doesn't have to be ten. If r is an integer that is greater than
1, we can consider the number system of base r. Hence

Since r could be any real number except 1, the above argument is not a complete proof
of identity (1). However, it is enough to convince a computer science student and make
the identity memorable.

Using Truth Tables
Using truth tables instead of the logical arguments is also a CS thought. Many

authors have used it to prove some of the Boolean formulas in their textbooks of discrete
mathematics ([1], [4]). However, we still can dig even further if we want. For example,
the proof of the Generalized De Morgan Law for Logic in [1] is completed by using
logical argument. We proposed the following proof in our Foundations of Computing
course:

CCSC: Central Plains Conference

329

The Generalized De Morgan Law for Logic:

Proof: See truth table, where acts as a bridge.

True False True
False True False

Although the table will be interpreted exactly as the logical argument presented in
[1], the students felt more comfortable with the table simply because they are familiar and
comfortable with truth tables!

Writing Algorithms
Writing algorithms is a typical CS thought. Being able to write algorithms to solve

problems is a fundamental requirement for computer science majors. Asking the students
to think of an algorithm to solve a problem is always a good practice in teaching
computer science majors. When we were teaching the section of mathematical induction
in our Foundations of Computing course, we used the following example to show how
mathematical induction works:

Show that for all positive integer n

We first asked the students if they could write a computer program to prove this
identity. After correctly receiving a "NO" answer, we asked the students if they could
write a computer program to prove the identity up to a given N (not too big). This time,
the students answered "yes". Then we asked for the algorithm. An algorithm was
proposed immediately:

write a computer program to prove the identity up to a given N (not too big).
This time, the students answered “yes”. Then we asked for the algorithm. An
algorithm was proposed immediately:

Input: N

Output: true if for all positive integers
upon to N; false otherwise

Procedure checkIdentity(N)
sum = 0
for n from 1 to N
 sum = sum + n

if return false endif

endfor
return true

JCSC 25, 5 (May 2010)

330

After applauding the success of writing the algorithm, we asked the students to observe
that the (k+1)th iteration of the for loop depends on the k-th iteration of the for loop. If
we can show that the correctness of k-th iteration of the loop will imply the correctness
of (k+1)th iteration of the loop for any k, then the algorithm will return true for any
positive integer N since the loop’s first iteration will always pass without returning false.
This is exactly the idea behind mathematical induction!

TEACHING MATHEMATICAL PROOFS AS GRAPHS
Graphs are always good tools in human communication. In computer science,

graphics are especially important. For instance, a set of graphic diagrams can depict the
software to be built from its requirements to its design. We can safely say that if the proof
of a mathematical theorem or formula can be shown as a graph, it will be easily accepted
by a computer science major student. The proof shown as a graph is called "proof without
words."

"Proofs without words" are often beautiful and intuitive. To share these proofs is a
great enjoyment among mathematicians. In fact, two major journals published by the
Mathematical Association of America, namely Mathematics Magazine and The College
Mathematics Journal, have published hundreds of such proofs under the category named
"Proof without Words." Examples of "Proof without Words" can be found in [2], [3].

 Examples of "Proof without Words" can also be found in some textbooks of discrete
mathematics, although they are not referred to as "Proof without Words." For instance,
the Venn diagram is used to prove some identities related to sets in [5]. The Venn
diagram is also used to represent the concept of in [6], which implies the proof of
one of De Morgan's Laws for Sets: .

We had a good experience in "Proof without Words" when the topic of complexity
of algorithms was taught. The students were very confused with big O, big Ω and big Θ
notations. We used the following example to explain these concepts:

In order to quickly establish the inequalities satisfying the definition of big Θ, we simply
showed the following graph instead of the proof in [1].

Figure 1

CCSC: Central Plains Conference

331

Although the graph is just for , it illustrates the general idea for any positive
integer . From the graph, it is easy to conclude that the area of the dark part is less than
the area under the diagonal (including the diagonal), which is less than the area of the

biggest square. This conclusion is equivalent to . The students
immediately concluded that

 and

which implies

As we see in the previous example, "Proof without Words" is not a rigorous
mathematical proof of a theorem or formula. However, it gives a very intuitive view to
understand why the theorem or formula is correct. Here we discuss one more example
from combinatory theory in Discrete Mathematics:

 (2)

To prove this identity, we simply draw the following graph:

Figure 2

The graph clearly shows that choosing k dots (gray dots) from n dots can be done in two
ways, assuming that one dot falls out:
 1. Taking the fallen-out dot (black dot) then choose k-1 dots from remaining n-1 dots.
 2. Or not taking the fallen-out (black dot) but choose k dots from the remaining n-1

dots.
It is exactly the meaning of the identity (2).

CONCLUSION AND ACKNOWLEGEMENT
It requires a significant commitment to teach any course efficiently. As computer

science faculty members who had been teaching discrete mathematics to computer
science majors for several years, we cannot agree more that teaching mathematical proofs
effectively to computer science students requires an even greater commitment. This paper
is just beginning research in this subject. Further research should be done with two areas.
First, find more theorems that can be proved by using the proposed two methods in this
paper. This includes finding more CS thoughts and “Proof without Words” to prove more
theorems and formulas in discrete mathematics. Second, find other efficient methods to
teach mathematical proofs to computer science major students.

JCSC 25, 5 (May 2010)

332

We appreciate the many contributions of our students who enrolled in our course
“Foundations of Computing” and provided helpful feedback. We also appreciate our
colleagues Ms. Mary Kay Schippers and Dr. Carl Singleton who read through this paper
and gave many valuable suggestions.

REFERENCES

 1. Johnsonbaugh, R., Discrete Mathematics, Upper Saddle River, NJ: Prentice Hall,
2001.

 2. Unal, H., Proof Without Words: Sum of an Infinite Series, The College
Mathematics Journal, Page 39, Vol. 40, No. 1. January 2009

 3. Plaza, A., Proof Without Words: Bernoulli's Inequality, Mathematics Magazine,
Page 62, Vol. 82, No. 1. February 2009

 4. Goodaire, E and Parmenter, M, Discrete Mathematics with Graph Theory, Upper
Saddle River, NJ: Prentice Hall, 2006

 5. Zehna, P and Johnson, R., Elements of Set Theory, Boston, MA: Allyn and
Bacon, 1972

 6. Hein, J., Discrete Mathematics, Sudbury, MA: Jones and Bartlett Publication,
2003

* Copyright is held by the author/owner.

333

PVIF OF $1 TABLE CREATION & USAGE IN C# :

FUNDAMENTAL INTRICACIES*

NIFTY ASSIGNMENT

Jean Hendrix, Associate Professor
Computer Information Systems Division

University of Arkansas at Monticello
Monticello, AR 71656

The following project is submitted as a "Nifty Course Assignment" for several
reasons. In our Computer Information Systems program students must take a core
object-oriented class in which they use Visual BASIC but can only gain experience with
C# if they choose to take it as an elective. For those students who do elect to enroll in C#
there are many advantages which include a comfort level writing code based upon their
experiences in VB and the familiarity with Visual Studio and the creation of event driven
systems which proceed from it. Also, by the time students take this course they are
generally much more "seasoned" in regard to programming logic and design, and can
readily work with problems of a more interesting nature. Unlike computer science majors
our CIS students are required to take supportive classes in area such as business and
accounting, and when they are equipped with this background it is quite appropriate to
formulate assignments which dovetail programming with financial topics.

All accounting students are taught the concept of a Present Value and how it
basically represents the discounted value of a future cash flow. In other words it performs
conversely to compounding in that it discounts future expected amounts back to a
"present day" dollar amount. To calculate a Present Value three data must be known: the
future amount to be discounted, the discount rate that applies, and the time frame. To
simplify calculations, accounting textbooks include PVIF of $1 tables as appendices and
the users only need multiply the correct factor by the future expected value to obtain the
full discounted value.

Armed with this information my students are asked first to create a C# program
which will calculate the "full discounted amount" based upon the requisite input of 1)
future amount 2) discount rate and 3) time frame. This is where the students gain a deeper
appreciation of the differences in C# and other languages like Visual BASIC. It is a
revelation to them when they discover that there is no arithmetic operator for
exponentiation! Even though they have had experiences using and creating methods (and

JCSC 25, 5 (May 2010)

334

functions in VB), having to employ the Math.Pow method is a minor challenge. I always
try to emphasize mathematical equivalencies so ask them to write the formula in different
ways for "show and tell". If the sign on the expression in the denominator for
(1/((1+r)^n)) is changed, the entry is equivalent but looks a little nicer. Oh, and by the
way, they must be especially sensitive to the "double" data type since the Math.Pow
method requires it.

Now comes the fun program: to create another application that generates a PVIF of
$1 table internally and then allows a user to select a desired discount rate from a list box
control and select a time frame from list box control and input/type the future amount
before clicking a command button to calculate the discounted amount.

The first part of this program requires the declaration of a two-dimensional array
which syntactically differs somewhat from languages with which they are most familiar.
Next a nested "for" statement must be written that will correctly set the subscripts for the
table but also, when modified, serve as variables for the discount rate and the number of
years. Because C#'s arrays are zero-based the student must be keenly aware of how to set
the initial value for the looping variable and how to modify this amount for use in the
formula. When initially working with tables one expects to receive an "Subscript Out of
Range" error message a few times, too, which is instructive for students to think through.
In C# it is especially critical to set the blocks (scope) carefully and this exercise
demonstrates it well. Once the "reference table" has been created the second part of the
program allows the user to request that the program calculate a Present Value based upon
a factor found in the table. The look-up process is straightforward but the student must
be aware that only percentage rates (usually the columns) and time frame in years
(usually the rows) on the table are viable and must match with the values in their list box
controls. For a practical application, of course, this is very limiting but the point of the
exercise is to give the student more opportunities to work with multi-dimensional arrays
and experience the intricacies of C# syntax. Of course when it serves to reinforce a
financial concept, too, what more could we ask!

* Copyright is held by the author/owner.

335

ROULETTE SIMULATIONS AND MARTINGALE BETTING*

NIFTY ASSIGNMENT

David Reed
Department of Computer Science

Creighton University
davereed@creighton.edu

SUMMARY
 Students modify and implement interacting classes in order to simulate repeated
roulette games, and use their simulation to study the effectiveness of different betting
strategies.

TOPICS
The context for these assignments is class design and interaction, and the use of

computer models to simulate real-world events. The program utilizes conditionals, loops,
random numbers, strings, counters, and sums.

AUDIENCE
This assignment is given in the second half of a CS1 course using Java, after

students have had some experience with class use and implementation.

STRENGTHS
This assignment involves working with interacting classes, as students must use a

provided class and also implement a class that is used by another. This forces them to
think abstractly and also program to exact specifications. The problem-solving aspect of
this assignment emphasizes that most programs are not end-products but tools that are
used to solve problems. Using their program to simulate repeated games, test different
betting strategies, and analyze their performance, is both motivating and entertaining.

JCSC 25, 5 (May 2010)

336

WEAKNESSES
 While the student is only required to implement one class and make minor
modifications to a method in another class, there is a considerable amount of code that
comprises the project and that they must comprehend. Weaker students may initially be
overwhelmed and need assistance in reviewing the provided code framework.

ABSTRACT
The Martingale betting strategy for playing roulette is centuries old, but still pops

up in viral emails and in various scams. The strategy calls for the gambler to double the
bet amount after each loss, so that the first win would recover all previous losses plus win
a profit equal to the original bet. The claim is that this system will guarantee a profit. In
reality, it does nothing of the kind, since its success relies upon the gambler having an
infinite bankroll (and the house not imposing betting limits).

In part 1 of this assignment, the students are provided with the RouletteWheel class
that models a roulette wheel and asked to implement the RouletteGame class for playing
a game of roulette. A player in the game can enter credits into his or her account and can
make bets on spins of the wheel. The player may bet on a specific number (1-36) or a
color ("red" or "black"), and the game keeps track of their winnings and losses.

In part 2, the students use their roulette game code to study different betting
strategies. They are presented with the question: If you had to double your money (or
else), what would be your best betting strategy? By simulating thousands of games using
the RouletteTester class, with each game continuing until the player has doubled his or
her money or else gone broke, student are able to determine which strategy (number vs.
color, big bet vs. small bet) is preferable. The results can be somewhat surprising.

In part 3 of the assignment, students are asked to extend their analysis to the
Martingale betting strategy. This involves relatively minor modifications to the
simulation code, so that the bet amount changes after each spin. Using the modified
simulation, students are able to compare the performance of the Martingale system with
previous betting strategies and observe just how ineffective this "can't lose" system truly
is.

A full version of the assignment, along with source code, can be found online at
http://dave-reed.com/NiftyRoulette.

* Copyright is held by the author/owner.

337

PROVIDING A DIGITAL LOGIC LAB EXPERIENCE IN A

COMPUTER ARCHITECTURE COURSE*

NIFTY ASSIGNMENT

James Feher
Division of Computing
McKendree University

Lebanon, Illinois 62254
jdfeher@mckendree.edu

ABSTRACT
The laboratory exercises discussed in this presentation are intended to
supplement a traditional computer architecture course. Digital logic labs
provide additional opportunities for students with varying learning styles to
master Boolean algebra as well as experiment with the building blocks
required for any digital computer. However, the cost and procurement of the
necessary equipment combined with the fact that faculty may be reluctant to
require an extra text that may be necessary to facilitate these labs can act as
obstacles in offering these types of laboratory exercises. The author describes
how he addressed these concerns by incorporating digital logic labs within a
computer architecture course using inexpensive commodity components along
with a supplementary text that was released under the Creative Commons
Attribution License.

INTRODUCTION
This paper discusses the implementation of digital logic laboratory exercises within

the context of a traditional computer architecture course. At our institution, the computer
architecture course is taught using a traditional text for the subject [1] with no specified
laboratory hours and is composed of students from both the computer science and
information systems majors. Providing alternate learning opportunities for the students
can often facilitate greater retention and comprehension of the material. And while
"students must develop an understanding of the scientific method and experience this
mode of inquiry in courses that provide some exposure to laboratory work" [2, p. 41], it
is often difficult to provide this experience for a variety of reasons including the expense

JCSC 25, 5 (May 2010)

338

of an additional text and necessary equipment. In addition, the course at our institution
does not have any laboratory hours specified, so the labs added would need to be
completed on an informal basis.

"I hear and I forget. I see and I remember. I do and I understand." - Confucius
In order to address the concerns regarding obtaining a text, the author of this paper

wrote a text specifically for this subject [3] that is available under the Creative Commons
Attribution License [4]. In writing the text, care was taken to specify the use of nothing
more than a standard digital logic kit and inexpensive commodity components that are
readily available.

THE TEXT
The text is a lab manual that includes theoretical background, review problems and

suggested laboratory exercises. It was developed specifically for the purpose of adding
lab exercises in digital logic as a supplement to a traditional computer architecture course.
Development of the text was coordinated with the Global Text Project [5] whose aim is
to "create open content electronic textbooks that will be freely available". As the text is
available under the Creative Commons, it can be freely downloaded as a pdf.

The manual starts with the construction of a simple inverter using a transistor and
concludes with the construction of simple state machines. The theoretical content
provides the background necessary to introduce each of the concepts, followed by review
problems with detailed solutions. Suggested laboratory exercises conclude each section.
While the laboratory exercises can be included as part of a formal lab experience, they
are designed so that students with a minimal orientation can complete them independently
in a modest amount of time. This assumes that the student has read the theoretical
background, received a short lecture on the material, completed the review exercises and
developed the necessary pre-laboratory design. It was important that students could work
independently on the labs as our institution does not have a formal lab that accompanies
our computer architecture course.

RESOURCES REQUIRED
Materials and resources were selected based upon their availability and modest cost.

First, the various capacitors, resistors and wires required are easily obtained and
inexpensive. The integrated circuits required are the 555 timer and 7400 series chips
which have been available and used extensively in industry since the 1970s. The 555 can
be used to build a low frequency clock for asynchronous circuits without the use of a
crystal or ceramic resonator. The 7400 series chips provide the logical gates as well as
more advanced circuits such as the multiplexer and quad D flip-flop.

In addition a logic kit consisting of a breadboard, five volt power supply, input
switches and leds are all needed to complete any of the designs. While this kit can be
built from the parts specified, it is often more convenient to purchase a digital logic kit
that is already assembled [6].

CCSC: Central Plains Conference

339

SUMMARY OF THE LABS INCLUDED
The Transistor and Inverter

This lab provides an introduction to the use of a breadboard and digital logic kit by
constructing a single inverter using a couple of resistors and a transistor. The student
then is introduced to the 7400 series of TTL logic chips by using a single inverter from
a 7404 chip.
Logic gates

Students are introduced to simple logic gates: AND, OR, NAND, NOR and XOR.
Truth tables are used to represent more complex Boolean expressions. Students then
build simple logical Boolean expressions using the logic kit and 7400 series chips.
Logic simplification

More complex logical expressions are simplified using Karnaugh maps to yield Sum
of Product (SOP) expressions. DeMorgan's laws are discussed as they pertain to
implementing SOP expressions with two levels of NAND gates. Rudimentary circuit
debugging techniques are suggested.
More logic simplification

Non-obvious Karnaugh map groupings and don't care conditions are discussed.
Additional Boolean expressions are implemented using 7400 series chips.
Multiplexer

Logical function implementation using the multiplexer is covered. Three and four
input Boolean expressions are implemented using the 8x1, 74151 multiplexer.
Timers and clocks

Frequency and period are discussed. Timing diagrams are introduced. The 555
timer is used to build both a timer and a clock circuit.
Memory

Static memory is introduced in the form of the SR latch. D, JK and T flip-flops are
briefly discussed. An SR latch is built with NAND gates and the 74175 quad D flip-flop
is used to obtain one bit of memory.
State machines

Boolean logic, clocks and memory are combined to build a simple state machine.
State transition diagrams are introduced. Timing diagrams and debounced switches are
also discussed. Simple two bit counters are designed and then built.
More state machines

More complex synchronous circuits are designed and built. State machines with an
number of states that are not a power of two are designed. Strategies for design
simplification and reliability of the final circuit are discussed as they relate to the unused
states for the state machines.

JCSC 25, 5 (May 2010)

340

METHODOLOGY
The laboratory manual was used successfully during the fall 2009 semester in a three

credit hour computer architecture course with no formal lab. Students in the course were
drawn from a wide variety of majors from within the Division of Computing at
McKendree: Computer Science, Computer Information Systems, Information
Technology, Computational Science and Interactive Media. This group has a diverse
foundation in mathematics and science, and those with a stronger foundation in these
areas master the material more quickly. Prior to starting the labs brief introductions were
provided for a few essential elements.
 • Provided materials (breadboard, chips, resistors, etc.)
 • Introduction to DC electronics
 • Theory for each lab
This seemed sufficient for the students to then progress independently.

Students worked with a partner, generally with a weaker student paired with a
stronger student, and all labs were completed outside of the class with assistance
available to those who experienced difficulty. Before starting to construct a lab,
pre-laboratory work in a lab manual was checked to verify that the circuit was properly
designed and documented. The final completed lab was then demonstrated to the
instructor for each of the labs. The labs were spread throughout the semester with the
lectures interlaced with the material from the traditional architecture text and with plenty
of time for the students to construct their circuits.

RESULTS
I have been incorporating labs of this nature every time I have taught a course in

Computer Architecture. This material has been well received, with student comments
generally following that, they enjoyed "the hands on activity with the labs, it was nice to
see the small parts work." Developing the text has allowed me to include these labs with
minimal expense on the part of the students. With regards to this text, comments
followed this general theme, "The lab book was straight forward and easy to
comprehend. I enjoyed working and learning from it." I have found that after completing
the labs, even the weaker students in the course demonstrated an excellent grasp of the
theory. Some students have commented that they disliked spreading the material
throughout the semester and would prefer not to "switch between two books." However,
I have found that by placing these labs during transitions between chapters this can be
minimized. I have especially found that placing the labs during the middle of a
particularly difficult concept, such as cache memory design, allows the students have
more time to reflect upon and master the more difficult concepts.

CONCLUSION
Despite the fact that very few students had any previous exposure to using a

breadboard or digital logic kit, the lab groups were able to successfully master the use of
these prototyping tools fairly quickly. Anecdotally, students generally expressed

CCSC: Central Plains Conference

341

satisfaction in building the circuits. I found that the students also were able to
demonstrate a level of mastery with the material covered in the labs that was far greater
than the material from the traditional text when it only was reinforced through pen and
paper homework problems. Some suggestions for the text arose, such as providing a few
more advanced combinatorial logic circuits such as an adder, before introducing
sequential logic circuits. These suggestions will be incorporated in a newer edition of the
text. Overall, the inclusion of the labs was a success and I will continue to incorporate
digital logic design in this format whenever teaching a computer architecture course.

REFERENCES

[1] Stallings, W., Computer Organization and Architecture, Prentice Hall, 2003.

[2] Chang, C., et al, Computing Curricula 2001- Computer Science, The Joint Task
Force on Computing Curricula, IEEE Computer Society and the Association for
Computing Machinery, 2001.

[3] Feher, J., Digital Logic with Laboratory Exercises, 2009,
http://docs.globaltext.terry.uga.edu:8095/anonymous/webdav/Digital%20Logic/
Digital%20Logic.pdf.

[4] Creative Commons – Attributed 3.0 Unported, 2009,
http://creativecommons.org/licenses/by/3.0/, Retrieved November 30, 2009.

[5] Welcome to the Global Text Project, 2009, http://globaltext.terry.uga.edu,
Retrieved November 30, 2009.

[6] Educational > Logic Trainers - Products (Page 1) - HVW Technologies, 2009,
http://www.hvwtech.com/products_list.asp?CatID=206&SubCatID=207,
Retrieved November 30, 2009.

342

INDEX OF AUTHORS

Aman, J . 207
Bainum, D 269
Balsim, I . 188
Beaubouef, T 110
Beschastnikh, I 308
Black, M . 275
Bower, T . 311
Bradley, B 82
Bradley, M 124
Brandle, S 284
Brannock, E 102
Britton, O . 8
Brown, M 79, 105
Browning, C 163
Buchan, J 265
Buhler, J . 173
Burch, C 79, 154
Burns, S . 223
Cappos, J 308
Chamberlain, R 165
Chen, Y . 173
Cigas, J 213, 243, 251
Conway, J 207
Cross, J . 164
Dagtas, S 140
Davidson, C 231
Dekhane, S 102
Deneke, W 27
Dooley, J 196
Edwards, A 41
England, R 97
Feder, E . 188
Feher, J . 337
Ferrer, G 2, 108, 133
Giangrande, E 241
Gibson, N . 72
Gill, C . 165
Goering, S 306
Goldman, K 165, 173
Goldman, S 173
Grimm, C 165, 173
Grissom, S 58

Han, H . 10
Hare, B . 267
Harr, C . 207
Hendrix, J 333
Hsieh, S . 287
Hsin, W 158, 243, 245
Hu, C . 79
Israel , Q . 10
Jahangir, S 188
Jenkins, J 102
Jiang, K . 326
Jones, R . 83
Kushan, B 251
Li, C . 294
Li, W . 27
Luczaj, J . 319
McCown, F 131
McDowell, P 110
Mechtly, B 269
Meinke, J . x
Mercuri, R 162
Mertz, T . 238
Messaoudi, K 140
Messaoudi, S 140
Middleton, D 21
Mirielli, E 265
Morell, L . 21
Naugler, D . 6
Nelson, C 287
Nooner, M 79
North, M . 223
North, S . 223
Perryman, D 223
Pheatt, C . 306
Pinto, M . 258
Pokorny, K 265, 282
Qualls, J . 66
Rajan, H . 282
Reed, D 180, 335
Rogers, M 300
Sampath, L 287
Sheel, S . 34

343

Sherrell, L 66
Simmons, C 60
Simmons, L 60
Sondag, T 282
Song, I . 10
Sonnier, D 118, 124
Sowell, R 165, 173
Spradling, C 214, 267
Stallings, T 83
Stamey, J . 34
Strauch, J 214
Talburt, J . 72
Tesar, P . 82
Thompson, C 27
Tranel, M 165
Walker, H 196
Whitson, G 89
Wright, D 106
Xing, C . 48
Yu, Y . 147
Zeng, H . 326
Zhang, K . 41

344

 NON-PROFIT ORG.
 U.S. POSTAGE

 P A I D
 ALLENTOWN, PA
 PERMIT #759

JCSC Volume 25 Number 5 May 2010

Muhlenberg College
 2400 Chew Street
Allentown, PA 18104-5586

